Land–atmosphere–ocean coupling associated with impacts

National Science Review 7, 534-552

DOI: 10.1093/nsr/nwaa011

Citation Report

#	Article	IF	Citations
1	Impacts of TIPEXâ€II Rawinsondes on the Dynamics and Thermodynamics Over the Eastern Tibetan Plateau in the Boreal Summer. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032635.	3.3	11
2	Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool. Atmosphere, 2020, 11, 828.	2.3	8
3	Why Are There More Summer Afternoon Low Clouds Over the Tibetan Plateau Compared to Eastern China?. Geophysical Research Letters, 2020, 47, e2020GL089665.	4.0	19
4	PVâ€Q Perspective of Cyclogenesis and Vertical Velocity Development Downstream of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030912.	3.3	26
5	Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 2020, 208, 103269.	9.1	259
6	Impact of North Atlantic SST and Tibetan Plateau forcing on seasonal transition of springtime South Asian monsoon circulation. Climate Dynamics, 2021, 56, 559-579.	3.8	32
7	Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations. Advances in Atmospheric Sciences, 2021, 38, 460-479.	4.3	28
8	Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions. Climate Dynamics, 2021, 56, 2339-2358.	3.8	31
9	Modelling study on the source contribution to aerosol over the Tibetan Plateau. International Journal of Climatology, 2021, 41, 3247-3265.	3.5	3
10	Estimations of Land Surface Characteristic Parameters and Turbulent Heat Fluxes over the Tibetan Plateau Based on FY-4A/AGRI Data. Advances in Atmospheric Sciences, 2021, 38, 1299-1314.	4.3	12
11	Topâ€ofâ€Atmosphere Radiation Budget and Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions From CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034345.	3.3	13
12	A zonally-oriented teleconnection pattern induced by heating of the western Tibetan Plateau in boreal summer. Climate Dynamics, 2021, 57, 2823-2842.	3.8	13
13	Response of Regional Asian Summer Monsoons to the Effect of Reduced Surface Albedo in Different Tibetan Plateau Domains in Idealized Model Experiments. Journal of Climate, 2021, , 1-49.	3.2	10
14	Effects of Cloud Microphysics on the Vertical Structures of Cloud Radiative Effects over the Tibetan Plateau and the Arctic. Remote Sensing, 2021, 13, 2651.	4.0	4
15	Opposite responses of the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the onset of the South Asian monsoon. Journal of Climate, 2021, , 1-56.	3.2	1
16	Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China. Journal of Arid Land, 2021, 13, 835-857.	2.3	9
17	A semi-idealized modeling study on the long-lived eastward propagating mesoscale convective system over the Tibetan Plateau. Science China Earth Sciences, 2021, 64, 1996-2014.	5.2	5
18	Drought and Wetness Variability and the Respective Contribution of Temperature and Precipitation in the Qinghai-Tibetan Plateau. Advances in Meteorology, 2021, 2021, 1-13.	1.6	9

#	Article	IF	CITATIONS
19	Meridional Tripole Mode of Winter Precipitation over the Arctic and Continental North Africaâ \in Eurasia. Journal of Climate, 2021, , 1.	3.2	1
20	Precursor Effect of the Tibetan Plateau Heating Anomaly on the Seasonal March of the East Asian Summer Monsoon Precipitation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032948.	3.3	26
21	The Variability of Summer Atmospheric Water Cycle over the Tibetan Plateau and Its Response to the Indo-Pacific Warm Pool. Remote Sensing, 2021, 13, 4676.	4.0	0
22	Dynamic and Thermal Effects of the Tibetan and Iranian Plateaus on the Northward-Propagating Intraseasonal Oscillation during Boreal Summer. Journal of Climate, 2022, 35, 2173-2188.	3.2	3
23	Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall. Advances in Atmospheric Sciences, 2022, 39, 1050-1061.	4.3	6
24	Precipitation recycling ratio and water vapor sources on the Tibetan Plateau. Science China Earth Sciences, 2022, 65, 584-588.	5.2	18
25	Impact of deep basin terrain on PM2.5 distribution and its seasonality over the Sichuan Basin, Southwest China. Environmental Pollution, 2022, 300, 118944.	7.5	17
26	Observational constraint on the future projection of temperature in winter over the Tibetan Plateau in CMIP6 models. Environmental Research Letters, 2022, 17, 034023.	5.2	23
27	Positive Associations of Vegetation with Temperature over the Alpine Grasslands in the Western Tibetan Plateau during May. Earth Interactions, 2022, 26, 94-111.	1.5	4
28	Association between regional summer monsoon onset in South Asia and Tibetan Plateau thermal forcing. Climate Dynamics, 2022, 59, 1115-1132.	3.8	9
29	Sea ice loss of the Barents-Kara Sea enhances the winter warming over the Tibetan Plateau. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	22
30	Quantification of Seasonal and Interannual Variations of the Tibetan Plateau Surface Thermodynamic Forcing Based on the Potential Vorticity. Geophysical Research Letters, 2022, 49, .	4.0	4
31	Potential Impact of Spring Thermal Forcing Over the Tibetan Plateau on the Following Winter El Niño–Southern Oscillation. Geophysical Research Letters, 2022, 49, .	4.0	6
32	Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agricultural and Forest Meteorology, 2022, 317, 108887.	4.8	88
33	Synergistic impacts of westerlies and monsoon on interdecadal variations of late spring precipitation over the southeastern extension of the Tibetan Plateau. International Journal of Climatology, 2022, 42, 7342-7361.	3.5	2
34	Key regions where land surface processes shape the East Asian climate. Atmospheric and Oceanic Science Letters, 2022, 15, 100209.	1.3	2
35	Convective Entrainment Rate over the Tibetan Plateau and Its Adjacent Regions in the Boreal Summer Using SNPP-VIIRS. Remote Sensing, 2022, 14, 2073.	4.0	4
36	Remote Sensing-Detected Changes in Precipitation over the Source Region of Three Rivers in the Recent Two Decades. Remote Sensing, 2022, 14, 2216.	4.0	4

