A mathematical model for simulating the phase-based toronavirus

Infectious Diseases of Poverty 9, 24

DOI: 10.1186/s40249-020-00640-3

Citation Report

#	Article	IF	CITATIONS
1	Modeling the dynamics of the COVID-19 population in Australia: A probabilistic analysis. PLoS ONE, 2020, 15, e0240153.	1.1	15
2	Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching. Chaos, Solitons and Fractals, 2020, 141, 110361.	2.5	36
3	Clinical management of lung cancer patients during the outbreak of COVID-19 epidemic. Infectious Agents and Cancer, 2020, 15, 56.	1.2	5
4	Early predictors for mechanical ventilation in COVID-19 patients. Therapeutic Advances in Respiratory Disease, 2020, 14, 175346662096301.	1.0	14
5	Estimating the Prevalence and Mortality of Coronavirus Disease 2019 (COVID-19) in the USA, the UK, Russia, and India. Infection and Drug Resistance, 2020, Volume 13, 3335-3350.	1.1	13
6	The transmission modes and sources of COVID-19: A systematic review. International Journal of Surgery Open, 2020, 26, 125-136.	0.2	84
7	The prediction for development of COVID-19 in global major epidemic areas through empirical trends in China by utilizing state transition matrix model. BMC Infectious Diseases, 2020, 20, 710.	1.3	11
8	The impact of social distancing on COVID19 spread: State of Georgia case study. PLoS ONE, 2020, 15, e0239798.	1.1	44
9	Fractional order mathematical modeling of COVID-19 transmission. Chaos, Solitons and Fractals, 2020, 139, 110256.	2.5	129
10	Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced $\langle i \rangle \hat{l} \pm \langle j \rangle$ -Sutte Indicator. Epidemiology and Infection, 2020, 148, e236.	1.0	10
11	Modelling Logistic Growth Model for COVID-19 Pandemic in India. , 2020, , .		3
12	Transmissibility of COVID-19 in 11 major cities in China and its association with temperature and humidity in Beijing, Shanghai, Guangzhou, and Chengdu. Infectious Diseases of Poverty, 2020, 9, 87.	1.5	55
13	Retrospective Analysis of 2019-nCov-Infected Cases in Dongyang, Southeastern China. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020, 2020, 1-6.	0.7	0
14	Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic in the mainland of China. Infectious Diseases of Poverty, 2020, 9, 94.	1.5	31
15	Novel coronavirus <scp>SARSâ€CoV</scp> â€2 (Covidâ€19) dynamics inside the human body. Reviews in Medical Virology, 2020, 30, e2140.	3.9	17
16	Why lockdown? Why national unity? Why global solidarity? Simplified arithmetic tools for decision-makers, health professionals, journalists and the general public to explore containment options for the 2019 novel coronavirus. Infectious Disease Modelling, 2020, 5, 442-458.	1.2	21
17	Modelling the Potential Impact of Social Distancing on the COVID-19 Epidemic in South Africa. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-12.	0.7	42
18	Modeling epidemics through ladder operators. Chaos, Solitons and Fractals, 2020, 140, 110193.	2.5	3

#	Article	IF	CITATIONS
19	A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. Journal of Advanced Research, 2021, 32, 149-160.	4.4	29
20	Forecasting the spread of COVID-19 under different reopening strategies. Scientific Reports, 2020, 10, 20367.	1.6	48
21	A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control. Advances in Difference Equations, 2020, 2020, 373.	3.5	111
22	Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator. Results in Physics, 2020, 19, 103610.	2.0	24
23	Fractal-Fractional Mathematical Model Addressing the Situation of Corona Virus in Pakistan. Results in Physics, 2020, 19, 103560.	2.0	49
24	Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics. European Physical Journal Plus, 2020, 135, 938.	1.2	64
25	Moving from rhetoric to action: how Africa can use scientific evidence to halt the COVID-19 pandemic. Infectious Diseases of Poverty, 2020, 9, 150.	1.5	3
26	A review of mechanistic models of viral dynamics in bat reservoirs for zoonotic disease. Pathogens and Global Health, 2020, 114, 407-425.	1.0	13
27	A Mathematical Description of the Dynamics of Coronavirus Disease 2019 (COVID-19): A Case Study of Brazil. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-8.	0.7	24
28	Modeling the viral dynamics of SARS-CoV-2 infection. Mathematical Biosciences, 2020, 328, 108438.	0.9	120
29	Dynamics of Epidemic Computer Virus Spreading Model with Delays. Wireless Personal Communications, 2020, 115, 2047-2061.	1.8	19
30	Model the transmission dynamics of COVID-19 propagation with public health intervention. Results in Applied Mathematics, 2020, 7, 100123.	0.5	20
31	Maternal and infant outcomes of full-term pregnancy combined with COVID-2019 in Wuhan, China: retrospective case series. Archives of Gynecology and Obstetrics, 2020, 302, 545-551.	0.8	20
32	SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 2020, 13, 352.	0.6	175
33	On a Coupled Time-Dependent SIR Models Fitting with New York and New-Jersey States COVID-19 Data. Biology, 2020, 9, 135.	1.3	17
34	COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Physics Reports, 2020, 869, 1-51.	10.3	151
35	SARS-CoV-2: characteristics and current advances in research. Virology Journal, 2020, 17, 117.	1.4	84
36	The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status. Journal of Infection and Public Health, 2020, 13, 1601-1610.	1.9	127

#	Article	IF	Citations
37	Serial interval and time-varying reproduction number estimation for COVID-19 in western Iran. New Microbes and New Infections, 2020, 36, 100715.	0.8	38
38	Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model. Advances in Difference Equations, 2020, 2020, 384.	3.5	26
39	Low incidence of COVID-19 in the West African sub-region: mitigating healthcare delivery system or a matter of time?. Zeitschrift Fur Gesundheitswissenschaften, 2020, , 1-10.	0.8	11
40	Population migration, confirmed COVID-19 cases, pandemic prevention, and control: evidence and experiences from China. Zeitschrift Fur Gesundheitswissenschaften, 2020, , 1-7.	0.8	6
41	Mathematical models and deep learning for predicting the number of individuals reported to be infected with SARS-CoV-2. Journal of the Royal Society Interface, 2020, 17, 20200494.	1.5	53
42	Infectious diseases epidemiology, quantitative methodology, and clinical research in the midst of the COVID-19 pandemic: Perspective from a European country. Contemporary Clinical Trials, 2020, 99, 106189.	0.8	14
43	FACS: A geospatial agent-based simulator for analysing COVID-19 spread and public health measures on local regions. Journal of Simulation, 2022, 16, 355-373.	1.0	30
44	Mathematical modelling on COVID-19 transmission impacts withÂpreventive measures: a case study of Tanzania. Journal of Biological Dynamics, 2020, 14, 748-766.	0.8	26
45	The impact of COVID-19 pandemic on malaria elimination. Parasite Epidemiology and Control, 2020, 11, e00187.	0.6	43
46	Airborne particulate matter, population mobility and COVID-19: a multi-city study in China. BMC Public Health, 2020, 20, 1585.	1.2	56
47	Modeling return of the epidemic: Impact of population structure, asymptomatic infection, case importation and personal contacts. Travel Medicine and Infectious Disease, 2020, 37, 101858.	1.5	9
48	Predictive Models for Mitigating COVID-19 Outbreak. , 2020, , .		3
49	Costing the COVID-19 Pandemic: An Exploratory Economic Evaluation of Hypothetical Suppression Policy in the United Kingdom. Value in Health, 2020, 23, 1432-1437.	0.1	33
50	Mathematical modeling for infectious viral disease: The COVIDâ€19 perspective. Journal of Public Affairs, 2020, 20, e2306.	1.7	23
51	Study of transmission dynamics of novel COVID-19 by using mathematical model. Advances in Difference Equations, 2020, 2020, 323.	3.5	42
52	The effect of control measures on COVID-19 transmission in Italy: Comparison with Guangdong province in China. Infectious Diseases of Poverty, 2020, 9, 130.	1.5	35
53	A five-compartment model of age-specific transmissibility of SARS-CoV-2. Infectious Diseases of Poverty, 2020, 9, 117.	1.5	46
54	Ordinal Decision-Tree-Based Ensemble Approaches: The Case of Controlling the Daily Local Growth Rate of the COVID-19 Epidemic. Entropy, 2020, 22, 871.	1.1	19

