Exploring the impact of innovation, renewable energy c emissions: new evidence from the BRICS economies

Environmental Science and Pollution Research 27, 13866-13881 DOI: 10.1007/s11356-020-07876-4

Citation Report

CITATION	DEDODT

#	Article	IF	CITATION
1	Does distribution of energy innovation impact distribution of income: A quantile-based SDG modeling approach. Technological Forecasting and Social Change, 2020, 160, 120224.	6.2	48
2	The influence of financial openness, trade openness, and energy intensity on ecological footprint: revisiting the environmental Kuznets curve hypothesis for BRICS countries. Environmental Science and Pollution Research, 2020, 27, 43233-43245.	2.7	114
3	Technological innovation and environmental quality nexus in India: Does inward remittance matter?. Journal of Public Affairs, 2022, 22, e2291.	1.7	85
4	Revisiting the environmental Kuznets curve hypothesis using innovation: new evidence from the top 10 innovative economies. Environmental Science and Pollution Research, 2020, 27, 27904-27913.	2.7	81
5	Examining the pollution haven, and environmental kuznets hypothesis for ecological footprints: an econometric analysis of China, India, and Pakistan. Journal of the Asia Pacific Economy, 2021, 26, 462-482.	1.0	39
6	The empirical relationship between environmental degradation, economic growth, and social well-being in Belt and Road Initiative countries. Environmental Science and Pollution Research, 2020, 27, 30800-30814.	2.7	36
7	A new approach to environmental sustainability: Assessing the impact of monetary policy on <scp>CO₂</scp> emissions in Asian economies. Sustainable Development, 2020, 28, 1331-1346.	6.9	100
8	Innovation, foreign direct investment (FDI), and the energy–pollution–growth nexus in OECD region: a simultaneous equation modeling approach. Environmental and Ecological Statistics, 2020, 27, 203-232.	1.9	143
9	Do Real Output and Renewable Energy Consumption Affect CO2 Emissions? Evidence for Selected BRICS Countries. Energies, 2020, 13, 960.	1.6	60
10	The role of tourism and renewable energy in testing the environmental Kuznets curve in the BRICS countries: fresh evidence from methods of moments quantile regression. Environmental Science and Pollution Research, 2020, 27, 39427-39441.	2.7	80
11	The dilemma of natural disasters: Impact on economy, fiscal position, and foreign direct investment alongside Belt and Road Initiative countries. Science of the Total Environment, 2020, 743, 140578.	3.9	47
12	Relationship between energy demand, financial development, and carbon emissions in a panel of 101 countries: "go the extra mile―for sustainable development. Environmental Science and Pollution Research, 2020, 27, 23356-23363.	2.7	42
13	The impression of technological innovations and natural resources in energy-growth-environment nexus: A new look into BRICS economies. Science of the Total Environment, 2020, 727, 138265.	3.9	120
14	Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment, 2020, 726, 138574.	3.9	168
15	Modeling CO2 emissions in South Africa: empirical evidence from ARDL based bounds and wavelet coherence techniques. Environmental Science and Pollution Research, 2021, 28, 9377-9389.	2.7	79
16	The role of tourism, and natural resources in the energy-pollution-growth nexus: an analysis of belt and road initiative countries. Journal of Environmental Planning and Management, 2021, 64, 999-1020.	2.4	46
17	Trilemma association of energy consumption, carbon emission, and economic growth of BRICS and OECD regions: quantile regression estimation. Environmental Science and Pollution Research, 2021, 28, 16014-16028.	2.7	111
18	Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environmental Science and Pollution Research, 2021, 28, 15519-15536.	2.7	264