#	Article	IF	Citations
37	Interannual Impact of the North Atlantic Tripole SST Mode on the Surface Potential Vorticity Over the Tibetan Plateau During Boreal Summer. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
38	Revisiting the impact of Asian large-scale orography on the summer precipitation in Northwest China and surrounding arid and semi-arid regions. Climate Dynamics, 2023, 60, 33-46.	3.8	3
39	Summertime atmospheric water vapor transport between Tibetan Plateau and its surrounding regions during 1990–2019: Boundary discrepancy and interannual variation. Atmospheric Research, 2022, 275, 106237.	4.1	5
40	Upperâ€Troposphere Saddleâ€Like Response to Springtime Surface Sensible Heating Over the Tibetan Plateau: Combined Effect From Baroclinic and Barotropic Process. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
41	Impacts of Autumnâ€Winter Tibetan Plateau Snow Anomalies on North Atlanticâ€Europe and Arctic Climate. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	1
43	Mechanical and Thermal Impacts of the Tibetan–Iranian Plateau on the North Pacific Storm Track: Numerical Experiments by FGOALSâ€f3‣. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
44	Persistence of Soil Enthalpy Drives the Winter and Summer Climate Connection in the Tibetan Plateau. Geophysical Research Letters, 2022, 49, .	4.0	3
45	Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN. Remote Sensing, 2022, 14, 2855.	4.0	3
46	Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. Environmental Sciences: Processes and Impacts, 2022, 24, 1616-1630.	3.5	5
47	Snow depth and snow cover over the Tibetan Plateau observed from space in against ERA5: matters of scale. Climate Dynamics, 2023, 60, 1523-1541.	3.8	10
48	Advantages of a variableâ€resolution global climate model in reproducing the seasonal evolution of East Asian summer monsoon. International Journal of Climatology, 2023, 43, 575-592.	3.5	4
49	Combined Effect of the Tropical Indian Ocean and Tropical North Atlantic Sea Surface Temperature Anomaly on the Tibetan Plateau Precipitation Anomaly in Late Summer. Journal of Climate, 2022, 35, 7499-7518.	3.2	7
50	Southeast China Extreme Drought Event in August 2019: Context of Coupling of Midlatitude and Tropical Systems. Journal of Climate, 2022, 35, 7299-7313.	3.2	12
51	The Prediction of the Tibetan Plateau Thermal Condition with Machine Learning and Shapley Additive Explanation. Remote Sensing, 2022, 14, 4169.	4.0	4
53	Variations of Primary Productivity in the Northwestern Arabian Sea During the Last 23,000ÂYears and Their Paleoclimatological Implications. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	4
54	Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere. Atmospheric Research, 2023, 281, 106470.	4.1	0
55	An Integrated Research Plan for the Tibetan Plateau Land–Air Coupled System and Its Impacts on the Global Climate. Bulletin of the American Meteorological Society, 2023, 104, E158-E177.	3.3	2
56	The Physical Processes Dominating the Impact of the Summer North Atlantic Oscillation on the Eastern Tibetan Plateau Summer Rainfall. Journal of Climate, 2022, 35, 7677-7690.	3.2	6