#	ARTICLE	IF	Citations
55	Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 249-256.	1.7	32
56	Risk estimation and prediction of the transmission of coronavirus disease-2019 (COVID-19) in the mainland of China excluding Hubei province. Infectious Diseases of Poverty, 2020, 9, 116.	1.5	38
57	Bibliometric Analysis on COVID-19: A Comparison of Research Between English and Chinese Studies. Frontiers in Public Health, 2020, 8, 477.	1.3	83
58	Analysis and prediction of the COVID-19 outbreak in Pakistan. Journal of Biological Dynamics, 2020, 14, 730-747.	0.8	7
59	Ten Epidemiological Parameters of COVID-19: Use of Rapid Literature Review to Inform Predictive Models During the Pandemic. Frontiers in Public Health, 2020, 8, 598547.	1.3	16
60	Optimal control and sensitivity analysis for transmission dynamics of Coronavirus. Results in Physics, 2020, 19, 103642.	2.0	29
61	Numerical investigations on <scp>COVID</scp> â€19 model through singular and nonâ€singular fractional operators. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	73
62	A modified SEIR model applied to the data of COVID-19 spread in Saudi Arabia. AIP Advances, 2020, 10, 125210.	0.6	29
63	COVID-19 Transmission: Bangladesh Perspective. Mathematics, 2020, 8, 1793.	1.1	20
64	Optimal Containment Control Strategy of the Second Phase of the COVID-19 Lockdown in Morocco. Applied Sciences (Switzerland), 2020, 10, 7559.	1.3	5
65	Analytical and numerical study of the HIVâ€1 infection of CD4 ⁺ Tâ€cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy. Mathematical Methods in the Applied Sciences, 2023, 46, 7654-7670.	1.2	54
66	Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results in Physics, 2020, 19, 103507.	2.0	67
67	The COVID-19 epidemic, its mortality, and the role of non-pharmaceutical interventions. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 204-208.	0.4	27
68	Epidemiological and Clinical Characteristics of Patients With Coronavirus Disease-2019 in Shiyan City, China. Frontiers in Cellular and Infection Microbiology, 2020, 10, 284.	1.8	21
69	Three months of <scp>COVID</scp> â€19: A systematic review and metaâ€analysis. Reviews in Medical Virology, 2020, 30, e2113.	3.9	38
70	Forecasting COVID-19-Associated Hospitalizations under Different Levels of Social Distancing in Lombardy and Emilia-Romagna, Northern Italy: Results from an Extended SEIR Compartmental Model. Journal of Clinical Medicine, 2020, 9, 1492.	1.0	43
71	Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons and Fractals, 2020, 135, 109866.	2.5	96
72	Covid-19: implications for prehospital, emergency and hospital care in patients with acute coronary syndromes. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 222-228.	0.4	17

#	Article	IF	Citations
73	On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos, Solitons and Fractals, 2020, 135, 109867.	2.5	149
74	Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak. Chaos, Solitons and Fractals, 2020, 136, 109883.	2.5	96
75	A quantitative and qualitative analysis of the COVID–19 pandemic model. Chaos, Solitons and Fractals, 2020, 138, 109932.	2.5	37
76	Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique. Biology, 2020, 9, 107.	1.3	129
77	Association of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. Epidemiology and Infection, 2020, 148, e106.	1.0	78
78	Statistical analysis of the impact of environmental temperature on the exponential growth rate of cases infected by COVID-19. PLoS ONE, 2020, 15, e0233875.	1.1	50
79	Transmission dynamics of COVID-19 in Wuhan, China: effects of lockdown and medical resources. Nonlinear Dynamics, 2020, 101, 1981-1993.	2.7	119
80	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a review. Molecular Cancer, 2020, 19, 100.	7.9	72
81	The role of asymptomatic class, quarantine and isolation in the transmission of COVID-19. Journal of Biological Dynamics, 2020, 14, 389-408.	0.8	58
82	Modeling COVID-19 epidemic in Heilongjiang province, China. Chaos, Solitons and Fractals, 2020, 138, 109949.	2.5	80
83	Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective. Chaos, Solitons and Fractals, 2020, 138, 109968.	2.5	70
84	Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria. Chaos, Solitons and Fractals, 2020, 139, 110032.	2.5	157
85	The SARS-CoV-2 outbreak from a one health perspective. One Health, 2020, 10, 100127.	1.5	62
86	The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVIDâ€19): A wellâ€mixed SEIR model analysis. Journal of Medical Virology, 2020, 92, 841-848.	2.5	271
87	Review of the SARS-CoV-2 in Wuhan and Analysis as Well as Prediction of Therapeutic Drugs. Viral Immunology, 2020, 34, 291-299.	0.6	0
88	Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak. Chaos, Solitons and Fractals, 2020, 139, 110078.	2.5	151
89	Variational Iteration Method and Differential Transformation Method for Solving the SEIR Epidemic Model. International Journal of Differential Equations, 2020, 2020, 1-7.	0.3	16
90	Transmission patterns of COVID-19 in the mainland of China and the efficacy of different control strategies: a data- and model-driven study. Infectious Diseases of Poverty, 2020, 9, 83.	1.5	47

#	Article	IF	CITATIONS
91	Non Pharmaceutical Interventions for Optimal Control of COVID-19. Computer Methods and Programs in Biomedicine, 2020, 196, 105642.	2.6	45
92	A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 2020, 50, 3913-3925.	3.3	224
93	On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater. Water (Switzerland), 2020, 12, 1598.	1.2	37
94	When science goes viral: The research response during three months of the COVID-19 outbreak. Biomedicine and Pharmacotherapy, 2020, 129, 110451.	2.5	67
95	Modeling and forecasting the COVID-19 pandemic in India. Chaos, Solitons and Fractals, 2020, 139, 110049.	2.5	340
96	Unique challenges to control the spread of COVID-19 in the Middle East. Journal of Infection and Public Health, 2020, 13, 1247-1250.	1.9	20
97	Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. Chaos, Solitons and Fractals, 2020, 139, 110086.	2.5	75
98	Mathematical modelling on phase based transmissibility of Coronavirus. Infectious Disease Modelling, 2020, 5, 375-385.	1.2	21
99	Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA - Journal of the American Medical Association, 2020, 323, 1915.	3.8	1,333
100	Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons and Fractals, 2020, 135, 109846.	2.5	463
101	COVID-19 and malaria: A symptom screening challenge for malaria endemic countries. International Journal of Infectious Diseases, 2020, 94, 151-153.	1.5	78
102	Assessment of the SARS-CoV-2 basic reproduction number, RO, based on the early phase of COVID-19 outbreak in Italy. Biosafety and Health, 2020, 2, 57-59.	1.2	188
103	Challenges of managing the asymptomatic carriers of SARS-CoV-2. Travel Medicine and Infectious Disease, 2020, 37, 101677.	1.5	30
104	Fighting against the common enemy of COVID-19: a practice of building a community with a shared future for mankind. Infectious Diseases of Poverty, 2020, 9, 34.	1.5	122
105	Using caputo-fabrizio derivative for the transmission of mathematical model epidemic Corona Virus. SeMA Journal, 2021, 78, 119-136.	1.0	0
106	Delayed hospital admission and high-dose corticosteroids potentially prolong SARS-CoV-2 RNA detection duration of patients with COVID-19. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 841-848.	1.3	14
107	Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and cost-effectiveness. Chaos, Solitons and Fractals, 2021, 142, 110438.	2.5	25
108	Fractional optimal control dynamics of coronavirus model with Mittag–Leffler law. Ecological Complexity, 2021, 45, 100880.	1.4	39

#	Article	IF	CITATIONS
109	Nanotechnology-based antiviral therapeutics. Drug Delivery and Translational Research, 2021, 11, 748-787.	3.0	168
110	Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan. AEJ - Alexandria Engineering Journal, 2021, 60, 477-489.	3.4	51
111	Determination in Galicia of the required beds at Intensive Care Units. AEJ - Alexandria Engineering Journal, 2021, 60, 559-564.	3.4	10
112	Fractional order epidemic model for the dynamics of novel COVID-19. AEJ - Alexandria Engineering Journal, 2021, 60, 537-548.	3.4	31
113	COVID-19 prevention and control in China: grid governance. Journal of Public Health, 2021, 43, 76-81.	1.0	42
114	Impact of population density on Covid-19 infected and mortality rate in India. Modeling Earth Systems and Environment, 2021, 7, 623-629.	1.9	243
115	Fractional Order Model for the Role of Mild Cases in the Transmission of COVID-19. Chaos, Solitons and Fractals, 2021, 142, 110374.	2.5	16
116	A cyber-physical system approach for model based predictive control and modeling of COVID-19 in India. Journal of Interdisciplinary Mathematics, 2021, 24, 1-18.	0.4	10
117	Assessing the impact of transmissibility on a cluster-based COVID-19 model in India. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12, 2141002.	0.9	5
118	Assessing correlations between short-term exposure to atmospheric pollutants and COVID-19 spread in all Italian territorial areas. Environmental Pollution, 2021, 268, 115714.	3.7	43
119	Mathematical model for Covid-19 with "protected susceptible―in the post-lockdown era. AEJ - Alexandria Engineering Journal, 2021, 60, 527-535.	3.4	10
120	Modeling and optimal control analysis of transmission dynamics of COVID-19: The case of Ethiopia. AEJ - Alexandria Engineering Journal, 2021, 60, 719-732.	3.4	49
121	Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models. Chaos, Solitons and Fractals, 2021, 142, 110381.	2.5	31
122	Analysis of a Covid-19 model: Optimal control, stability and simulations. AEJ - Alexandria Engineering Journal, 2021, 60, 647-658.	3.4	66
123	Dynamics and risk assessment of SARS-CoV-2 in urban areas: a geographical assessment on Kolkata Municipal Corporation, India. Spatial Information Research, 2021, 29, 365-378.	1.3	2
124	Largest democracy in the world crippled by COVID-19: current perspective and experience from India. Environment, Development and Sustainability, 2021, 23, 6623-6641.	2.7	19
125	MODELING AND ANALYSIS OF NOVEL COVID-19 UNDER FRACTAL-FRACTIONAL DERIVATIVE WITH CASE STUDY OF MALAYSIA. Fractals, 2021, 29, 2150020.	1.8	28
126	Translating Scientific Knowledge to Government Decision Makers Has Crucial Importance in the Management of the COVID-19 Pandemic. Population Health Management, 2021, 24, 35-45.	0.8	22

