Phase Engineering of Highâ€Entropy Alloys

Advanced Materials 32, e1907226 DOI: 10.1002/adma.201907226

Citation Report

#	Article	IF	CITATIONS
1	Extremely hard and tough high entropy nitride ceramics. Scientific Reports, 2020, 10, 19874.	1.6	65
2	The Design and Science of Polyelemental Nanoparticles. ACS Nano, 2020, 14, 6407-6413.	7.3	53
3	Strong Band Bowing Effects and Distinctive Optoelectronic Properties of 2H and 1T′ Phase‶unable Mo <i>_x</i> Re _{1–} <i>_x</i> S ₂ Alloys. Advanced Functional Materials, 2020, 30, 2003264.	7.8	39
4	The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 889-893.	5.2	80
5	Structure characterization of special boundaries in Fe47Mn30Co10Cr10B3 dual-phase high-entropy alloy. Journal of Alloys and Compounds, 2021, 858, 157642.	2.8	7
7	Scalable and Ultrathin Highâ€Temperature Solar Selective Absorbing Coatings Based on the Highâ€Entropy Nanoceramic AlCrWTaNbTiN with High Photothermal Conversion Efficiency. Solar Rrl, 2021, 5, 2000790.	3.1	23
8	Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms. ACS Applied Materials & Interfaces, 2021, 13, 16987-16996.	4.0	26
9	Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Metals, 2021, 40, 2354-2368.	3.6	47
10	Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study. Materials and Design, 2021, 202, 109532.	3.3	51
11	High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10, 385-441.	8.9	510
12	High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7, .	4.7	294
13	Understanding the Links between the Composition-Processing-Properties in New Formulations of HEAs Sintered by SPS. Metals, 2021, 11, 888.	1.0	3
14	Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten, 2021, 3, 161-180.	2.0	60
15	Microstructure Evolution in a Fast and Ultrafast Sintered Non-Equiatomic Al/Cu HEA. Metals, 2021, 11, 848.	1.0	2
16	Structure of laser welded joints of multicomponent high-entropy alloy of Nb–Cr–Ti–Al–Zr system. The Paton Welding Journal, 2021, 2021, 26-31.	0.1	0
17	Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12, 3843.	5.8	24
18	Structure of laser welded joints of multicomponent high-entropy alloy of Nb-Cr-Ti-Al-Zr system. Avtomaticheskaya Svarka, 2021, 2021, 29-34.	0.0	0
19	Improvement ductility and corrosion resistance of CoCrFeNi and AlCoCrFeNi HEAs by electroless copper technique. Journal of Materials Research and Technology, 2021, 13, 463-485.	2.6	30

ITATION REDO

#	Article	IF	CITATIONS
20	Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis. Progress in Materials Science, 2022, 123, 100854.	16.0	21
21	Microstructure and ferroelectric properties of high-entropy perovskite oxides with A-site disorder. Ceramics International, 2021, 47, 33039-33046.	2.3	31
22	Multiâ€ S ites Electrocatalysis in Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2106715.	7.8	128
23	Toward a Scalable and Cost-Conscious Structure in Spectrally Selective Absorbers: Using High-Entropy Nitride TiVCrAlZrN. ACS Applied Energy Materials, 2021, 4, 8801-8809.	2.5	5
24	Novel high entropy alloys as binder in cermets: From design to sintering. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105592.	1.7	8
25	Grain size dependent deformation behavior of a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Journal of Alloys and Compounds, 2021, 883, 160876.	2.8	11
26	C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Applied Materials Today, 2021, 25, 101162.	2.3	19
27	The directional array TiN-reinforced AlCoCrFeNiTi high-entropy alloy synthesized in situ via magnetic field-assisted laser cladding. Applied Surface Science, 2022, 572, 151407.	3.1	26
28	Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horizons, 2021, 6, 231-237.	4.1	57
29	Refractory High-Entropy HfTaTiNbZr-Based Alloys by Combined Use of Ball Milling and Spark Plasma Sintering: Effect of Milling Intensity. Metals, 2020, 10, 1268.	1.0	26
30	Novel Fe2CoNi(AlSi)x high-entropy alloys with attractive soft magnetic and mechanical properties. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
31	Synthesis and Corrosion Resistance of FeMnNiAlC10 Multi-Principal Element Compound. Materials, 2021, 14, 6356.	1.3	3
32	Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nature Communications, 2021, 12, 6261.	5.8	169
33	Order–Disorder Competitive Cooperation in EquiatomicÂ3d–Transition–Metal Quaternary Alloys: Phase Stability and Electronic Structure. SSRN Electronic Journal, 0, , .	0.4	1
34	A Focused Review on Engineering Application of Multi-Principal Element Alloy. Frontiers in Materials, 2022, 8, .	1.2	4
35	Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale, 2022, 14, 3987-4017.	2.8	34
36	Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Research, 2022, 15, 5014-5023.	5.8	22
37	Phase formation prediction of high-entropy alloys: a deep learning study. Journal of Materials Research and Technology, 2022, 18, 800-809.	2.6	29

