Concentrations, source apportionment and potential he foodstuffs of Bangladesh

Toxin Reviews 40, 1447-1460 DOI: 10.1080/15569543.2020.1731551

Citation Report

#	Article	IF	CITATIONS
1	Spatial distribution of heavy metals in rice grains, rice husk, and arable soil, their bioaccumulation and associated health risks in Haryana, India. Toxin Reviews, 2021, 40, 859-871.	1.5	6
2	Appraisal of heavy metal contamination in sediments of the Shitalakhya River in Bangladesh using pollution indices, geo-spatial, and multivariate statistical analysis. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	39
3	Preliminary Assessment of Uranium Contamination in Drinking Water Sources Near a Uranium Mine in the Siavonga District, Zambia, and Associated Health Risks. Mine Water and the Environment, 2020, 39, 735-745.	0.9	33
4	Risk assessment and hotspots identification of heavy metals in rice: A case study in Longyan of Fujian province, China. Chemosphere, 2021, 270, 128626.	4.2	27
5	Evaluation of Trace Element Contamination and Health Risks of Medicinal Herbs Collected from Unpolluted and Polluted Areas in Sichuan Province, China. Biological Trace Element Research, 2021, 199, 4342-4352.	1.9	6
6	Impact of Irrigation with Polluted River Water on the Accumulation of Toxic Metals in Soil and Crops in the Region of Dhaka, Bangladesh and Potential Effects on Health. Environmental Processes, 2021, 8, 219-237.	1.7	3
7	Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Applied Sciences, 2021, 3, 1.	1.5	61
8	Human Exposure to Toxic Metals (Al, Cd, Cr, Ni, Pb, Sr) from the Consumption of Cereals in Canary Islands. Foods, 2021, 10, 1158.	1.9	7
9	EDXRF Detection of Trace Elements in Salt Marsh Sediment of Bangladesh and Probabilistic Ecological Risk Assessment. Soil and Sediment Contamination, 2022, 31, 220-239.	1.1	24
10	Exposures and Health Risks Associated with Elements in Diets from a Gold Mining Area. Biological Trace Element Research, 2021, , 1.	1.9	2
11	Trace elements concentration in soil and plant within the vicinity of abandoned tanning sites in Bangladesh: an integrated chemometric approach for health risk assessment. Toxin Reviews, 2022, 41, 752-767.	1.5	19
12	Toxic element profile of ice cream in Bangladesh: a health risk assessment study. Environmental Monitoring and Assessment, 2021, 193, 421.	1.3	6
13	A comprehensive assessment of heavy metal contamination in road dusts along a hectic national highway of Bangladesh: spatial distribution, sources of contamination, ecological and human health risks. Toxin Reviews, 2022, 41, 860-879.	1.5	28
14	Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. International Journal of Sediment Research, 2022, 37, 173-187.	1.8	70
15	Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Science of the Total Environment, 2021, 789, 147962.	3.9	38
16	Geochemical speciation and bioaccumulation of trace elements in different tissues of pumpkin in the abandoned soils: Health hazard perspective in a developing country. Toxin Reviews, 2022, 41, 1124-1138.	1.5	12
17	Pollution monitoring, risk assessment and target remediation of heavy metals in rice from a five-year investigation in Western Fujian region, China. Journal of Hazardous Materials, 2022, 424, 127551.	6.5	21
18	Arsenic and trace metal concentrations in different vegetable types and assessment of health risks from their consumption. Environmental Research, 2022, 206, 112252.	3.7	14

#	Article	IF	CITATIONS
19	Heavy metals contamination and associated health risks in food webs—a review focuses on food safety and environmental sustainability in Bangladesh. Environmental Science and Pollution Research, 2022, 29, 3230-3245.	2.7	49
20	Assessment of the pollution levels of potential toxic elements in urban vegetable gardens in southwest China. Scientific Reports, 2021, 11, 22824.	1.6	13
21	Contamination and ecological risk assessment of heavy metals in water and sediment from hubs of fish resource river in a developing country. Toxin Reviews, 2022, 41, 1253-1268.	1.5	13
22	Metal content in soils of Northern India and crop response: a review. International Journal of Environmental Science and Technology, 2023, 20, 4521-4548.	1.8	10
23	Nickel Risk Assessment through the Consumption of Flour-Based Products and Cereals. Kachaá¹›, 2022, , 190-202.	0.0	0
24	Health Risk Assessment of Hazardous Heavy Metals in Two Varieties of Mango Fruit (Mangifera indica) Tj ETQq1 1	. 9. 784314	1 rgBT /Over
25	Status and health risk assessment of heavy metals in vegetables grown in industrial areas of Bangladesh. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	1.8	3
26	Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool. Environmental Science and Pollution Research, 2023, 30, 20934-20958.	2.7	13
27	Assessment of trace elements in canned fish and health risk appraisal. Foods and Raw Materials, 2022, , 43-56.	0.8	1
28	Irrigation suitability, health risk assessment and source apportionment of heavy metals in surface water used for irrigation near marble industry in Malakand, Pakistan. PLoS ONE, 2022, 17, e0279083.	1.1	6
29	Hydrogeochemistry, solute source identification, and health risk assessment of groundwater of cancer prone region in India. Water Science and Technology: Water Supply, 0, , .	1.0	3
30	Trace Element Occurrence in Vegetable and Cereal Crops from Parts of Asia: A Meta-data Analysis of Crop-Wise Differences. Current Pollution Reports, 0, , .	3.1	1
31	Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with chemical fertilizers. Heliyon, 2023, 9, e14580.	1.4	15