#	Article	IF	CITATIONS
127	Dynamic modeling and analysis of COVIDâ€19 in different transmission process and control strategies. Mathematical Methods in the Applied Sciences, 2021, 44, 1409-1422.	1.2	13
128	Sensitivity and elasticity analysis of novel corona virus transmission model: A mathematical approach. Sensors International, 2021, 2, 100088.	4.9	9
129	Covid-19 Containment: Demystifying the Research Challenges and Contributions Leveraging Digital Intelligence Technologies. Algorithms for Intelligent Systems, 2021, , 193-214.	0.5	0
130	Modeling transmission dynamics of severe acute respiratory syndrome coronavirus 2 in São Paulo, Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2021, 54, e05532020.	0.4	2
131	Artificial Intelligence and the Covid-19 Challenge. Lecture Notes in Networks and Systems, 2021, , 249-262.	0.5	2
132	A Generic Encapsulation to Unravel Social Spreading of a Pandemic: An Underlying Architecture. Computers, 2021, 10, 12.	2.1	4
133	Threshold condition and non pharmaceutical interventions's control strategies for elimination of COVID-19. Results in Physics, 2021, 20, 103698.	2.0	28
135	Deep Learning Applications for COVID-19 Analysis: A State-of-the-Art Survey. CMES - Computer Modeling in Engineering and Sciences, 2021, 129, 65-98.	0.8	7
136	Aerosols generation using Er,Cr:YSGG laser compared to rotary instruments in conservative dentistry: A preliminary study. Journal of Clinical and Experimental Dentistry, 2021, 13, e30-e36.	0.5	4
138	Dynamical Behaviors of Nonlinear Coronavirus (COVID 9) Model with Numerical Studies. Computers, Materials and Continua, 2021, 67, 675-686.	1.5	18
139	Modeling the Spread of COVID-19 Among Doctors from the Asymptomatic Individuals. Mathematical Engineering, 2021, , 39-60.	0.1	0
140	Transmission Dynamics of Covid-19 from Environment with Red Zone, Orange Zone, Green Zone Using Mathematical Modelling. Mathematical Engineering, 2021, , 61-76.	0.1	0
141	An Effective Numerical Method for the Solution of a Stochastic Coronavirus (2019-nCovid) Pandemic Model. Computers, Materials and Continua, 2021, 66, 1121-1137.	1.5	17
142	Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, 2023, 22, 365-396.	0.4	8
143	Fractional-order mathematical model for analysing impact of quarantine on transmission of COVID-19 in India. Mathematical Modeling and Computing, 2021, 8, 253-266.	0.4	8
144	Study on the SEIQR model and applying the epidemiological rates of COVID-19 epidemic spread in Saudi Arabia. Infectious Disease Modelling, 2021, 6, 678-692.	1.2	22
145	A Comprehensive Review of Coronavirus Disease 2019: Epidemiology, Transmission, Risk Factors, and International Responses. Yonsei Medical Journal, 2021, 62, 1.	0.9	19
146	Numerical Analysis of Novel Coronavirus (2019-nCov) Pandemic Model with Advection. Computers, Materials and Continua, 2021, 67, 2933-2953.	1.5	5

#	Article	IF	CITATIONS
147	A Survey on Mathematical, Machine Learning and Deep Learning Models for COVID-19 Transmission and Diagnosis. IEEE Reviews in Biomedical Engineering, 2022, 15, 325-340.	13.1	39
148	Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator. Computers, Materials and Continua, 2021, 66, 1823-1848.	1.5	62
149	The impact of the precautionary measures taken in the kingdom of Bahrain to contain the outbreak of COVID-19. Arab Journal of Basic and Applied Sciences, 2021, 28, 195-203.	1.0	3
150	Epidemiological characteristics, reinfection possibilities and vaccine development of SARS CoV2: A global review. Journal of Family Medicine and Primary Care, 2021, 10, 1095.	0.3	3
153	Study of the human infectious safety model under the influence of SARS-CoV-2 on the example of the Perm Krai of the Russian Federation. E3S Web of Conferences, 2021, 282, 06005.	0.2	3
154	Transmission analysis of COVID-19 with discrete time imported cases: Tianjin and Chongqing as cases. Infectious Disease Modelling, 2021, 6, 618-631.	1.2	9
155	Probability of a zoonotic spillover with seasonal variation. Infectious Disease Modelling, 2021, 6, 514-531.	1.2	10
156	Designing a Multi-Criteria Decision-Making Framework to Reduce the Post-COVID-19 Impact on SMEs. Advances in Business Strategy and Competitive Advantage Book Series, 2021, , 150-167.	0.2	0
157	SARS-COV-2 outbreak and control in Kenya - Mathematical model analysis. Infectious Disease Modelling, 2021, 6, 370-380.	1.2	4
158	Age-Specific Differences in the Severity of COVID-19 Between Children and Adults: Reality and Reasons. Advances in Experimental Medicine and Biology, 2021, 1327, 63-78.	0.8	4
160	Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18, 950-967.	1.0	12
162	A study on fractional COVIDâ€19 disease model by using Hermite wavelets. Mathematical Methods in the Applied Sciences, 2023, 46, 7671-7687.	1.2	34
164	Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown. PLoS ONE, 2021, 16, e0247456.	1.1	32
165	Threshold conditions for global stability of disease free state of COVID-19. Results in Physics, 2021, 21, 103784.	2.0	20
166	Pandemic in India: Special reference to Covid-19 and its technological aspect. Journal of Statistics and Management Systems, 2021, 24, 387-410.	0.3	5
168	Qualitative analysis of 2019-nCoV mathematical model via an efficient computational technique. Journal of Interdisciplinary Mathematics, 2021, 24, 425-441.	0.4	1
169	Fractional order mathematical modeling of novel corona virus (COVIDâ€19). Mathematical Methods in the Applied Sciences, 2023, 46, 7847-7860.	1.2	15
170	Fractional optimal control problem for an age-structured model of COVID-19 transmission. Chaos, Solitons and Fractals, 2021, 143, 110625.	2.5	16

#	Article	IF	CITATIONS
171	Mathematical analysis of a within-host model of SARS-CoV-2. Advances in Difference Equations, 2021, 2021, 113.	3.5	34
172	A simple mathematical model to predict and validate the spread of Covid-19 in India. Materials Today: Proceedings, 2021, 47, 3859-3864.	0.9	1
174	Impact of mobility restriction in COVID-19 superspreading events using agent-based model. PLoS ONE, 2021, 16, e0248708.	1.1	28
176	Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Dayesian time series compartmental model. PLoS Computational Biology, 2021, 17, e1008837.	1.5	39
177	COVID-19 dynamics considering the influence of hospital infrastructure: an investigation into Brazilian scenarios. Nonlinear Dynamics, 2021, 106, 1-22.	2.7	7
178	Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo–Fabrizio derivative. Advances in Difference Equations, 2021, 2021, 184.	3.5	23
179	COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution. Chaos, Solitons and Fractals, 2021, 144, 110697.	2.5	19
180	COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modeling. Epidemics, 2021, 34, 100439.	1.5	16
181	Estimating the impact of public health strategies on the spread of SARSâ€CoVâ€2: Epidemiological modelling for Toulouse, France. Reviews in Medical Virology, 2021, 31, 1-8.	3.9	6
182	Forecasting the COVID-19 Pandemic in Saudi Arabia Using a Modified Singular Spectrum Analysis Approach: Model Development and Data Analysis. Jmirx Med, 2021, 2, e21044.	0.2	8
183	Evaluating the effectiveness of measures to control the novel coronavirus disease 2019 in Jilin Province, China. BMC Infectious Diseases, 2021, 21, 245.	1.3	10
184	Population migration, spread of COVID-19, and epidemic prevention and control: empirical evidence from China. BMC Public Health, 2021, 21, 529.	1.2	11
185	Assessing the Effectiveness of Mass Testing and Quarantine in the Spread of COVID-19 in Beijing and Xinjiang, 2020. Complexity, 2021, 2021, 1-10.	0.9	2
186	Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay. Dynamic Games and Applications, 2021, 11, 892-914.	1.1	12
188	Persistence and extinction criteria of Covid-19 pandemic: India as a case study. Stochastic Analysis and Applications, 2022, 40, 179-208.	0.9	4
189	Effects of masks on the transmission of infectious diseases. Advances in Difference Equations, 2021, 2021, 169.	3.5	3
190	Applying Laplace Adomian decomposition method (LADM) for solving a model of Covid-19. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1618-1628.	0.9	10
191	Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group. Results in Physics, 2021, 22, 103852.	2.0	19

#	Article	IF	CITATIONS
192	Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study. Chaos, Solitons and Fractals, 2021, 144, 110655.	2.5	78
193	Diffusion modeling of COVID-19 under lockdown. Physics of Fluids, 2021, 33, 041903.	1.6	15
194	A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model. Chaos, Solitons and Fractals, 2021, 145, 110762.	2.5	31
195	Covid-19 sir model with nonlinear incidence rate. Journal of Physics: Conference Series, 2021, 1869, 012113.	0.3	4
196	Investigation of the dynamics of COVID-19 with a fractional mathematical model: A comparative study with actual data. Results in Physics, 2021, 23, 103976.	2.0	11
197	Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19 identifies combination therapy to be most effective and optimal. AEJ - Alexandria Engineering Journal, 2021, 60, 2491-2512.	3.4	19
198	Novel coronavirus mitigation measures implemented by radiotherapy centres in low and middle-income countries: a systematic review. Reports of Practical Oncology and Radiotherapy, 2021, 26, 303-315.	0.3	5
199	Network Dynamic Model of Epidemic Transmission Introducing a Heterogeneous Control Factor. Journal of Medical Virology, 2021, 93, 6496-6505.	2.5	1
200	Dynamic governance decisions on multi-modal inter-city travel during a large-scale epidemic spreading. Transport Policy, 2021, 104, 29-42.	3.4	15
201	On the fractional SIRD mathematical model and control for the transmission of COVID-19: The first and the second waves of the disease in Iran and Japan. ISA Transactions, 2022, 124, 103-114.	3.1	29
202	Effectiveness of potential antiviral treatments in COVID-19 transmission control: a modelling study. Infectious Diseases of Poverty, 2021, 10, 53.	1.5	13
203	Estimation of COVID-19 outbreak size in Harbin, China. Nonlinear Dynamics, 2021, 106, 1229-1237.	2.7	19
204	Impact of pangolin bootleg market on the dynamics of COVID-19 model. Results in Physics, 2021, 23, 103913.	2.0	2
205	Dynamics of a fractional epidemiological model with disease infection in both the populations. Chaos, 2021, 31, 043130.	1.0	43
206	Optimal quarantineâ€related strategies for COVIDâ€19 control models. Studies in Applied Mathematics, 2021, 147, 622-649.	1.1	16
207	Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dynamics, 2021, 106, 1491-1507.	2.7	113
208	Influence of SARS-CoV-2 Variant B.1.1.7, Vaccination, and Public Health Measures on the Spread of SARS-CoV-2. Viruses, 2021, 13, 898.	1.5	4
209	The epidemiological characteristics and effectiveness of countermeasures to contain coronavirus disease 2019 in Ningbo City, Zhejiang Province, China. Scientific Reports, 2021, 11, 9545.	1.6	5

