MEMOTE for standardized genome-scale metabolic mo

Nature Biotechnology 38, 272-276 DOI: 10.1038/s41587-020-0446-y

Citation Report

#	Article	IF	CITATIONS
1	Reconstruction of Eriocheir sinensis Y-organ Genome-Scale Metabolic Network and Differential Analysis After Eyestalk Ablation. Frontiers in Genetics, 2020, 11, 532492.	1.1	3
2	Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis. Metabolic Engineering, 2020, 62, 138-149.	3.6	45
3	Genomeâ€scale modeling for <i>Bacillus coagulans</i> to understand the metabolic characteristics. Biotechnology and Bioengineering, 2020, 117, 3545-3558.	1.7	15
4	A Genome-Scale Metabolic Model of 2,3-Butanediol Production by Thermophilic Bacteria Geobacillus icigianus. Microorganisms, 2020, 8, 1002.	1.6	10
5	Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites, 2020, 10, 303.	1.3	45
6	Model-driven design allows growth of Mycoplasma pneumoniae on serum-free media. Npj Systems Biology and Applications, 2020, 6, 33.	1.4	18
7	Reconstructing organisms in silico: genome-scale models and their emerging applications. Nature Reviews Microbiology, 2020, 18, 731-743.	13.6	158
8	A Genome-Scale Insight into the Effect of Shear Stress During the Fed-Batch Production of Clavulanic Acid by Streptomyces Clavuligerus. Microorganisms, 2020, 8, 1255.	1.6	8
9	Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design. Frontiers in Bioengineering and Biotechnology, 2020, 8, 772.	2.0	20
10	The Expanding Computational Toolbox for Engineering Microbial Phenotypes at the Genome Scale. Microorganisms, 2020, 8, 2050.	1.6	12
11	Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020, 11, e00148.	1.9	20
12	An atlas of human metabolism. Science Signaling, 2020, 13, .	1.6	223
13	Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model. Metabolites, 2020, 10, 130.	1.3	3
14	The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Research, 2021, 49, D575-D588.	6.5	119
15	Construction and Validation of a Genome-Scale Metabolic Network of Thermotoga sp. Strain RQ7. Applied Biochemistry and Biotechnology, 2021, 193, 896-911.	1.4	4
16	Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metabolic Engineering, 2021, 63, 13-33.	3.6	26
17	Publishing reproducible dynamic kinetic models. Briefings in Bioinformatics, 2021, 22, .	3.2	3
18	Isolating structural errors in reaction networks in systems biology. Bioinformatics, 2021, 37, 388-395.	1.8	1

#	Article	IF	CITATIONS
20	Overview: Standards for Modeling in Systems Medicine. , 2021, , 345-353.		4
21	Mechanistic models of microbial community metabolism. Molecular Omics, 2021, 17, 365-375.	1.4	18
22	Conserved Virulence-Linked Metabolic Reprogramming in <i>Clostridioides Difficile</i> Identified Through Genome-Scale Metabolic Network Analysis. SSRN Electronic Journal, 0, , .	0.4	1
23	Understanding the host-microbe interactions using metabolic modeling. Microbiome, 2021, 9, 16.	4.9	41
25	metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Research, 2021, 49, e126-e126.	6.5	50
26	Executable Simulation Model of the Liver. , 2021, , 413-422.		ο
27	Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Research, 2021, 21, .	1.1	6
28	Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides. Frontiers in Bioengineering and Biotechnology, 2020, 8, 612832.	2.0	25
29	Opportunities at the Interface of Network Science and Metabolic Modeling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 591049.	2.0	15
31	Development of a Genome-Scale Metabolic Model and Phenome Analysis of the Probiotic Escherichia coli Strain Nissle 1917. International Journal of Molecular Sciences, 2021, 22, 2122.	1.8	9
33	Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Frontiers in Genetics, 2021, 12, 586293.	1.1	15
34	Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 2021, 22, 64.	3.8	73
35	Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Frontiers in Molecular Biosciences, 2021, 8, 634479.	1.6	7
36	Spatiotemporal metabolic modeling of bacterial life in complex habitats. Current Opinion in Biotechnology, 2021, 67, 65-71.	3.3	8
37	Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. MSystems, 2021, 6, .	1.7	33
39	Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha. BMC Biotechnology, 2021, 21, 23.	1.7	7
41	gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biology, 2021, 22, 81.	3.8	103
42	Highâ€quality genomeâ€scale metabolic model of <i>Aurantiochytrium</i> sp. T66. Biotechnology and Bioengineering, 2021, 118, 2105-2117.	1.7	9