#	Article	IF	CITATIONS
57	Impacts of moisture transport through and over the Yarlung Tsangpo Grand Canyon on precipitation in the eastern Tibetan Plateau. Atmospheric Research, 2023, 282, 106533.	4.1	7
58	A potential vorticity budget view of the atmospheric circulation climatology over the Tibetan Plateau. International Journal of Climatology, 0, , .	3.5	2
59	Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau. Hydrology and Earth System Sciences, 2022, 26, 6413-6426.	4.9	0
60	Regional and tele-connected impacts of the Tibetan Plateau surface darkening. Nature Communications, 2023, 14, .	12.8	15
61	Differentiation of Asian summer precipitation induced by the mountain building of the Tibetan Plateau and Central Asian Orogenic Belt. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 619, 111547.	2.3	0
62	Impact of the Tibetan Topography on Downwind Spatial Distribution of Fine Particulate Matter in Winter. Journal of Climate, 2023, 36, 1561-1574.	3.2	0
63	çf带æμ·è¡¨é¢æ¸©åº¦åŠä¸çº¬åº¦å§æ°"环æμ对é•è—é«~原9æœ^陿°′å¼,å¸çš"å±åŒå½±å"• SCIENTIA SINIC	A Toesae, 2	2023,,.
65	Precipitation anomaly over the Tibetan Plateau affected by tropical sea-surface temperatures and mid-latitude atmospheric circulation in September. Science China Earth Sciences, 2023, 66, 619-632.	5.2	0
66	Evaluation of the surface air temperature over the Tibetan Plateau among different reanalysis datasets. Frontiers in Environmental Science, $0,11,.$	3.3	1
67	Interdecadal Variation in Rossby Wave Source over the Tibetan Plateau and Its Impact on the East Asia Circulation Pattern during Boreal Summer. Atmosphere, 2023, 14, 541.	2.3	3
68	Extreme heatwave over Eastern China in summer 2022: the role of three oceans and local soil moisture feedback. Environmental Research Letters, 2023, 18, 044025.	5.2	26
69	Quantifying the processes of accelerated wintertime Tibetan Plateau warming: outside forcing versus local feedbacks. Climate Dynamics, 2023, 61, 3289-3307.	3.8	2
70	Soil moisture associated with freeze–thaw process modulated growing-season temperature rise in the Tibetan Plateau. Climate Dynamics, 2023, 61, 3619-3631.	3.8	1
71	Evaluation of Spatial and Temporal Variations in the Difference between Soil and Air Temperatures on the Qinghai–Tibetan Plateau Using Reanalysis Data Products. Remote Sensing, 2023, 15, 1894.	4.0	3
72	Diagnosing the compound seasonal soil moisture-hydroclimate interaction regime on the Tibetan Plateau using multi-high-resolution reanalysis products and one regional climate model. Journal of Hydrology, 2023, 620, 129517.	5.4	1
75	Large Uncertainties in Precipitation Exert Considerable Impact on Land Surface Temperature Modeling Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
76	Attenuation of mountain-valley circulations on PM2.5 pollution over the western Sichuan basin, southwest China. Atmospheric Pollution Research, 2023, 14, 101796.	3.8	0
77	Interdecadal instability of the interannual connection between southern Tibetan Plateau precipitation and Southeast Asian summer monsoon. Atmospheric Research, 2023, 291, 106825.	4.1	1

#	ARTICLE	IF	CITATIONS
78	Large-scale circulation dominated precipitation variation and its effect on potential water availability across the Tibetan Plateau. Environmental Research Letters, 2023, 18, 074018.	5.2	0
79	Variability in temperature extremes across the Tibetan Plateau and its non-uniform responses to different ENSO types. Climatic Change, 2023, 176, .	3.6	2
80	Who or what makes rainfall? Relational and instrumental paradigms for human impacts on atmospheric water cycling. Current Opinion in Environmental Sustainability, 2023, 63, 101300.	6.3	3
81	Networked scatter plot bidirectional coupling detection and its application in the diagnosis of depression. Biomedical Signal Processing and Control, 2023, 86, 105135.	5.7	2
82	The Tibetan Plateau bridge: Influence of remote teleconnections from extratropical and tropical forcings on climate anomalies. Atmospheric and Oceanic Science Letters, 2023, , 100396.	1.3	0
83	Influence of the Indian Summer Monsoon on Inter-Annual Variability of the Tibetan-Plateau NDVI in Its Main Growing Season. Remote Sensing, 2023, 15, 3612.	4.0	2
84	From General Circulation to Global Change: The Evolution, Achievements, and Influences of Duzheng Ye's Scientific Research. Atmosphere, 2023, 14, 1202.	2.3	1
85	Lakeâ€Area Expansion Alters Downwind Precipitation Patterns on the Tibetan Plateau: Insights From the Most Dramatically Expanded Lake. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
86	Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: the GEWEX/LS4P Phase I experiment. Climate Dynamics, 0, , .	3.8	O
87	Global Climate Impacts of Landâ€Surface and Atmospheric Processes Over the Tibetan Plateau. Reviews of Geophysics, 2023, 61, .	23.0	13
88	Weakening amplification of grassland greening to transpiration fraction of evapotranspiration over the Tibetan Plateau during 2001-2020. Agricultural and Forest Meteorology, 2023, 341, 109661.	4.8	1
89	Deep convective clouds observed by ground-based radar over Naqu, Qinghai–Tibet Plateau. Atmospheric Research, 2023, 293, 106930.	4.1	2
90	"亚洲水塔"水循环和水èμ"æºę"究进展与展望. Chinese Science Bulletin, Ξ	2 0 23,,.	0
91	Influence of the Tibetan Plateau on the coupling of the North Pacific–North Atlantic pressure systems. Atmospheric Research, 2023, 295, 107026.	4.1	O
92	Alleviated WRF Summer Wet Bias Over the Tibetan Plateau Using a New Cloud Macrophysics Scheme. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	0
93	The westerly winds control the zonal migration of rainy season over the Tibetan Plateau. Communications Earth & Environment, 2023, 4, .	6.8	1
94	Introduction to the Third Pole. , 2023, , 1-30.		0
95	The Northern Hemisphere Wintertime Storm Track Simulated in the Highâ€Resolution Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	O