#	Article	lF	CITATIONS
210	Assessment of basic reproductive number for COVID-19 at global level. Medicine (United States), 2021, 100, e25837.	0.4	31
211	Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion. Advances in Difference Equations, 2021, 2021, 228.	3. 5	16
212	Adaptive SIR model for propagation of SARS-CoV-2 in Brazil. Physica A: Statistical Mechanics and Its Applications, 2021, 569, 125773.	1.2	16
214	Matrix-Based Formulation of Heterogeneous Individual-Based Models of Infectious Diseases: Using SARS Epidemic as a Case Study. International Journal of Environmental Research and Public Health, 2021, 18, 5716.	1.2	0
215	An extended fuzzy decision-making framework using hesitant fuzzy sets for the drug selection to treat the mild symptoms of Coronavirus Disease 2019 (COVID-19). Applied Soft Computing Journal, 2021, 103, 107155.	4.1	71
216	Analysis and dynamics of fractional order Covid-19 model with memory effect. Results in Physics, 2021, 24, 104017.	2.0	39
217	Mathematical model for the mitigation of the economic effects of the Covid-19 in the Democratic Republic of the Congo. PLoS ONE, 2021, 16, e0250775.	1.1	10
218	Comparative immunogenicity analysis of intradermal versus intramuscular administration of SARS-CoV-2 RBD epitope peptide-based immunogen InÂvivo. Microbes and Infection, 2021, 23, 104843.	1.0	8
219	Dynamics of an SIR-Based COVID-19 Model With Linear Incidence Rate, Nonlinear Removal Rate, and Public Awareness. Frontiers in Physics, $2021, 9, \ldots$	1.0	26
220	An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics. Chaos, Solitons and Fractals, 2021, 146, 110918.	2.5	19
221	Stochastic filtering based transmissibility estimation of novel coronavirus., 2021, 112, 103001.		6
222	Modeling and Simulation: A Study on Predicting the Outbreak of COVID-19 in Saudi Arabia. Discrete Dynamics in Nature and Society, 2021, 2021, 1-19.	0.5	5
223	Optimal Control of Mathematical Model for COVID-19 with Quarantine and Isolation. SSRG International Journal of Engineering Trends and Technology, 2021, 69, 154-160.	0.3	2
224	Epidemiology, Zoonotic and Reverse Zoonotic Potential of COVID-19., 0, , .		0
225	Predicting the development trend of the second wave of COVIDâ€19 in five European countries. Journal of Medical Virology, 2021, 93, 5896-5907.	2.5	2
226	Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Frontiers in Medicine, 2021, 8, 648005.	1.2	25
227	Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. Diagnostics, 2021, 11, 1155.	1.3	40
228	Distribution of incubation periods of COVID-19 in the Canadian context. Scientific Reports, 2021, 11, 12569.	1.6	11

#	Article	IF	CITATIONS
229	An optimal control analysis of a COVID-19 model. AEJ - Alexandria Engineering Journal, 2021, 60, 2875-2884.	3.4	22
230	Global Transmission of SARS-COV-2 in Schools, Religious Centres and Markets: An Exploratory Review. International Journal of Health and Life Sciences, 2021, 7, .	0.5	2
231	Analysis of COVIDâ€19 and comorbidity coâ€infection model with optimal control. Optimal Control Applications and Methods, 2021, 42, 1568-1590.	1.3	41
232	New Procedures of a Fractional Order Model of Novel Coronavirus (COVID-19) Outbreak via Wavelets Method. Axioms, 2021, 10, 122.	0.9	14
233	A numerical and analytical study of SE(Is)(Ih)AR epidemic fractional order COVID-19 model. Advances in Difference Equations, 2021, 2021, 293.	3.5	11
234	Mathematical modeling of the COVID-19 pandemic with intervention strategies. Results in Physics, 2021, 25, 104285.	2.0	85
235	A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response. Mathematics, 2021, 9, 1283.	1.1	7
236	Real-Time Prediction of the COVID-19 Epidemic in Thailand using Simple Model-Free Method and Time Series Regression Model. Walailak Journal of Science and Technology, 2021, 18, .	0.5	1
237	District-wise estimation of Basic reproduction number (R0) for COVID-19 in India in the initial phase. Spatial Information Research, 0 , , 1 .	1.3	4
238	Controlling of pandemic COVID-19 using optimal control theory. Results in Physics, 2021, 26, 104311.	2.0	10
239	Geographic Spread and Control of 2019-nCoV in the Absence of Vaccine. Studies in Computational Intelligence, 2022, , 271-290.	0.7	0
240	The COVID-19 Model with Partially Recovered Carriers. Journal of Applied Mathematics, 2021, 2021, 1-17.	0.4	1
241	Modified SIRD Model for COVID-19 Spread Prediction for Northern and Southern States of India. Chaos, Solitons and Fractals, 2021, 148, 111039.	2.5	12
242	Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations. Results in Physics, 2021, 26, 104290.	2.0	19
243	Unknown uncertainties in the COVID-19 pandemic: Multi-dimensional identification and mathematical modelling for the analysis and estimation of the casualties. , 2021, 114, 103058.		17
244	A novel fractional mathematical model of COVID-19 epidemic considering quarantine and latent time. Results in Physics, 2021, 26, 104286.	2.0	44
245	A locally sequential refinement of the growth dynamics identification. Inverse Problems in Science and Engineering, 2021, 29, 2719-2756.	1.2	1
246	Containing the Transmission of COVID-19: A Modeling Study in 160 Countries. Frontiers in Medicine, 2021, 8, 701836.	1.2	14

#	Article	IF	CITATIONS
247	ARIMA Model Estimation Based on Genetic Algorithm for COVID-19 Mortality Rates. International Journal of Information Technology and Decision Making, 2021, 20, 1775-1798.	2.3	21
248	Limits of Compartmental Models and New Opportunities for Machine Learning: A Case Study to Forecast the Second Wave of COVID-19 Hospitalizations in Lombardy, Italy. Informatics, 2021, 8, 57.	2.4	4
249	Modeling the Transmission Dynamics of COVID-19 Pandemic in Caputo Type Fractional Derivative. Journal of Multiscale Modeling, 2021, 12, .	1.0	39
251	A model of the innate immune response to SARS-CoV-2 in the alveolar epithelium. Royal Society Open Science, 2021, 8, 210090.	1.1	4
252	Global stability analysis for a SEI model with nonlinear incidence rate and asymptomatic infectious state. Applied Mathematics and Computation, 2021, 402, 126130.	1.4	0
253	Challenges with the proposed approach in enhancing the accessibility of antimalarial activities during COVID 19 pandemic. Journal of Infection and Public Health, 2021, 14, 1089-1094.	1.9	0
254	Merits and Limitations of Mathematical Modeling and Computational Simulations in Mitigation of COVID-19 Pandemic: A Comprehensive Review. Archives of Computational Methods in Engineering, 2022, 29, 1311-1337.	6.0	21
255	Modeling the complete spatiotemporal spread of the COVID-19 epidemic in mainland China. International Journal of Infectious Diseases, 2021, 110, 247-257.	1.5	7
256	Dynamical analysis of novel <scp>COVID</scp> â€19 epidemic model with nonâ€monotonic incidence function. Journal of Public Affairs, 2022, 22, e2754.	1.7	5
257	Prediction of COVID-19 pervasiveness in six major affected states of India and two-stage variation with temperature. Air Quality, Atmosphere and Health, 2021, 14, 2079-2090.	1.5	4
258	Short-term predictions and prevention strategies for COVID-19: A model-based study. Applied Mathematics and Computation, 2021, 404, 126251.	1.4	60
259	Modeling the effect of age on quantiles of the incubation period distribution of COVID-19. BMC Public Health, 2021, 21, 1762.	1.2	0
260	A mathematical model to study the COVID-19 pandemic in India. Modeling Earth Systems and Environment, 2022, 8, 3047-3058.	1.9	5
261	Estimates of the COVID-19 Infection Fatality Rate for 48 African Countries: A Model-Based Analysis. BioMed, 2021, 1, 63-79.	0.6	6
262	Multi-Model Selection and Analysis for COVID-19. Fractal and Fractional, 2021, 5, 120.	1.6	13
263	Mitigating vector-borne pathogen spread risks through promoting GmelinaÂarborea-based afforestation and agroforestry on private farms. Journal of Cleaner Production, 2021, 315, 128215.	4.6	0
264	Mathematical modeling and assessment of barrier measures and temperature on the transmission and persistence of Novel coronavirus disease 2019 (COVID-19). International Journal of Biomathematics, 0, , .	1.5	0
265	Multi-agent simulation model for the evaluation of COVID-19 transmission. Computers in Biology and Medicine, 2021, 136, 104645.	3.9	15