#	Article	IF	CITATIONS
44	A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers. Metabolites, 2021, 11, 168.	1.3	4
45	Machine learning applications in genome-scale metabolic modeling. Current Opinion in Systems Biology, 2021, 25, 42-49.	1.3	27
46	PhenoMapping: A protocol to map cellular phenotypes to metabolic bottlenecks, identify conditional essentiality, and curate metabolic models. STAR Protocols, 2021, 2, 100280.	0.5	1
47	Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annual Review of Biomedical Engineering, 2021, 23, 169-201.	5.7	23
48	First Genome-Scale Metabolic Model of Dolosigranulum pigrum Confirms Multiple Auxotrophies. Metabolites, 2021, 11, 232.	1.3	8
51	Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metabolic Engineering, 2021, 65, 123-134.	3.6	14
52	Robustness analysis of metabolic predictions in algal microbial communities based on different annotation pipelines. PeerJ, 2021, 9, e11344.	0.9	6
53	Computational modeling of metabolism in microbial communities on a genome-scale. Current Opinion in Systems Biology, 2021, 26, 46-57.	1.3	29
54	Analyzing Metabolic States of Adipogenic and Osteogenic Differentiation in Human Mesenchymal Stem Cells via Genome Scale Metabolic Model Reconstruction. Frontiers in Cell and Developmental Biology, 2021, 9, 642681.	1.8	5
55	Hierarchical Harmonization of Atom-Resolved Metabolic Reactions across Metabolic Databases. Metabolites, 2021, 11, 431.	1.3	4
57	Genome-Scale Metabolic Model of <i>Caldicellulosiruptor bescii</i> Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. MSystems, 2021, 6, e0135120.	1.7	6
59	Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. Npj Systems Biology and Applications, 2021, 7, 30.	1.4	10
60	Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. MSystems, 2021, 6, .	1.7	8
63	Reconstruction of a Context-Specific Model Based on Genome-Scale Metabolic Simulation for Identification of Prochloraz Resistance Mechanisms in Penicillium digitatum. Microbial Drug Resistance, 2021, 27, 776-785.	0.9	0
65	Multiomics metabolic and epigenetics regulatory network in cancer: A systems biology perspective. Journal of Genetics and Genomics, 2021, 48, 520-530.	1.7	6
66	Genomeâ€scale metabolic modeling reveals key features of a minimal gene set. Molecular Systems Biology, 2021, 17, e10099.	3.2	15
67	Use of a neuron-glia genome-scale metabolic reconstruction to model the metabolic consequences of the Arylsulphatase a deficiency through a systems biology approach. Heliyon, 2021, 7, e07671.	1.4	5
68	Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48

