Transcriptional regulation and expression network resp Cd-tolerant perennial grass Poa Pratensis

Chemosphere 250, 126158

DOI: 10.1016/j.chemosphere.2020.126158

Citation Report

#	Article	IF	Citations
1	Identification and Expression Analysis of the <i>SWEET</i> Gene Family from <i>Poa pratensis</i> Under Abiotic Stresses. DNA and Cell Biology, 2020, 39, 1606-1620.	1.9	16
2	The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. Protoplasma, 2022, 259, 19-31.	2.1	24
3	Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. Ecotoxicology and Environmental Safety, 2021, 212, 112002.	6.0	12
4	Physiological, biochemical, and transcriptional regulation in a leguminous forage Trifolium pratense L. responding to silver ions. Plant Physiology and Biochemistry, 2021, 162, 531-546.	5.8	11
5	Comparative transcriptome combined with transgenic analysis reveal the involvement of salicylic acid pathway in the response of Nicotiana tabacum to triclosan stress. Chemosphere, 2021, 270, 129456.	8.2	8
6	A global and physical mechanism of gastric cancer formation and progression. Journal of Theoretical Biology, 2021, 520, 110643.	1.7	5
7	Physiological, anatomical, and transcriptional responses of mulberry (Morus alba L.) to Cd stress in contaminated soil. Environmental Pollution, 2021, 284, 117387.	7.5	27
8	Polymer amendment regulates cadmium migration in cadmium contaminated cotton field: Insights from genetic adaptation and phenotypic plasticity. Science of the Total Environment, 2022, 807, 151075.	8.0	7
9	Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in <i>Poa pratensis</i> DNA and Cell Biology, 2022, 41, 151-168.	1.9	3
10	Comparison and Characterization of Oxidation Resistance and Carbohydrate Content in Cd-Tolerant and -Sensitive Kentucky Bluegrass under Cd Stress. Agronomy, 2021, 11, 2358.	3.0	10
11	Temporal and tissue-specific transcriptome analyses reveal mechanistic insights into the Solidago canadensis response to cadmium contamination. Chemosphere, 2022, 292, 133501.	8.2	7
12	Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. Environmental Pollution, 2022, 301, 118980.	7.5	20
13	Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants. Plants, 2022, 11, 536.	3.5	48
14	Soil Type Influences Rhizosphere Bacterial Community Assemblies of Pecan Plantations, a Case Study of Eastern China. Forests, 2022, 13, 363.	2.1	4
15	Characterization and Functional Analysis of <i>ZmSWEET15a</i> in Maize. DNA and Cell Biology, 2022, 41, 564-574.	1.9	3
16	Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Frontiers in Plant Science, 0, 13, .	3.6	3
17	Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Frontiers in Genetics, 0, 13, .	2.3	3
18	Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. Journal of Plant Physiology, 2023, 282, 153919.	3.5	1

#	Article	IF	CITATIONS
20	DOF transcription factors: Specific regulators of plant biological processes. Frontiers in Plant Science, 0, 14, .	3.6	12
21	Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods in Molecular Biology, 2023, , 257-294.	0.9	2
22	Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants. Plants, 2023, 12, 1023.	3.5	7
23	Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. Journal of Environmental Sciences, 2024, 137, 500-514.	6.1	1
24	Transcriptomic Analysis of Differentially Expressed Genes in Arabidopsis thaliana Overexpressing BnMYB2 from Boehmeria nivea under Cadmium Stress. Catalysts, 2023, 13, 662.	3.5	0
25	Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. Planta, 2023, 258, .	3.2	2
26	Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants, 2023, 12, 3003.	3.5	12
27	Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. Plant Physiology and Biochemistry, 2023, 203, 107987.	5.8	0
28	Phytotoxic Responses and Plant Tolerance Mechanisms to Cadmium Toxicity. Journal of Soil Science and Plant Nutrition, 2023, 23, 4805-4826.	3.4	2
29	Full-Length Transcriptome Sequencing Analysis and Characterization of WRKY Transcription Factors Responsive to Cadmium Stress in Arabis paniculata. Plants, 2023, 12, 3779.	3.5	0
30	A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. Journal of Hazardous Materials, 2024, 463, 132871.	12.4	0
31	Integrative physiological, transcriptomic and metabolomic analysis reveals how the roots of two ornamental Hydrangea macrophylla cultivars cope with lead (Pb) toxicity. Science of the Total Environment, 2024, 910, 168615.	8.0	0
32	Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. Journal of Hazardous Materials, 2024, 465, 133251.	12.4	0
33	Organic matter and Bacillus niescheri amendments mitigate cadmium toxicity by regulating physiology and transcription of Diospyros lotus L., and soil bio-chemical properties. Environmental Technology and Innovation, 2024, 33, 103527.	6.1	0