#	Article	IF	CITATIONS
266	The low contagiousness and new A958D mutation of SARS-CoV-2 in children: An observational cohort study International Journal of Infectious Diseases, 2021, 111, 347-353.	1.5	2
267	A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel. Chaos, Solitons and Fractals, 2021, 152, 111427.	2.5	7
268	Global dynamics of SARS-CoV-2/cancer model with immune responses. Applied Mathematics and Computation, 2021, 408, 126364.	1.4	19
269	Stochastic probical strategies in a delay virus infection model to combat COVID-19. Chaos, Solitons and Fractals, 2021, 152, 111325.	2.5	4
270	Modelling the effect of Covid-19 mortality on the economy of Nigeria. Research in Globalization, 2021, 3, 100050.	1.4	2
271	COVID-19 and other viruses: Holding back its spreading by massive testing. Expert Systems With Applications, 2021, 186, 115710.	4.4	8
272	Non-standard computational analysis of the stochastic COVID-19 pandemic model: An application of computational biology. AEJ - Alexandria Engineering Journal, 2022, 61, 619-630.	3.4	34
273	Optimality of Solution with Numerical Investigation for Coronavirus Epidemic Model. Computers, Materials and Continua, 2021, 67, 1713-1728.	1.5	6
274	A report on incidence of COVID-19 among febrile patients attending a malaria clinic. Tropical Parasitology, 2021, 11, 38.	0.2	9
275	Modelling the Emerging COVID-19 Epidemic and Estimating Intervention Effectiveness â€" Taiwan, China, 2021. China CDC Weekly, 2021, 3, 716-719.	1.0	7
276	Optimal Control Model for the Transmission of Novel COVID-19. Computers, Materials and Continua, 2021, 66, 3089-3106.	1.5	22
277	Artificial Neural Networks for Prediction of Covid-19 in Saudi Arabia. Computers, Materials and Continua, 2021, 66, 2787-2796.	1.5	23
278	Mathematical modeling of COVID-19 epidemic with effect of awareness programs. Infectious Disease Modelling, 2021, 6, 448-460.	1.2	83
279	SARS-CoV-2 and self-medication in Cameroon: a mathematical model. Journal of Biological Dynamics, 2021, 15, 137-150.	0.8	11
280	A MATHEMATICAL MODEL FOR PREDICTING THE OUTCOME OF TREATMENT OF MULTIDRUD-RESISTANT TUBERCULOSIS. WiadomoÅsci Lekarskie, 2021, 74, 1649-1654.	0.1	0
281	Graph modelling for tracking the COVID-19 pandemic spread. Infectious Disease Modelling, 2021, 6, 112-122.	1.2	16
282	Role of Computational Intelligence Against COVID-19. Studies in Computational Intelligence, 2021, , 19-43.	0.7	5
283	Comparison of spatio-temporal transmission characteristics of COVID-19 and its mitigation strategies in China and the US. Journal of Chinese Geography, 2020, 30, 1963-1984.	1.5	20

#	Article	IF	CITATIONS
284	Building a tool model for the study of the ecosystem "Coronavirus – vector – human - environment― IOP Conference Series: Earth and Environmental Science, 2020, 548, 042030.	0.2	4
285	Epidemiological approximation of the enteric manifestation and possible fecal–oral transmission in COVID-19: a preliminary systematic review. European Journal of Gastroenterology and Hepatology, 2021, 33, e21-e29.	0.8	11
316	Food safety lessons learned from the <scp>COVID</scp> â€19 pandemic. Journal of Food Safety, 2021, 41, e12878.	1.1	34
317	Risk of COVID-19-related bullying, harassment and stigma among healthcare workers: an analytical cross-sectional global study. BMJ Open, 2020, 10, e046620.	0.8	123
318	A Methodology Based on Deep Q-Learning/Genetic Algorithms for Optimizing COVID-19 Pandemic Government Actions. , 2020, , .		17
319	Modeling the Effects of Nonpharmaceutical Interventions on COVID-19 Spread in Kenya. Interdisciplinary Perspectives on Infectious Diseases, 2020, 2020, 1-10.	0.6	7
320	Controlling the Spread of COVID-19: Optimal Control Analysis. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	0.7	43
321	A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Advances in Difference Equations, 2020, 2020, 299.	3.5	137
322	New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system. Advances in Difference Equations, 2020, 2020, 391.	3.5	79
323	SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Advances in Difference Equations, 2020, 2020, 490.	3.5	75
324	A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay. Advances in Difference Equations, 2020, 2020, 523.	3.5	19
325	Design of nonstandard computational method for stochastic susceptible–infected–treated–recovered dynamics of coronavirus model. Advances in Difference Equations, 2020, 2020, 505.	3.5	13
326	On the optimal control of coronavirus (2019-nCov) mathematical model; a numerical approach. Advances in Difference Equations, 2020, 2020, 528.	3.5	20
327	A numerical solution by alternative Legendre polynomials on a model for novel coronavirus (COVID-19). Advances in Difference Equations, 2020, 2020, 527.	3.5	4
328	Stochastic mathematical model for the spread and control of Corona virus. Advances in Difference Equations, 2020, 2020, 574.	3.5	9
329	A new mathematical model for Zika virus transmission. Advances in Difference Equations, 2020, 2020, .	3.5	73
330	Predicting the evolution and control of the COVID-19 pandemic in Portugal. F1000Research, 2020, 9, 283.	0.8	7
331	Predicting the evolution and control of the COVID-19 pandemic in Portugal. F1000Research, 2020, 9, 283.	0.8	13

#	Article	IF	Citations
332	Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS ONE, 2020, 15, e0242128.	1.1	176
335	Construction of Compartmental Models for COVID-19 with Quarantine, Lockdown and Vaccine Interventions. SSRN Electronic Journal, 0, , .	0.4	7
336	Forecasting the Spread of COVID-19 under Different Reopening Strategies. SSRN Electronic Journal, 0, ,	0.4	7
337	Dynamics and Development of the COVID-19 Epidemic in the United States: A Compartmental Model Enhanced With Deep Learning Techniques. Journal of Medical Internet Research, 2020, 22, e21173.	2.1	19
338	Application of Hierarchical Polynomial Regression Models to Predict Transmission of COVID-19 at Global Level. International Journal of Clinical Biostatistics and Biometrics, 2020, 6, .	0.2	10
339	Fangcang shelter hospitals during the COVID-19 epidemic, Wuhan, China. Bulletin of the World Health Organization, 2020, 98, 830-841D.	1.5	40
340	Optimal control strategy of COVID-19 spread in Morocco using SEIRD model. Moroccan Journal of Pure and Applied Analysis, 2021, 7, 66-79.	0.2	5
341	COVID-19 Highest Incidence Forecast in Russia Based on Regression Model. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5, 812-819.	0.4	2
342	Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic. Vaccines, 2020, 8, 236.	2.1	86
343	Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. AIMS Bioengineering, 2020, 7, 130-146.	0.6	52
344	Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK. Mathematical Biosciences and Engineering, 2020, 17, 3618-3636.	1.0	39
345	Analysis of COVID-19 transmission in Shanxi Province with discrete time imported cases. Mathematical Biosciences and Engineering, 2020, 17, 3710-3720.	1.0	63
346	Global stability of COVID-19 model involving the quarantine strategy and media coverage effects. AIMS Public Health, 2020, 7, 587-605.	1.1	30
347	Co-infection with malaria and coronavirus disease-2019. Journal of Global Infectious Diseases, 2020, 12, 162.	0.2	13
348	Effectiveness of Interventions to Control Transmission of Reemergent Cases of COVID-19 — Jilin Province, China, 2020. China CDC Weekly, 2020, 2, 651-654.	1.0	10
349	Dynamics of the COVID-19 Comparison between the Theoretical Predictions and the Real Data, and Predictions about Returning to Normal Life. , 2020, 04, .		2
350	From the index case to global spread: the global mobility based modelling of the COVID-19 pandemic implies higher infection rate and lower detection ratio than current estimates. Peerl, 2020, 8, e9548.	0.9	16
351	Estimating the impact of lock-down, quarantine and sensitization in a COVID-19 outbreak: lessons from the COVID-19 outbreak in China. PeerJ, 2020, 8, e9933.	0.9	8

