Biochar and nitrogen application rates effect on phosph sward irrigated with reclaimed wastewater

Science of the Total Environment 715, 137012

DOI: 10.1016/j.scitotenv.2020.137012

Citation Report

ARTICLE

IF CITATIONS

Pyrolysis Improves the Effect of Straw Amendment on the Productivity of Perennial Ryegrass (Lolium) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

2	Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 2021, 13, 1330.	3.2	64
3	Phosphorus pollution control using waste-based adsorbents: Material synthesis, modification, and sustainability. Critical Reviews in Environmental Science and Technology, 2022, 52, 2023-2059.	12.8	16
4	One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol. Sustainability, 2021, 13, 2226.	3.2	13
5	Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy, 2021, 11, 993.	3.0	129
6	Biochar and nitrogen application rates alter some forage and soil minerals concentrations and soil leachate quality in a semiarid mixed grassland system. Grassland Science, 0, , .	1.1	0
7	Exploring Suitable Biochar Application Rates with Compost to Improve Upland Field Environment. Agronomy, 2021, 11, 1136.	3.0	12
8	The effect of biochars produced from barberry and jujube on erosion, nutrient, and properties of soil in laboratory conditions. Soil and Tillage Research, 2022, 219, 105345.	5.6	11
9	The impact of biochar on nutrient supplies in agricultural ecosystems. , 2022, , 193-201.		1
10	Combined effects of organic amendments and fertilization on cotton growth and yield. Agronomy Journal, 2022, 114, 3445-3456.	1.8	4
11	Nitrous oxide emission mitigation from biological wastewater treatment – A review. Bioresource Technology, 2022, 362, 127747.	9.6	10
13	A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. Environmental Pollution, 2022, 315, 120335.	7.5	10
14	Biochar and sustainable environmental development towards adsorptive removal of pollutants: Modern advancements and future insight. Chemical Engineering Research and Design, 2023, 173, 715-728.	5.6	18
15	The Importance of Initial Application of Biochar On Soil Fertility to Improve Growth and Productivity of Tomato Plants (Solanum lycopersicumÂL.) Under Drought Stress. Gesunde Pflanzen, 2023, 75, 2515-2524.	3.0	1
16	The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 0, 14, .	3.6	6
17	The impact of irrigation with treated wastewaters on soil and kikuyu grass nutrient compositions. Water Environment Research, 2023, 95, .	2.7	1
18	Biochar for the Improvement of Crop Production. , 2023, , 297-317.		0
19	Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 0, 11, .	3.3	2