		CITATION REPORT		
# 69	ARTICLE Modelling hCDKL5 Heterologous Expression in Bacteria. Metabolites, 2021, 11, 491.		IF 1.3	Citations
71	Integration of crop growth model and constraint-based metabolic model predicts meta over rice plant development under water-limited stress. In Silico Plants, 2021, 3, .	bolic changes	0.8	3
73	Metabolic control of nitrogen fixation in rhizobium-legume symbioses. Science Advance	es, 2021, 7, .	4.7	44
74	Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies ag Life Science Alliance, 2021, 4, e202000954.	ainst COVID-19.	1.3	13
75	Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis o Microbiome. ACS Synthetic Biology, 2021, 10, 2121-2137.	of the Human	1.9	7
76	Practical resources for enhancing the reproducibility of mechanistic modeling in system Current Opinion in Systems Biology, 2021, 27, 100350.	ıs biology.	1.3	3
77	Programmatic modeling for biological systems. Current Opinion in Systems Biology, 20	21, 27, 100343.	1.3	3
78	<i>Bacillus velezensis</i> stimulates resident rhizosphere <i>Pseudomonas stutzeri</i> health through metabolic interactions. ISME Journal, 2022, 16, 774-787.	for plant	4.4	125
79	Recent advances in metabolic engineering–integration of in silico design and experin metabolic pathways. Journal of Bioscience and Bioengineering, 2021, 132, 429-436.	nental analysis of	1.1	5
80	Path to improving the life cycle and quality of genome-scale models of metabolism. Cel 12, 842-859.	l Systems, 2021,	2.9	16
82	Genome reconstructions of metabolism of Plasmodium RBC and liver stages. Current C Microbiology, 2021, 63, 259-266.)pinion in	2.3	0
83	Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic the cyanobacterium Synechococcus sp. PCC 7002. STAR Protocols, 2021, 2, 100837.	data from	0.5	5
84	Modelling microbial communities: Harnessing consortia for biotechnological application Computational and Structural Biotechnology Journal, 2021, 19, 3892-3907.	ns.	1.9	24
85	Enzyme-Constrained Models and Omics Analysis of Streptomyces coelicolor Reveal Me that Enhance Heterologous Production. IScience, 2020, 23, 101525.	tabolic Changes	1.9	30
86	Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant a nitrogen-fixing bacterium. Nature Communications, 2020, 11, 2574.	and a	5.8	56
87	Genome scale metabolic models and analysis for evaluating probiotic potentials. Bioch Transactions, 2020, 48, 1309-1321.	emical Society	1.6	5
88	MetaNetX/MNXref: unified namespace for metabolites and biochemical reactions in the metabolic models. Nucleic Acids Research, 2021, 49, D570-D574.	context of	6.5	91
95	Genome-scale metabolic models highlight stage-specific differences in essential metabolic Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2020, 14, e0008728.	blic pathways in	1.3	8

#	Article	IF	CITATIONS
96	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	3.2	178
97	Community standards to facilitate development and address challenges in metabolic modeling. Molecular Systems Biology, 2020, 16, e9235.	3.2	37
98	Modeling tissueâ€relevant <i>Caenorhabditis elegans</i> metabolism at network, pathway, reaction, and metabolite levels. Molecular Systems Biology, 2020, 16, e9649.	3.2	32
99	eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Research, 2022, 50, D603-D609.	6.5	70
100	Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis. BMC Microbiology, 2021, 21, 292.	1.3	1
102	Novel Symbiotic Genome-Scale Model Reveals <i>Wolbachia</i> 's Arboviral Pathogen Blocking Mechanism in Aedes aegypti. MBio, 2021, 12, e0156321.	1.8	4
103	A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nature Protocols, 2021, 16, 5030-5082.	5.5	70
105	Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microbial Biotechnology, 2022, 15, 95-102.	2.0	8
106	An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism. Npj Systems Biology and Applications, 2021, 7, 37.	1.4	12
108	Modeling Drosophila gut microbe interactions reveals metabolic interconnectivity. IScience, 2021, 24, 103216.	1.9	1
110	A Beginner's Guide to the COBRA Toolbox. Methods in Molecular Biology, 2022, 2349, 339-365.	0.4	2
111	Curating COBRA Models of Microbial Metabolism. Methods in Molecular Biology, 2022, 2349, 321-338.	0.4	1
112	Ecological stoichiometry as a foundation for omics-enabled biogeochemical models of soil organic matter decomposition. Biogeochemistry, 2022, 157, 31-50.	1.7	9
116	High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2021, 12, 750206.	1.5	13
117	Compartmentalization of metabolism between cell types in multicellular organisms: A computational perspective. Current Opinion in Systems Biology, 2021, 29, 100407.	1.3	2
118	Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum. MSystems, 2022, 7, e0097521.	1.7	4
121	Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Computational and Structural Biotechnology Journal, 2022, 20, 79-89.	1.9	19
122	Critical assessment of genome-scale metabolic models of Arabidopsis thaliana. Molecular Omics, 2022,	1.4	1