#	Article	IF	CITATIONS
352	Impact of computational approaches in the fight against COVID-19: an AI guided review of 17000 studies. Briefings in Bioinformatics, $2022, 23, \ldots$	3.2	20
353	Disease transmission and control modelling at the science–policy interface. Interface Focus, 2021, 11, 20210013.	1.5	12
354	Optimal control strategies on COVID-19 infection to bolster the efficacy of vaccination in India. Scientific Reports, 2021, 11, 20124.	1.6	16
355	The application of industry 4.0 technologies in pandemic management: Literature review and case study. Healthcare Analytics, 2021, 1, 100008.	2.6	19
356	Analysis of a stochastic coronavirus (COVID-19) L \tilde{A} ©vy jump model with protective measures. Stochastic Analysis and Applications, 0, , 1-15.	0.9	0
357	Modelling the transmission of infectious diseases inside hospital bays: implications for COVID-19. Mathematical Biosciences and Engineering, 2020, 17, 8084-8104.	1.0	10
364	COVID-19 Pandemic: Emerging Issues and Future Challenges. , 0, 1, 1.		0
374	The molecular footprints of COVID-19. Turkish Journal of Biochemistry, 2020, 45, 241-248.	0.3	1
376	Socio-economic, demographic and health determinants of the coronavirus pandemic: Analysis of data from OECD countries. Turkish Journal of Public Health, 2020, 18, 1-13.	0.5	3
378	Prediction of Confirmed, Recovered and Casualties' Cases of COVID-19 in India by Autoregressive Integrated Moving Average (ARIMA) Models. Studies in Systems, Decision and Control, 2022, , 153-181.	0.8	1
379	Modeling SARS-CoV-2: Mitigation Interventions and Increased Mobility Events. Studies in Systems, Decision and Control, 2022, , 543-577.	0.8	0
380	Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition. Scientific Reports, 2021, 11, 21413.	1.6	5
381	Some Fractional Mathematical Models ofÂthe COVID-19 Outbreak. Studies in Systems, Decision and Control, 2022, , 957-1021.	0.8	0
382	Application of Mathematical Modelling Approach in COVID-19 Transmission and Interventions Strategies. Studies in Systems, Decision and Control, 2022, , 283-314.	0.8	2
383	OPTIMIZING THE QUARANTINE COST FOR SUPPRESSION OF THE COVID-19 EPIDEMIC IN MEXICO. Revista De Matemática: TeorÃa Y Aplicaciones, 2020, 28, 55-78.	0.1	0
385	Evolution of SARS-CoV-2 in the state of Alagoas-Brazil via an adaptive SIR model. International Journal of Modern Physics C, 2021, 32, 2150040.	0.8	1
386	Towards a Data-Driven Fuzzy-Geospatial Pandemic Modelling. , 2020, , .		1
387	Modeling the Impact of Various Treatment and Prevention Tact's on COVID-19 Worldwide. , 2021, , 195-210.		0

#	Article	IF	CITATIONS
388	A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data. Mathematical Biosciences and Engineering, 2021, 18, 9787-9805.	1.0	0
389	A Grey-TOPSIS Approach to Minimize COVID-19 Transmission for the Betterment of Public-Health in the Indian Context. International Journal of Service Science, Management, Engineering, and Technology, 2021, 13, 1-14.	0.7	1
390	Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana–Baleanu fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 2022, 105, 106076.	1.7	23
391	The Prediction for Development of COVID-19 in Global Major Epidemic Areas Through Empirical Trends in China by Utilizing State Transition Matrix Model. SSRN Electronic Journal, 0, , .	0.4	2
392	Potential Dancer Resistance to Covid-19 Exposure. , 0, , .		1
393	Global stability and bifurcation of a COVID-19 virus modeling with possible loss of the immunity. AIP Conference Proceedings, 2020, , .	0.3	0
394	Models to assess imported cases on the rebound of COVID-19 and design a long-term border control strategy in Heilongjiang Province, China. Mathematical Biosciences and Engineering, 2022, 19, 1-33.	1.0	4
399	Predicting the spread of COVID-19 in China with human mobility data. , 2021, , .		2
400	A Mathematical Model for the Prediction of the Impact of Coronavirus (COVIDÂ19) and Social Distancing Effect. WSEAS Transactions on Systems and Control, 2020, 15, 601-612.	0.5	5
401	Coronavirus disease-19 spread in the Eastern Mediterranean Region, updates and prediction of disease progression in Kingdom of Saudi Arabia, Iran, and Pakistan. International Journal of Health Sciences, 2020, 14, 32-42.	0.4	3
402	Clinical Characteristics and Reproduction Number of Coronavirus Disease (COVID-19) Cases in Markazi Province in Iran. International Journal of Community Based Nursing and Midwifery, 2021, 9, 18-29.	0.2	0
403	Early reports of epidemiological parameters of the COVID-19 pandemic. Western Pacific Surveillance and Response Journal: WPSAR, 2021, 12, 65-81.	0.3	0
404	Fractional Riccati equation to model the dynamics of COVID-19 coronovirus infection. Journal of Physics: Conference Series, 2021, 2094, 032042.	0.3	3
405	Biomodeling for Controlling the Spread of Coronavirus 2019. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 733-744.	0.8	0
407	Mathematical modeling of the spread of the coronavirus under strict social restrictions. Mathematical Methods in the Applied Sciences, 2021, , .	1.2	6
408	Knowledge and Awareness of the Coronavirus Disease and Perceptions Towards Ophthalmic Practice Among Ophthalmologists. Open Ophthalmology Journal, 2021, 15, 236-242.	0.1	0
409	When and why direct transmission models can be used for environmentally persistent pathogens. PLoS Computational Biology, 2021, 17, e1009652.	1.5	5
410	Time Optimal Control Studies on COVID-19 Incorporating Adverse Events of the Antiviral Drugs. Computational and Mathematical Biophysics, 2021, 9, 214-241.	0.6	2

#	Article	IF	CITATIONS
411	Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 5757.	0.5	4
412	Feasibility of Booster Vaccination in High-Risk Populations for Controlling Coronavirus Variants — China, 2021. China CDC Weekly, 2021, 3, 1071-1074.	1.0	5
413	Dynamical analysis of coronavirus disease with crowding effect, and vaccination: a study of third strain. Nonlinear Dynamics, 2022, 107, 3963-3982.	2.7	26
414	Future implications of COVID-19 through Mathematical modeling. Results in Physics, 2022, 33, 105097.	2.0	6
415	The efficacy of deep learning based LSTM model in forecasting the outbreak of contagious diseases. Infectious Disease Modelling, 2022, 7, 170-183.	1.2	24
416	Mathematical modelling of the epidemiology of COVID-19 infection in Ghana. Scientific African, 2022, 15, e01070.	0.7	3
419	Modeling the COVID-19 Epidemic in PR China. , 2021, , .		0
420	Generalized SEIR Epidemic Model for COVID-19 in a Multipatch Environment. Discrete Dynamics in Nature and Society, 2021, 2021, 1-12.	0.5	6
421	Data science. , 2022, , 113-139.		0
422	Global Analysis and Optimal Control Model of COVID-19. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-20.	0.7	11
423	Epidemiological Characteristics and Transmissibility for SARS-CoV-2 of Population Level and Cluster Level in a Chinese City. Frontiers in Public Health, 2021, 9, 799536.	1.3	3
424	A Continuous Markov-Chain Model for the Simulation of COVID-19 Epidemic Dynamics. Biology, 2022, 11, 190.	1.3	16
425	Structure Preserving Algorithm for Fractional Order Mathematical Model of COVID-19. Computers, Materials and Continua, 2022, 71, 2141-2157.	1.5	2
426	Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics. Arabian Journal for Science and Engineering, 2022, 47, 10163-10186.	1.7	23
427	The Mathematical Model for Streptococcus suis Infection in Pig-Human Population with Humidity Effect. Computers, Materials and Continua, 2022, 71, 2981-2998.	1.5	1
429	A new mathematical model of multi-faced COVID-19 formulated by fractional derivative chains. , 2022, 2022, 6.		9
430	Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM. Mathematics, 2022, 10, 343.	1.1	25
431	Asymptomatic infection and transmission of COVID-19 among clusters: systematic review and meta-analysis. Public Health, 2022, 203, 100-109.	1.4	31

#	Article	IF	CITATIONS
432	Epidemiological modeling for COVID-19 spread in India with the effect of testing. Physica A: Statistical Mechanics and Its Applications, 2022, 592, 126774.	1.2	10
433	Preventive control strategy on second wave of Covid-19 pandemic model incorporating lock-down effect. AEJ - Alexandria Engineering Journal, 2022, 61, 7265-7276.	3.4	9
434	An Approximate Numerical Methods for Mathematical and Physical Studies for Covid-19 Models. Computer Systems Science and Engineering, 2022, 42, 1147-1163.	1.9	7
435	On mobility trends analysis of COVID–19 dissemination in Mexico City. PLoS ONE, 2022, 17, e0263367.	1.1	5
436	A Review on the Use of Machine Learning Against the Covid-19 Pandemic. Engineering, Technology & Applied Science Research, 2022, 12, 8039-8044.	0.8	6
437	COVID-19 epidemic under the K-quarantine model: Network approach. Chaos, Solitons and Fractals, 2022, 157, 111904.	2.5	6
438	A Decision-Making Framework Using q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information for the Drug Selection to Treat COVID-19. Complexity, 2022, 2022, 1-37.	0.9	14
439	Modified Predictor–Corrector Method for the Numerical Solution of a Fractional-Order SIR Model with 2019-nCoV. Fractal and Fractional, 2022, 6, 92.	1.6	48
440	Early reports of epidemiological parameters of the COVID-19 pandemic. Western Pacific Surveillance and Response Journal: WPSAR, 2021, 12, 65-81.	0.3	1
441	On direct and inverse diffusion problems useful in computational disease spread modelling. AIP Conference Proceedings, 2022, , .	0.3	0
442	Stochastic Epidemic Model of Covid-19 via the Reservoir-People Transmission Network. Computers, Materials and Continua, 2022, 72, 1495-1514.	1.5	1
443	Predicting and monitoring COVID-19 epidemic trends in India using sequence-to-sequence model and an adaptive SEIR model. Open Computer Science, 2022, 12, 27-36.	1.3	2
444	Stability analysis and optimal control of COVID-19 with quarantine and media awareness. Mathematical Biosciences and Engineering, 2022, 19, 4911-4932.	1.0	4
445	Dynamics of a stochastic COVID-19 epidemic model considering asymptomatic and isolated infected individuals. Mathematical Biosciences and Engineering, 2022, 19, 5169-5189.	1.0	2
446	On existence and semi-analytical results to fractional order mathematical model of COVID-19. Arab Journal of Basic and Applied Sciences, 2022, 29, 40-52.	1.0	3
447	Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect. Fractal and Fractional, 2022, 6, 163.	1.6	10
448	Virtual Screening of Natural Chemical Databases to Search for Potential ACE2 Inhibitors. Molecules, 2022, 27, 1740.	1.7	1
449	Fractional dynamical probes in COVID-19 model with control interventions: a comparative assessment of eight most affected countries. European Physical Journal Plus, 2022, 137, 370.	1.2	5