#	Article	IF	CITATIONS
19	Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustainable Production and Consumption, 2021, 27, 254-268.	5.7	251
20	LPG consumption and environmental Kuznets curve hypothesis in South Asia: a time-series ARDL analysis with multiple structural breaks. Environmental Science and Pollution Research, 2021, 28, 8337-8372.	2.7	85
21	Influence of tourism, governance, and foreign direct investment on energy consumption and CO2 emissions: a panel analysis of Muslim countries. Environmental Science and Pollution Research, 2021, 28, 416-431.	2.7	40
22	The role of technology innovation and people's connectivity in testing environmental Kuznets curve and pollution heaven hypotheses across the Belt and Road host countries: new evidence from Method of Moments Quantile Regression. Environmental Science and Pollution Research, 2021, 28, 5254-5270.	2.7	138
23	Consumption of liquefied petroleum gas and the EKC hypothesis in South Asia: evidence from cross-sectionally dependent heterogeneous panel data with structural breaks. Energy, Ecology and Environment, 2021, 6, 353-377.	1.9	71
24	The environmental Kuznets curve hypothesis for Bangladesh: the importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environmental Science and Pollution Research, 2021, 28, 17208-17227.	2.7	112
25	The effects of renewable and nonrenewable energy consumption on the ecological footprint: the role of environmental policy in BRICS countries. Environmental Science and Pollution Research, 2021, 28, 27885-27899.	2.7	54
26	Measuring the impact of higher education on environmental pollution: new evidence from thirty provinces in China. Environmental and Ecological Statistics, 2021, 28, 187-217.	1.9	38
27	Does technology advancement reduce aggregate carbon dioxide emissions? Evidence from 66 countries with panel threshold regression model. Environmental Science and Pollution Research, 2021, 28, 19710-19725.	2.7	18
28	Does energy innovation play a role in achieving sustainable development goals in BRICS countries?. Environmental Technology (United Kingdom), 2022, 43, 2290-2299.	1.2	50
29	A causal link between renewable energy, energy efficiency, property rights, and CO2 emissions in developed countries: A road map for environmental sustainability. Environmental Science and Pollution Research, 2021, 28, 37804-37817.	2.7	91
30	Environmental innovation and the food, energy and water nexus in the food service industry. Resources, Conservation and Recycling, 2021, 166, 105350.	5.3	20
31	Exploring the relationships among innovation, financial sector development and environmental pollution in selected industrialized countries. Journal of Environmental Management, 2021, 284, 112057.	3.8	119
32	A comparative analysis of the relationship between innovation and transport sector carbon emissions in developed and developing Mediterranean countries. Environmental Science and Pollution Research, 2021, 28, 45693-45713.	2.7	39
33	The Imperativeness of Environmental Quality in China Amidst Renewable Energy Consumption and Trade Openness. Sustainability, 2021, 13, 5054.	1.6	69
34	Decoupling of provincial energy-related CO2 emissions from economic growth in China and its convergence from 1995 to 2017. Journal of Cleaner Production, 2021, 297, 126627.	4.6	78
35	Seçilmiş OECD Ülkelerinde Yenilenebilir Enerji Tüketiminin Makro Ekonomik Belirleyicileri. Çankırı Karatekin Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 0, , .	0.1	1
36	The influences of renewable electricity generation, technological innovation, financial development, and economic growth on ecological footprints in ASEAN-5 countries. Environmental Science and Pollution Research, 2021, 28, 51003-51021.	2.7	118

#	Article	IF	CITATIONS
37	Natural disasters' influence on industrial growth, foreign direct investment, and export performance in the South Asian region of Belt and road initiative. Natural Hazards, 2021, 108, 1853-1876.	1.6	3
38	Green innovation and China's CO ₂ emissions – the moderating effect of institutional quality. Journal of Environmental Planning and Management, 2022, 65, 877-906.	2.4	80
39	Expenditure on R&D, GDP and its impact on the Ecological footprint in South America. , 2021, , .		2
40	On the influence of demographic structure and industrial growth on environmental quality. Journal of Environmental Management, 2021, 288, 112453.	3.8	24
41	The rise of Nb-, Ta-, and Bi-based oxides/chalcogenides for photocatalytic applications. International Journal of Hydrogen Energy, 2022, 47, 3358-3370.	3.8	6
42	Innovative and m <scp>issionâ€oriented</scp> financing of renewable energy in <scp>Subâ€Saharan</scp> Africa: A review and conceptual framework. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, .	1.9	2
43	Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries. Energy and Environment, 2022, 33, 752-782.	2.7	88
44	Does globalization matter for environmental degradation? Nexus among energy consumption, economic growth, and carbon dioxide emission. Energy Policy, 2021, 153, 112230.	4.2	173
45	Impact of technological innovation, financial development and foreign direct investment on renewable energy, non-renewable energy and the environment in belt & Road Initiative countries. Renewable Energy, 2021, 171, 479-491.	4.3	202
46	Potential Impact of Renewable Energy on the Sustainable Development of Russian Arctic Territories. Energies, 2021, 14, 3691.	1.6	9
47	A pathway toward future sustainability: Assessing the influence of innovation shocks on CO2 emissions in developing economies. Environment, Development and Sustainability, 2022, 24, 4786-4809.	2.7	101
48	The effects of regional trade integration and renewable energy transition on environmental quality: Evidence from South Asian neighbors. Business Strategy and the Environment, 2021, 30, 4154-4170.	8.5	59
49	Exploring the relationship between economic growth, energy consumption, urbanization, trade, and CO2 emissions: a PMG-ARDL panel data analysis on regional classification along 81 BRI economies. Environmental Science and Pollution Research, 2021, 28, 66366-66388.	2.7	36
50	Dynamic effects of fiscal and monetary policy instruments on environmental pollution in ASEAN. Environmental Science and Pollution Research, 2021, 28, 65116-65126.	2.7	28
51	Do natural gas, oil, and coal consumption ameliorate environmental quality? Empirical evidence from Russia. Environmental Science and Pollution Research, 2022, 29, 4540-4556.	2.7	69
52	Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework. Technology in Society, 2021, 66, 101656.	4.8	200
53	Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment. Energy, 2021, 229, 120616.	4.5	96
54	Determinants of greenhouse gas emissions: A new multiplicative approach analysing the impact of energy efficiency, renewable energy, and sector mix. Journal of Cleaner Production, 2021, 309, 127233.	4.6	20