#	Article	IF	CITATIONS
123	Genome-scale modeling of yeast metabolism: retrospectives and perspectives. FEMS Yeast Research, 2022, 22, .	1.1	20
124	Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Science Advances, 2022, 8, eabl4930.	4.7	16
125	Genome-Scale Modeling Specifies the Metabolic Capabilities of <i>Rhizophagus irregularis</i> . MSystems, 2022, 7, e0121621.	1.7	7
126	Genome-scale metabolic model of oleaginous yeast Papiliotrema laurentii. Biochemical Engineering Journal, 2022, 180, 108353.	1.8	8
127	Identifying the essential nutritional requirements of the probiotic bacteria Bifidobacterium animalis and Bifidobacterium longum through genome-scale modeling. Npj Systems Biology and Applications, 2021, 7, 47.	1.4	15
128	NCMW: A Python Package to Analyze Metabolic Interactions in the Nasal Microbiome. Frontiers in Bioinformatics, 2022, 2, .	1.0	8
129	Comparative analyses of parasites with a comprehensive database of genome-scale metabolic models. PLoS Computational Biology, 2022, 18, e1009870.	1.5	5
130	CobraMod: a pathway-centric curation tool for constraint-based metabolic models. Bioinformatics, 2022, 38, 2654-2656.	1.8	4
131	A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites, 2022, 12, 314.	1.3	4
132	Integrative Genome-Scale Metabolic Modeling Reveals Versatile Metabolic Strategies for Methane Utilization in Methylomicrobium album BG8. MSystems, 2022, 7, e0007322.	1.7	2
133	COMMIT: Consideration of metabolite leakage and community composition improves microbial community reconstructions. PLoS Computational Biology, 2022, 18, e1009906.	1.5	2
134	Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility. Frontiers in Systems Biology, 2022, 2, .	0.5	7
135	Reconstruction and analysis of genomeâ€scale metabolic model for thermophilic fungus <i>Myceliophthora thermophila</i> . Biotechnology and Bioengineering, 2022, 119, 1926-1937.	1.7	6
136	Systems Biology of Gut Microbiota-Human Receptor Interactions: Toward Anti-inflammatory Probiotics. Frontiers in Microbiology, 2022, 13, 846555.	1.5	3
138	Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor. MSystems, 2022, 7, e0145921.	1.7	4
139	Insight into the biotechnology potential of Alicyclobacillus tolerans from whole genome sequence analysis and genome-scale metabolic network modeling Journal of Microbiological Methods, 2022, 197, 106459.	0.7	4
140	Contribution of genomeâ€scale metabolic modelling to niche theory. Ecology Letters, 2022, 25, 1352-1364.	3.0	11
141	Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. MSystems, 2021, 6, e0059921.	1.7	15