#	Article	IF	CITATIONS
450	A discrete-time epidemic model for the analysis of transmission of COVID19 based upon data of epidemiological parameters. European Physical Journal: Special Topics, 2022, 231, 3461-3470.	1.2	11
451	Optimal control design incorporating vaccination and treatment on six compartment pandemic dynamical system. Results in Control and Optimization, 2022, 7, 100115.	1.3	10
452	Hybridized wavelet neuronal learning-based modelling to predict novel COVID-19 effects in India and USA. European Physical Journal: Special Topics, 2022, , $1-18$.	1.2	1
454	The Effects of Migration and Limited Medical Resources of the Transmission of SARS-CoV-2 Model with Two Patches. Bulletin of Mathematical Biology, 2022, 84, 55.	0.9	6
455	Current status of COVID-19 vaccination: safety and liability concern for children, pregnant and lactating women. Expert Review of Vaccines, 2022, 21, 825-842.	2.0	3
456	Uncertainty quantification in Covid-19 spread: Lockdown effects. Results in Physics, 2022, 35, 105375.	2.0	3
457	Backward bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV. Results in Physics, 2022, 37, 105481.	2.0	37
458	Incorporating global dynamics to improve the accuracy of disease models: Example of a COVID-19 SIR model. PLoS ONE, 2022, 17, e0265815.	1.1	9
459	Epidemiological Characteristics of COVID-19 under Government-mandated Control Measures during January-February 2020 in Inner Mongolia, China. Japanese Journal of Infectious Diseases, 2021, , .	0.5	2
460	COVID-19, Food Safety, and Consumer Preferences: Changing Trends and the Way Forward. Journal of Culinary Science and Technology, 2023, 21, 719-736.	0.6	2
461	Mathematical Model of the Transmission Dynamics of Novel Corona Virus (COVID-19) Pandamic Disease with Optimal Control. International Journal of Mathematical Models and Methods in Applied Sciences, 2021, 15, 195-214.	0.1	0
462	Mathematical Modeling: Zoonotic Strength of Infectivity on COVID-19. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 723-732.	0.8	0
463	Estimation of COVID-19 recovery and decease periods in Canada using delay model. Scientific Reports, 2021, 11, 23763.	1.6	8
464	The first year of covid-19 in croatia - a mathematical model. Croatian Regional Development Journal, 2021, 2, 32-44.	0.1	0
465	Analyzing and Battling The Emerging Variants Of Covid-19 Using Artificial Neural Network And Blockchain., 2021,,.		4
466	A review on the transmission of COVID-19 based on cough/sneeze/breath flows. European Physical Journal Plus, 2022, 137, 1.	1.2	56
467	Comparison of Lightweight and Traditional CNN Architectures in COVID-19 Detection from Lung X-Ray Images. Dýzce Āœniversitesi Bilim Ve Teknoloji Dergisi, 2021, 9, 26-39.	0.2	3
468	The optimal vaccination strategy to control COVID-19: a modeling study in Wuhan City, China. Infectious Diseases of Poverty, 2021, 10, 140.	1.5	13

#	Article	IF	CITATIONS
469	Effects of population mobility on the COVID-19 spread in Brazil. PLoS ONE, 2021, 16, e0260610.	1.1	7
470	STRUCTURAL AND PRACTICAL IDENTIFIABILITY ANALYSES ON THE TRANSMISSION DYNAMICS OF COVID-19 IN THE UNITED STATES. Journal of Applied Analysis and Computation, 2022, 12, 1475-1495.	0.2	1
472	Mathematical Analysis of Two Waves of COVID-19 Disease with Impact of Vaccination as Optimal Control. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-19.	0.7	4
473	Clinical characteristics, complications, and predictors of outcome of hospitalized adult Sudanese patients with COVIDâ€19 and malaria coinfection in Sudan: A multicenter retrospective crossâ€sectional study. Journal of Medical Virology, 2022, 94, 3685-3697.	2.5	5
474	Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative. Computers in Biology and Medicine, 2022, 145, 105518.	3.9	34
477	The Impact of Lockdown, Patient Classification, and the Large-Scale Case Screening on the Spread of the Coronavirus Disease 2019 (COVID-19) in Hubei. BioMed Research International, 2022, 2022, 1-19.	0.9	1
478	Simulation modelling techniques for managing epidemic outbreak: A review, classification schemes, and meta-analysis. Journal of Simulation, 2023, 17, 709-728.	1.0	0
479	Correlation between mumps and meteorological factors in Xiamen City, China: A modelling study. Infectious Disease Modelling, 2022, 7, 127-137.	1.2	0
480	Effect of Covid-19 in India- A prediction through mathematical modeling using Atangana Baleanu fractional derivative. Journal of Interdisciplinary Mathematics, 2022, 25, 2431-2444.	0.4	5
481	Mathematical model of the spread of COVID-19 in Plateau State, Nigeria. Journal of the Egyptian Mathematical Society, 2022, 30, .	0.6	1
482	Optimal Drug Regimen and Combined Drug Therapy and Its Efficacy in the Treatment of COVID-19: A Within-Host Modeling Study. Acta Biotheoretica, 2022, 70, 16.	0.7	0
483	A probabilistic epidemiological model for infectious diseases: The case of COVIDâ€19 at globalâ€level. Risk Analysis, 2023, 43, 183-201.	1.5	3
484	Shigellosis seasonality and transmission characteristics in different areas of China: A modelling study. Infectious Disease Modelling, 2022, 7, 161-178.	1.2	0
485	HIV and COVID-19 co-infection: A mathematical model and optimal control. Informatics in Medicine Unlocked, 2022, 31, 100978.	1.9	21
486	Machine Learning based Prediction of COVID-19: A Study on Italy's Pandemic Problems. , 2022, , .		1
487	A quadratic trend-based time series method to analyze the early incidence pattern of COVID-19. Biostatistics and Epidemiology, 2023, 7, .	0.4	0
488	Stability analysis and numerical simulations of the fractional COVID-19 pandemic model. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24, 989-1002.	0.4	13
489	Clinical presentation of COVID-19 at the time of testing and factors associated with pre-symptomatic cases in Cameroon. IJID Regions, 2022, 4, 33-41.	0.5	3

#	Article	IF	CITATIONS
490	Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator. AEJ - Alexandria Engineering Journal, 2022, 61, 11787-11802.	3.4	38
492	Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19, 8380-8410.	1.0	8
493	Bifurcation analysis and optimal control of COVID-19 with exogenous reinfection and media coverages. International Journal of Biomathematics, 2023, 16 , .	1.5	1
494	Assessment of acceptability of the COVID-19 vaccine based on the health belief model among Malaysians-A qualitative approach. PLoS ONE, 2022, 17, e0269059.	1.1	6
496	Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection. Journal of Mathematical Biology, 2022, 84, .	0.8	6
497	Coronavirus disease 2019 epidemic prediction in Shanghai under the "dynamic zero-COVID policy―using time-dependent SEAIQR model. Journal of Biosafety and Biosecurity, 2022, 4, 105-113.	1.4	15
498	Third wave of COVID-19: mathematical model with optimal control strategy for reducing the disease burden in Nigeria. International Journal of Dynamics and Control, 2023, 11, 411-427.	1.5	4
500	On the fractional-order mathematical model of COVID-19 with the effects of multiple non-pharmaceutical interventions. AIMS Mathematics, 2022, 7, 16017-16036.	0.7	11
501	The threshold value of the number of hospital beds in a SEIHR epidemic model. Discrete and Continuous Dynamical Systems - Series B, 2023, 28, 1436.	0.5	1
502	Mathematical Modeling and Numerical Simulation for the Outbreak of COVID-19 Involving Loss of Immunity and Quarantined Class. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-21.	0.7	6
503	Development and simulation of a mathematical model to simulate the phase transmissibility of COVID19 in Morocco., 2022, 49, 75-83.		0
504	Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea. Genomics and Informatics, 2022, 20, e22.	0.4	2
505	Assessing the Impacts of Meteorological Factors on COVID-19 Pandemic Using Generalized Estimating Equations. Frontiers in Public Health, 0, 10 , .	1.3	4
506	Dynamical Behavior of a Fractional Order Model for Within-Host SARS-CoV-2. Mathematics, 2022, 10, 2344.	1.1	5
507	Model-Based Evaluation of Transmissibility and Intervention Measures for a COVID-19 Outbreak in Xiamen City, China. Frontiers in Public Health, 0, 10, .	1.3	7
508	Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread. Journal of Applied Mathematics, 2022, 2022, 1-14.	0.4	1
509	Modeling and Predicting the COVID-19 Trajectory in India. , 2022, , .		0
510	Analytical Study of Fractional Epidemic Model via Natural Transform Homotopy Analysis Method. Symmetry, 2022, 14, 1695.	1.1	3