CITATION REPORT

#	Article	IF	CITATIONS
38	Research of high entropy alloys as electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 908, 164669.	2.8	56
39	Probing the structural evolution and its impact on magnetic properties of FeCoNi(AlMn)x high-entropy alloy at the nanoscale. Journal of Alloys and Compounds, 2022, 910, 164724.	2.8	6
40	Classifying and benchmarking high-entropy alloys and associated materials for electrocatalysis: A brief review of best practices. Current Opinion in Electrochemistry, 2022, 34, 100976.	2.5	17
41	Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 58674-58681.	4.0	42
42	Synergetic strengthening of coherent and incoherent interface on a mixed-phase high-entropy alloy revealed by micro-pillar compression. Journal of Materials Research and Technology, 2022, 18, 3777-3784.	2.6	5
43	Nanoalloy libraries from laser-induced thermionic emission reduction. Science Advances, 2022, 8, eabm6541.	4.7	11
44	Modification of Cantor High Entropy Alloy by the Addition of Mo and Nb: Microstructure Evaluation, Nanoindentation-Based Mechanical Properties, and Sliding Wear Response Assessment. , 2022, 1, 70-92.		9
45	Synthesizing multicomponent AlCrFeCuNi nanoparticles by joint electrical explosion of wires. Powder Technology, 2022, 404, 117491.	2.1	6
46	Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method. Materials, 2022, 15, 3321.	1.3	3
47	superconductor Ta <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" ´<br="">altimg="si1.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math>	<²ൺml:ma	th ³ Nb <mn< th=""></mn<>
48	Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2022, 313, 121472.	10.8	th>Hf <mm 107</mm
49	Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143343.	2.6	20
50	Niobium addition improves the corrosion resistance of TiHfZrNbx high-entropy alloys in Hanks' solution. Electrochimica Acta, 2022, 424, 140651.	2.6	9
51	The Non-Crystalline Metal-Organic Framework for Corrosion Inhibitor Behavior in Sodium Chloride Solution. SSRN Electronic Journal, 0, , .	0.4	0
52	A high-corrosion-resistant high-entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting. Materials Letters, 2022, 324, 132728.	1.3	21
53	Engineering high-entropy alloy nanowires network for alcohol electrooxidation. Journal of Colloid and Interface Science, 2022, 625, 1012-1021.	5.0	22
54	A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal, 2022, 35, 101211.	2.0	13
55	High-Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 10808-10817.	5.5	72

CITATION REPORT

#	Article	IF	CITATIONS
56	Irradiation effects in high-entropy alloys and their applications. Journal of Alloys and Compounds, 2023, 930, 166768.	2.8	38
57	Effect of Microstructure and Performance of Nb–Cr–Fe–Ni Quaternary Alloys with the Variation of Niobium Element Content. Transactions of the Indian Institute of Metals, 0, , .	0.7	0
58	Stably Immobilizing Subâ€3Ânm Highâ€Entropy Pt Alloy Nanocrystals in Porous Carbon as Durable Oxygen Reduction Electrocatalyst. Advanced Functional Materials, 2022, 32, .	7.8	23
59	Microstructure and corrosion resistance of highly <111> oriented electrodeposited CoNiFe medium-entropy alloy films. Journal of Materials Research and Technology, 2022, 20, 1677-1684.	2.6	5
60	Tailoring high-temperature oxidation resistance of FeCrMnVSi high entropy alloy coatings via building Si-rich dendrite microstructure. Applied Surface Science, 2022, 606, 154862.	3.1	18
61	The non-crystalline metal-organic framework for corrosion inhibitor behavior in sodium chloride solution. Materials Today Communications, 2022, 33, 104519.	0.9	0
62	Fatigue of Biomaterials and Biomedical Systems. , 2022, , 331-359.		0
63	Mechanical Properties of Complex Concentrated Alloys: Implications for Structural Integrity. , 2023, , 209-239.		2
64	Critical Review of Factors Hindering Scalability of Complex Concentrated Alloys. , 2023, , 103-121.		2
65	Advances in the Processing of High-Entropy Alloys by Mechanical Alloying. Advances in Material Research and Technology, 2022, , 531-559.	0.3	Ο
66	Effect of Carbon and Heat Treatment on the Microstructure and Properties of VAlTiCrSi High-Entropy Alloy Films. Journal of Materials Engineering and Performance, 0, , .	1.2	0
67	Impact of the B/C-doping ratio on the microstructure, mechanical properties, and cutting performance of AlTiN-based coatings. Ceramics International, 2023, 49, 2774-2785.	2.3	3
68	Strain hardening and strengthening mechanism of laser melting deposition (LMD) additively manufactured FeCoCrNiAl0.5 high-entropy alloy. Materials Characterization, 2022, 194, 112365.	1.9	10
69	Native Oxidation and Complex Magnetic Anisotropyâ€Dominated Soft Magnetic CoCrFeNiâ€Based Highâ€Entropy Alloy Thin Films. Advanced Science, 2022, 9, .	5.6	3
70	Stable cubic crystal structures and optimized thermoelectric performance of SrTiO ₃ -based ceramics driven by entropy engineering. Journal of Materials Chemistry A, 2022, 10, 24561-24572.	5.2	12
71	Intrinsic Correlation between the Fraction of Liquidlike Zones and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi> Relaxation in High-Entropy Metallic Glasses. Physical Review Letters, 2022, 129, .</mml:math 	2.9	31
72	Phase transition in shock compressed high-entropy alloy FeNiCrCoCu. International Journal of Mechanical Sciences, 2023, 238, 107855.	3.6	22
73	Strengthening mechanisms in high entropy alloys: A review. Materials Today Communications, 2022, 33, 104686.	0.9	12