#	Article	IF	CITATIONS
142	Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites, 2022, 12, 14.	1.3	37
143	Structural systems pharmacology: A framework for integrating metabolic network and structure-based virtual screening for drug discovery against bacteria. PLoS ONE, 2021, 16, e0261267.	1.1	4
145	Systems metabolic engineering of <i>Streptomyces venezuelae</i> for the enhanced production of pikromycin. Biotechnology and Bioengineering, 2022, 119, 2250-2260.	1.7	4
147	iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Novosphingobium aromaticivorans. Metabolites, 2022, 12, 366.	1.3	3
162	Network Reconstruction and Modelling Made Reproducible with moped. Metabolites, 2022, 12, 275.	1.3	8
164	Reconstruction of a Genome-Scale Metabolic Network for Shewanella oneidensis MR-1 and Analysis of its Metabolic Potential for Bioelectrochemical Systems. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	7
165	Transmission of <i>Klebsiella</i> strains and plasmids within and between greyâ€headed flying fox colonies. Environmental Microbiology, 2022, 24, 4425-4436.	1.8	3
168	A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 2022, 18, e1010106.	1.5	10
169	Ustilago maydis Metabolic Characterization and Growth Quantification with a Genome-Scale Metabolic Model. Journal of Fungi (Basel, Switzerland), 2022, 8, 524.	1.5	6
170	De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nature Communications, 2022, 13, .	5.8	36
171	Machine learning-guided evaluation of extraction and simulation methods for cancer patient-specific metabolic models. Computational and Structural Biotechnology Journal, 2022, 20, 3041-3052.	1.9	8
172	Elucidating Plant-Microbe-Environment Interactions Through Omics-Enabled Metabolic Modelling Using Synthetic Communities. Frontiers in Plant Science, 0, 13, .	1.7	9
173	<i>merlin</i> , an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Research, 2022, 50, 6052-6066.	6.5	18
174	SALARECON connects the Atlantic salmon genome to growth and feed efficiency. PLoS Computational Biology, 2022, 18, e1010194.	1.5	4
175	Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microbial Cell Factories, 2022, 21, .	1.9	8
177	Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Frontiers in Oncology, 0, 12, .	1.3	6
179	TowardÂmerging bottom–up and top–down model-based designing of synthetic microbial communities. Current Opinion in Microbiology, 2022, 69, 102169.	2.3	15
180	Multi-omics profiling of the cold tolerant Monoraphidium minutum 26B-AM in response to abiotic stress. Algal Research, 2022, 66, 102794.	2.4	3

#	Article	IF	CITATIONS
181	Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments. Environmental Microbiomes, 2022, 17, .	2.2	10
182	Type 2 diabetes, gut microbiome, and systems biology: A novel perspective for a new era. Gut Microbes, 2022, 14, .	4.3	17
184	Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations. MSystems, 2022, 7, .	1.7	0
185	Toward FAIR Representations of Microbial Interactions. MSystems, 2022, 7, .	1.7	7
186	Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells, 2022, 11, 2486.	1.8	2
187	Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells. MSystems, 2022, 7, .	1.7	9
188	Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines, 2022, 10, 2074.	1.4	10
189	Host-mycobiome metabolic interactions in health and disease. Gut Microbes, 2022, 14, .	4.3	11
191	Architect: A tool for aiding the reconstruction of high-quality metabolic models through improved enzyme annotation. PLoS Computational Biology, 2022, 18, e1010452.	1.5	3
192	MetaboAnnotator: an efficient toolbox to annotate metabolites in genome-scale metabolic reconstructions. Bioinformatics, 2022, 38, 4831-4832.	1.8	2
193	Proteomic analysis for the effects of non-saponin fraction with rich polysaccharide from Korean Red Ginseng on Alzheimer's disease in a mouse model. Journal of Ginseng Research, 2023, 47, 302-310.	3.0	4
194	Ethanol-lactate transition of Lachancea thermotolerans is linked to nitrogen metabolism. Food Microbiology, 2023, 110, 104167.	2.1	8
195	Construction and Analysis of an Enzyme-Constrained Metabolic Model of Corynebacterium glutamicum. Biomolecules, 2022, 12, 1499.	1.8	9
196	Bioinformatic approaches for studying the microbiome of fermented food. Critical Reviews in Microbiology, 2023, 49, 693-725.	2.7	9
197	Wholeâ€genome sequencing and genomeâ€scale metabolic modeling of <i>Chromohalobacter canadensis</i> 85B to explore its salt tolerance and biotechnological use. MicrobiologyOpen, 2022, 11,	1.2	6
198	Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis. Bioprocess and Biosystems Engineering, 2022, 45, 1889-1904.	1.7	13
200	Systems Biology in ELIXIR: modelling in the spotlight. F1000Research, 0, 11, 1265.	0.8	1
201	Genome-scale reconstruction and metabolic modelling of the fast-growing thermophile Geobacillus sp. LC300. Metabolic Engineering Communications, 2022, 15, e00212.	1.9	1

