Environment-Friendly Approach toward the Treatment and River Water via Flocculation Using Chitosan and Be

ACS Omega 5, 3943-3951 DOI: 10.1021/acsomega.9b03419

Citation Report

#	Article	IF	CITATIONS
1	Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials, 2020, 10, 1903.	1.9	77
2	Chitin and chitosan: origin, properties, and applications. , 2020, , 1-33.		19
3	Frequency-dependent of AC susceptibility in chitosan oligosaccharide-Ag nanostructures. Journal of Alloys and Compounds, 2020, 835, 155366.	2.8	3
4	High-Performance Flocculants for Purification: Solving the Problem of Waste Incineration Bottom Ash and Unpurified Water. ACS Omega, 2020, 5, 13259-13267.	1.6	5
5	Eco-friendly flocculants from chitosan grafted with PNVCL and PAAc: Hybrid materials with enhanced removal properties for water remediation. Separation and Purification Technology, 2021, 258, 118052.	3.9	26
6	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. Environmental Chemistry for A Sustainable World, 2021, , 1-111.	0.3	3
7	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , 1-106.	0.3	5
8	Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. Applied Nanoscience (Switzerland), 2021, 11, 1411-1425.	1.6	45
9	Antimicrobial Actions and Applications of Chitosan. Polymers, 2021, 13, 904.	2.0	260
10	A review of the production process of bacteria-based polymeric flocculants. Journal of Water Process Engineering, 2021, 40, 101915.	2.6	25
11	Development of a biorefinery approach for shrimp processing in North-Colombia: Process simulation and sustainability assessment. Environmental Technology and Innovation, 2021, 22, 101461.	3.0	6
12	Novel cationic chitosan-like bioflocculant from Citrobacter youngae GTC 01314 for the treatment of kaolin suspension and activated sludge. Journal of Environmental Chemical Engineering, 2021, 9, 105297.	3.3	7
13	Eco-friendly approaches to aquaculture wastewater treatment: Assessment of natural coagulants vis-a-vis chitosan. Bioresource Technology Reports, 2021, 15, 100702.	1.5	26
14	Removal of hazardous oxide nanoparticles by the biopolymer flocculation in the presence of divalent salt. Chemical Engineering Journal, 2021, 423, 130264.	6.6	16
15	Bio-coagulation-flocculation (BCF) of municipal solid waste leachate using Picralima nitida extract: RSM and ANN modelling. Current Research in Green and Sustainable Chemistry, 2021, 4, 100078.	2.9	43
16	Glomalin-related soil protein: The particle aggregation mechanism and its insight into coastal environment improvement. Ecotoxicology and Environmental Safety, 2021, 227, 112940.	2.9	13
17	Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere, 2022, 292, 133102.	4.2	62

ARTICLE

IF CITATIONS

Effects on Germination and Plantlet Development of Sesame (Sesamum indicum L.) and Bean (Phaseolus) Tj ETQq0.00 rgBT $_{2}^{O}$ verlock 1

20	Treatment of real aquaculture effluent using bacteria-based bioflocculant produced by Serratia marcescens. Journal of Water Process Engineering, 2022, 47, 102708.	2.6	14
21	Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 2022, 20, 2311-2338.	8.3	117
22	Mofs Encapsulated Bi2wo6 Nanoflowers for Magnetically Induced Modification of Conventional Blending Membranes and Enhanced Water Purification Based on Synergistic Adsorption and Piezocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
23	Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light. Chemical Research in Chinese Universities, 2022, 38, 1475-1481.	1.3	4
24	Amine-Modified Chitosan Flocculant Synthesized via Single-Mode Microwave Method for Laundry Wastewater Treatment. ACS Omega, 2022, 7, 24522-24530.	1.6	2
25	Recent advances in water treatment facilities for wastewater reuse in the urban water supply. Current Directions in Water Scarcity Research, 2022, , 361-379.	0.2	0
26	A novel cationic-modified chitosan flocculant efficiently treats alkali‒surfactant‒polymer flooding-produced water. Polymer Bulletin, 2023, 80, 12865-12879.	1.7	1
27	Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers, 2023, 15, 526.	2.0	20
28	Response Surface Methodology (RSM) Approach to Optimization of Coagulation-Flocculation of Aquaculture Wastewater Treatment Using Chitosan from Carapace of Giant Freshwater Prawn Macrobrachium rosenbergii. Polymers, 2023, 15, 1058.	2.0	7
29	Optimization of chitosan coagulant from dry legs of giant freshwater prawn, Macrobrachium rosenbergii in aquaculture wastewater treatment using response surface methodology (RSM). Journal of Environmental Chemical Engineering, 2023, 11, 109761.	3.3	5
30	A study on the recovery and characterization of suspended solid from aquaculture wastewater through coagulation/flocculation using chitosan and its viability as organic fertilizer. Journal of Agriculture and Food Research, 2023, 11, 100532.	1.2	0
31	Nanochitosan derived from fish scale and its application. , 2023, , 29-48.		0
32	Methodological proposal for the establishment of a water quality index using multivariate analysis based on Brazilian legislation. Environmental Earth Sciences, 2023, 82, .	1.3	1
33	Urban Forest and Recreational Facilities along Treated Malir River. Journal of Independent Studies and Research Management Social Science and Economics, 2023, 21, 92-108.	0.1	0
34	Different Wastewater as Growth Medium. , 2023, , 43-61.		0
38	Water Purification Potentials of Crustacean Chitosan. , 2023, , 269-287.		0