#	Article	IF	CITATIONS
74	Effect of Microstructure, Strain Rate, and Elevated Temperature on the Compression Property of Fe–Co–Ni–Cr–Zr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 346-357.	1.1	2
75	Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy. Acta Materialia, 2023, 243, 118516.	3.8	30
76	Dual enhancement in strength and ductility of Ti-V-Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure. International Journal of Plasticity, 2023, 160, 103505.	4.1	12
77	Deposition characteristics of CoCrFeMnNi high-entropy alloys thin film via simulation. Journal of Crystal Growth, 2023, 603, 127004.	0.7	3
78	Research progress on high entropy alloys and high entropy derivatives as OER catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109080.	3.3	13
79	High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Research, 2023, 16, 4411-4437.	5.8	16
80	Order–disorder competition in equiatomic 3d–transition–metal quaternary alloys: phase stability and electronic structure. Science and Technology of Advanced Materials Methods, 2023, 3, .	0.4	0
81	Microstructure and properties of Fe _x CrMnAlCu high-entropy alloy. Materials Science and Technology, 2023, 39, 1245-1254.	0.8	2

CITATION REPORT

Microstructure and Mechanical Properties of High-Specific-Strength (TiVCrZr)100 \hat{a} 'xWx (x = 5, 10, 15) Tj ETQq0 0 $\underset{1.1}{\text{Operlock 10}}$

83	Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy. Acta Materialia, 2023, 246, 118702.	3.8	7
84	Robust Ferrimagnetism and Switchable Magnetic Anisotropy in Highâ€Entropy Ferrite Film. Advanced Functional Materials, 2023, 33, .	7.8	11
85	High symmetry structure and large strain field fluctuation lead enhancement of thermoelectric performance of quaternary alloys by tuning configurational entropy. Chemical Engineering Journal, 2023, 462, 142185.	6.6	2
86	Microstructure refinement of a cast high entropy alloy by thermomechanical treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144931.	2.6	2
87	Sintered Fe-Co-Si alloy with excellent magnetic and mechanical properties by coherent precipitation of submicrometer-sized carbide particles. Journal of Alloys and Compounds, 2023, 947, 169561.	2.8	1
88	Cryo-rolling and annealing-mediated nano/ultrafine structure, texture, and properties of extremely low stacking-fault energy high entropy alloys: Comparative perspectives. Journal of Alloys and Compounds, 2023, 953, 170025.	2.8	4
89	Multiscale modeling of irradiation-induced defect evolution in BCC multi principal element alloys. Journal of Alloys and Compounds, 2023, 953, 170084.	2.8	2
90	Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy. Nature Communications, 2023, 14, .	5.8	9
91	Nitrogen as An Anionic Center/Dopant for Nextâ€Generation Highâ€Performance Lithium/Sodiumâ€lon Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	8

	Сітаті	on Report		
#	Article	IF	CITATIONS	
93	Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment. Advanced Materials, 2023, 35, .	11.1	51	
113	High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions. Frontiers in Energy, 0, , .	1.2	2	
120	Dual-phase B-doped FeCoNiCuPd high-entropy alloys for nitrogen electroreduction to ammonia. Chemical Communications, 0, , .	2.2	0	
126	Synthesis of millimeter-sized Mo _{<i>x</i>} W _(1â~`<i>x</i>) S _{2<i>y</i>} Se _{2(1â~`<i>y</i>)} monolayer alloys with adjustable optical and electrical properties and their magnetic doping. Journal of Materials Chemistry C, 2023, 11, 16912-16921	2.7	0	
130	Entropy engineering enhances the electromagnetic wave absorption of high-entropy transition metal dichalcogenides/N-doped carbon nanofiber composites. Materials Horizons, 2024, 11, 1088-1097.	6.4	0	
150	Molecular Dynamics on Hf-Nb-Ta-Ti-Zr High Entropy Alloy. , 0, , .		0	