#	Article	IF	CITATIONS
202	Modeling the metabolic dynamics at the genome-scale by optimized yield analysis. Metabolic Engineering, 2023, 75, 119-130.	3.6	5
203	ChiMera: an easy to use pipeline for bacterial genome based metabolic network reconstruction, evaluation and visualization. BMC Bioinformatics, 2022, 23, .	1.2	6
204	Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Reports, 2022, 41, 111735.	2.9	8
206	Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. Microbiome, 2022, 10, .	4.9	10
208	Metabolic Network Models of the <i>Gardnerella</i> Pangenome Identify Key Interactions with the Vaginal Environment. MSystems, 2023, 8, .	1.7	2
210	Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets. Frontiers in Bioinformatics, 0, 3, .	1.0	1
211	Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. Cell Reports Methods, 2023, 3, 100383.	1.4	7
213	High-quality genome-scale metabolic network reconstruction of probiotic bacterium Escherichia coli Nissle 1917. BMC Bioinformatics, 2022, 23, .	1.2	6
214	Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nature Biotechnology, 2023, 41, 1320-1331.	9.4	55
215	Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
218	Systematic diet composition swap in a mouse genome-scale metabolic model reveals determinants of obesogenic diet metabolism in liver cancer. IScience, 2023, 26, 106040.	1.9	3
220	Genome-scale model of Pseudomonas aeruginosa metabolism unveils virulence and drug potentiation. Communications Biology, 2023, 6, .	2.0	6
221	et <i>i</i> Bsu1209: A comprehensive multiscale metabolic model for <i>Bacillus subtilis</i> . Biotechnology and Bioengineering, 2023, 120, 1623-1639.	1.7	4
222	<i>>Vibrio natriegens</i> genomeâ€scale modeling reveals insights into halophilic adaptations and resource allocation. Molecular Systems Biology, 2023, 19, .	3.2	9
223	FBA-PRCC. Partial Rank Correlation Coefficient (PRCC) Global Sensitivity Analysis (GSA) in Application to Constraint-Based Models. Biomolecules, 2023, 13, 500.	1.8	1
224	Towards applications of genomeâ€scale metabolic modelâ€based approaches in designing synthetic microbial communities. Quantitative Biology, 2023, 11, 15-30.	0.3	2
226	Highlighting the potential of Synechococcus elongatus PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling. Frontiers in Microbiology, 0, 14, .	1.5	4
227	New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells. PLoS Computational Biology, 2023, 19, e1010903.	1.5	3

			(
#	Article	IF	CITATIONS
229	Functional comparison of metabolic networks across species. Nature Communications, 2023, 14, .	5.8	2
230	A New Approach to Personalized Nutrition: Postprandial Glycemic Response and its Relationship to Gut Microbiota. Archives of Medical Research, 2023, 54, 176-188.	1.5	2
231	New Insights on Metabolic Features of Bacillus subtilis Based on Multistrain Genome-Scale Metabolic Modeling. International Journal of Molecular Sciences, 2023, 24, 7091.	1.8	8
232	Metabolic compatibility and the rarity of prokaryote endosymbioses. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0
233	A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Metabolic Engineering, 2023, 77, 306-322.	3.6	0
255	Integration of metabolic models in biorefinery designs using superstructure optimisation. Computer Aided Chemical Engineering, 2023, , 2249-2254.	0.3	0