#	ARTICLE	IF	Citations
96	Microphysical Characteristics of Snowfall on the Southeastern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
97	Surface Air Temperature Trend Over the Tibetan Plateau in CMIP6 and Its Constraint in Future Projection. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
98	Linkage between the boreal spring Antarctic oscillation and the temperature dipole mode over the Tibetan Plateau in summer. Atmospheric Research, 2024, 297, 107128.	4.1	0
99	Nonlinear causal relationships between urbanization and extreme climate events in China. Journal of Cleaner Production, 2024, 434, 139889.	9.3	1
100	Model sensitivity of Tibetan Plateau surface potential vorticity and the Asian summer monsoon system to Asian orographic perturbation in FGOALS-f2. Fundamental Research, 2023, , .	3.3	0
101	Impact of May atmospheric latent heating over the Southeast Asian low-latitude highlands on interannual variability in the Meiyu onset date. Atmospheric Research, 2024, 298, 107158.	4.1	0
102	Impact of summer Tibetan Plateau snow cover on the variability of concurrent compound heatwaves in the Northern Hemisphere. Environmental Research Letters, 2024, 19, 014057.	5.2	0
103	Evaluation of Performance of Polar WRF Model in Simulating Precipitation over Qinghai-Tibet Plateau. Journal of Tropical Meteorology, 2023, 29, 410-430.	0.9	0
104	Resonance between projected Tibetan Plateau surface darkening and Arctic climate change. Science Bulletin, 2024, 69, 367-374.	9.0	0
105	Global Effects of Climate Change in the South China Sea and Its Surrounding Areas. , 0, , .		1
106	The influence of complex terrain on cloud and precipitation on the foot and slope of the southeastern Tibetan Plateau. Climate Dynamics, 0 , , .	3.8	1
107	Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau. Climatic Change, 2024, 177, .	3.6	0
108	Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020: Role of Soil Moisture. Advances in Atmospheric Sciences, 0, , .	4.3	0
109	Spatiotemporal Distributions of the Thunderstorm and Lightning Structures over the Qinghai–Tibet Plateau. Remote Sensing, 2024, 16, 468.	4.0	0
110	Roles of the Tibetan Plateau and Yunnanâ€Guizhou Plateau in the Regional Extreme Precipitation Over Sichuan Basin in Summer: A Case Study. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	0
111	Atmospheric heat source over the Tibetan Plateau: A comparative analysis between the Westerlies and Monsoon Regions. Atmospheric Research, 2024, 301, 107289.	4.1	0
112	Understanding of CMIP6 surface temperature cold bias over the westerly and monsoon regions of the Tibetan Plateau. Climate Dynamics, 0, , .	3.8	0
113	Exploring covariabilities of the high-summer subtropical upper-level pressure systems in the Northern Hemisphere. Atmospheric Research, 2024, 302, 107310.	4.1	0

#	Article	IF	CITATIONS
114	Understanding the 2022 Extreme Dragon-Boat Rainfall in South China from the Combined Land and Oceanic Forcing. Asia-Pacific Journal of Atmospheric Sciences, 0, , .	2.3	О
115	Enhanced spring warming of the Tibetan Plateau amplifies summer heat stress in Eastern Europe. Climate Dynamics, 0, , .	3.8	O
116	Assessing the Regional Climate Response to Different Hengduan Mountains Geometries With a Highâ€Resolution Regional Climate Model. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3 . 3	0
117	Early Miocene sand wedge deposits in Southwestern Tarim Basin and Implications for the Uplift of the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 2024, 267, 106126.	2.3	0
118	Combined Effects of Multiple Forcing Factors on Extreme Summer Multivariate Compound Heatwaves Over Western Europe. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	0
119	Potential Impacts of Winter Arctic Sea Ice on Subsequent Spring Thermal Condition Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	0