#	Article	IF	CITATIONS
511	Predictive Modelling in Clinical Bioinformatics: Key Concepts for Startups. BioTech, 2022, 11, 35.	1.3	3
512	Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies. Journal of Biological Dynamics, 2022, 16, 640-664.	0.8	16
513	A Multiscale Model of COVID-19 Dynamics. Bulletin of Mathematical Biology, 2022, 84, .	0.9	15
514	Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2. Mathematics and Computers in Simulation, 2023, 204, 302-336.	2.4	16
515	Progression ofÂCOVID-19 Outbreak inÂlndia, fromÂPre-lockdown toÂPost-lockdown: A Data-Driven Statistical Analysis. Springer Proceedings in Complexity, 2022, , 1389-1398.	0.2	0
516	The effect of vaccination on the spread of COVID 19 with asymptomatic cases through intermediate media. AIP Conference Proceedings, 2022, , .	0.3	0
517	Stochastic Epidemic Model for COVID-19 Transmission under Intervention Strategies in China. Mathematics, 2022, 10, 3119.	1.1	6
518	Investigation of time-fractional mathematical model of COVID-19 with nonsingular kernel. Arab Journal of Basic and Applied Sciences, 2022, 29, 307-317.	1.0	0
519	A novel SEIAHR compartment model for accessing the impact of vaccination, intervention policies, and quarantine on the COVID-19 pandemic: a case study of most affected countries Brazil, India, Italy, and USA. Computational and Applied Mathematics, 2022, 41, .	1.0	2
520	A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method. Mathematical and Computational Applications, 2022, 27, 82.	0.7	9
521	Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies. Fractal and Fractional, 2022, 6, 533.	1.6	4
522	Dynamic inferences of coronavirus epidemiology spread in Iraq region. AIP Conference Proceedings, 2022, , .	0.3	0
524	A patchy theoretical model for the transmission dynamics of SARS-Cov-2 with optimal control. Scientific Reports, 2022, 12, .	1.6	1
525	Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review. Frontiers in Public Health, $0,10,10$	1.3	7
526	Impact of the New Coronavirus Infection on the Immune System of Children and Adolescents in the Region of the Russian Federation. International Journal of Environmental Research and Public Health, 2022, 19, 13669.	1.2	2
527	Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2. AEJ - Alexandria Engineering Journal, 2023, 65, 427-442.	3.4	13
528	Management of hospital beds and ventilators in the Gauteng province, South Africa, during the COVID-19 pandemic. PLOS Global Public Health, 2022, 2, e0001113.	0.5	3
529	A Deep Learning Model for Early Prediction of COVID-19 Spread. Algorithms for Intelligent Systems, 2022, , 545-557.	0.5	0

#	ARTICLE	IF	CITATIONS
530	Sustainability Challenges in the MSME Sector of India Post COVID-19. International Journal of Social Ecology and Sustainable Development, 2022, 13, 1-15.	0.1	0
531	Age Structured Mathematical Modeling Studies on COVID-19 with respect to Combined Vaccination and Medical Treatment Strategies. Computational and Mathematical Biophysics, 2022, 10, 281-303.	0.6	4
532	Recursive Zero-COVID model and quantitation of control efforts of the Omicron epidemic in Jilin province. Infectious Disease Modelling, 2023, 8, 11-26.	1.2	2
533	Hybrid Multi-Criterion Decision-Making Method to Prioritize the Post-COVID-19 Syndrome Follow Up Care. International Journal of Sociotechnology and Knowledge Development, 2022, 14, 1-22.	0.4	0
534	Optimal control strategies of SARS-CoV-2 Omicron supported by invasive and dynamic models. Infectious Diseases of Poverty, 2022, 11, .	1.5	7
535	Mathematical Modeling of COVID-19 Transmission in the Form of System of Integro-Differential Equations. Mathematics, 2022, 10, 4500.	1.1	0
536	Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model. Mathematics, 2022, 10, 4390.	1.1	11
537	A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach. Mathematics, 2022, 10, 4434.	1.1	0
538	Ecology of vital activity as an element of antistress therapy on the example of the organization of the work of a medical center with industrial enterprises under the VMI program. Journal of Addiction Therapy and Research, 2022, 6, 024-026.	0.0	0
539	How Machine Learning Applied in Covid-19 Prevention & Control. Journal of Physics: Conference Series, 2022, 2386, 012033.	0.3	1
540	Clinical effects of 2-DG drug restraining SARS-CoV-2 infection: A fractional order optimal control study. Journal of Biological Physics, 2022, 48, 415-438.	0.7	1
541	Epidemiologic Parameters for COVID-19: A Systematic Review and Meta-Analysis. Medical Journal of the Islamic Republic of Iran, 0, , .	0.9	1
542	A comparative study on the three calculation methods for reproduction numbers of COVID-19. Frontiers in Medicine, 0, 9, .	1.2	0
543	Theoretical and Numerical Analysis of Fractional Order Mathematical Model on Recent COVID-19 Model Using Singular Kernel. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 0, , .	0.8	1
544	An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022. Nonlinear Dynamics, 2023, 111, 6873-6893.	2.7	14
546	Quantifying Social Interventions for Combating COVID-19 via a Symmetry-Based Model. International Journal of Environmental Research and Public Health, 2023, 20, 476.	1.2	0
547	THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2. Journal of Applied Analysis and Computation, 2020, .	0.2	0
548	Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis. AIMS Mathematics, 2023, 8, 8680-8701.	0.7	10

#	Article	IF	Citations
549	A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19. CMES - Computer Modeling in Engineering and Sciences, 2023, 136, 1687-1706.	0.8	0
550	Modeling for Implications of COVID-19 Pandemic on Healthcare System in India. Springer Proceedings in Mathematics and Statistics, 2023, , 661-676.	0.1	0
551	A mathematical system of COVID-19 disease model: Existence, uniqueness, numerical and sensitivity analysis. MethodsX, 2023, 10, 102045.	0.7	1
552	Modeling SARS-CoV-2 and HBV co-dynamics with optimal control. Physica A: Statistical Mechanics and Its Applications, 2023, 615, 128607.	1.2	29
553	A vigorous study of fractional order mathematical model for SARS-CoV-2 epidemic with Mittag-Leffler kernel. AEJ - Alexandria Engineering Journal, 2023, 71, 565-579.	3 . 4	6
554	A bifurcation analysis and model of Covid-19 transmission dynamics with post-vaccination infection impact. Healthcare Analytics, 2023, 3, 100157.	2.6	1
555	Generalized Gamma-CUSUM control chart with application of COVID-19 deaths. PLoS ONE, 2023, 18, e0281360.	1.1	1
556	Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management. Mathematics, 2023, 11, 821.	1.1	2
557	Are parents $\hat{a} \in \mathbb{T}^M$ willing to vaccinate their children against COVID-19? A qualitative study based on the Health Belief Model. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	7
558	A dynamical analysis and numerical simulation of COVID-19 and HIV/AIDS co-infection with intervention strategies. Journal of Biological Dynamics, 2023, 17, .	0.8	7
559	Comparative effectiveness of contact tracing interventions in the context of the COVID-19 pandemic: a systematic review. European Journal of Epidemiology, 2023, 38, 243-266.	2.5	15
560	Optimal control strategies of cell infections in a covid-19 model with inflammatory response. AEJ - Alexandria Engineering Journal, 2023, 69, 747-757.	3.4	1
561	Analysis of the In-Host Dynamics of Tuberculosis and SARS-CoV-2 Coinfection. Mathematics, 2023, 11, 1104.	1.1	1
562	Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response. Physica A: Statistical Mechanics and Its Applications, 2023, 616, 128604.	1.2	1
563	Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination. Acta Biotheoretica, 2023, 71,	0.7	23
564	Modelling quarantine effects on SARS-CoV-2 epidemiological dynamics in Chilean communes and their relationship with the Social Priority Index. Peerl, 0, 11 , e14892.	0.9	1
565	Fractional–Order Modeling and Control of COVID-19 with Shedding Effect. Axioms, 2023, 12, 321.	0.9	0
566	Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity. Mathematics, 2023, 11, 1715.	1.1	0

#	Article	IF	CITATIONS
567	Dynamics of an eco-epidemiological system: Predators get infected in two paths. Journal of Computational Science, 2023, 69, 102023.	1.5	2
568	Modelling the transmission dynamics of Omicron variant of COVID-19 in densely populated city of Lagos in Nigeria. Journal of the Nigerian Society of Physical Sciences, 0, , 1055.	0.0	1
569	Novel analytical techniques for HIV-1 infection of CD4 + T cells on fractional order in mathematical biology. Indian Journal of Physics, 2023, 97, 2319-2325.	0.9	3
576	Epidemics: Some Preliminary Results. Synthesis Lectures on Mathematics and Statistics, 2023, , 39-51.	0.1	0
579	Investigating the role of environmental transmission in COVID-19 dynamics: A mathematical model based study. AIP Conference Proceedings, 2023, , .	0.3	0
580	SIRS model analysis on online game addiction cases for junior high school students in Makassar city, Indonesia. AIP Conference Proceedings, 2023, , .	0.3	1
585	Comparision of Deep Learning Methods for Detecting COVID-19 in X-Ray Images., 2023,, 723-739.		0
588	An Improved Picture Fuzzy Similarity Measure with Its Application in Pattern Recognition and COVID-19. Advances in Intelligent Systems and Computing, 2023, , 43-76.	0.5	0
592	A mathematical review on Caputo fractional derivative models for Covid-19. AIP Conference Proceedings, 2023, , .	0.3	1
596	Infectious Disease Modeling: From Traditional to Evolutionary Algorithms. Archives of Computational Methods in Engineering, 2024, 31, 663-699.	6.0	1
602	Optimal Strategies to Prevent COVID-19 from Becoming a Pandemic. Springer Optimization and Its Applications, 2023, , 39-55.	0.6	0
607	Graph mathematics for analysis and simulation of mathematical models on social media addiction problems as Covid-19 impact. AIP Conference Proceedings, 2023, , .	0.3	0
621	On some recent advances in fractional order modeling in engineering and science., 2024,, 169-197.		O