CIT	ГАТ	10	N	ŚĘ	DT

#	Article	IF	CITATIONS
55	The Impact of Renewable Energy and Economic Complexity on Carbon Emissions in BRICS Countries under the EKC Scheme. Energies, 2021, 14, 4908.	1.6	53
56	The dynamic linkage between remittances, export diversification, education, renewable energy consumption, economic growth, and <scp>CO₂</scp> emissions in top remittanceâ€receiving countries. Sustainable Development, 2022, 30, 165-175.	6.9	131
57	The role of solar energy and ecoâ€innovation in reducing environmental degradation in China: Evidence from QARDL approach. Integrated Environmental Assessment and Management, 2022, 18, 555-571.	1.6	78
58	Identifying the key sectors and paths of the embodied energy in BRICS nations: A weighted multilayer network approach. Energy, 2022, 239, 122091.	4.5	8
59	Modelling the Macroeconomic Determinants of Carbon Dioxide Emissions in the G-7 Countries: The Roles of Technological Innovation and Institutional Quality Improvement. Global Business Review, 0, , 097215092110393.	1.6	42
60	Moderating role of institutional quality in validation of pollution haven hypothesis in BRICS: a new evidence by using DCCE approach. Environmental Science and Pollution Research, 2022, 29, 9193-9202.	2.7	36
61	Dynamic Nexus between Technological Innovation and Building Sector Carbon Emissions in the BRICS Countries. Journal of Environmental Management, 2021, 293, 112780.	3.8	104
62	Dynamic common correlated effects of technological innovations and institutional performance on environmental quality: Evidence from East-Asia and Pacific countries. Environmental Science and Policy, 2021, 124, 313-323.	2.4	44
63	Do innovation in environmental-related technologies cyclically and asymmetrically affect environmental sustainability in BRICS nations?. Technology in Society, 2021, 67, 101746.	4.8	79
64	Do innovation in environmental-related technologies asymmetrically affect carbon dioxide emissions in the United States?. Technology in Society, 2021, 67, 101761.	4.8	90
65	Environmental efficiency of disaggregated energy R&D expenditures in OECD: a bootstrap DEA approach. Environmental Science and Pollution Research, 2021, 28, 19381-19390.	2.7	40
66	Technological innovation, financialization, and ecological footprint: evidence from BEM economies. Environmental Science and Pollution Research, 2021, 28, 21991-22001.	2.7	102
67	Forecasting the CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling. Energies, 2021, 14, 6336.	1.6	22
68	Investigating the moderating role of financial development in environmental degradation in India. Journal of Public Affairs, 0, , e02765.	1.7	0
69	Does trade openness mitigate the environmental degradation in South Africa?. Environmental Science and Pollution Research, 2022, 29, 19352-19377.	2.7	64
70	Do international collaborations in environmental-related technology development in the U.S. pay off in combating carbon dioxide emissions? Role of domestic environmental innovation, renewable energy consumption, and trade openness. Environmental Science and Pollution Research, 2022, 29, 19693-19713.	2.7	35
71	Nexus among energy consumption structure, energy intensity, population density, urbanization, and carbon intensity: a heterogeneous panel evidence considering differences in electrification rates. Environmental Science and Pollution Research, 2022, 29, 19224-19243.	2.7	15
72	On the goals of sustainable production and the conditions of environmental sustainability: Does cyclical innovation in green and sustainable technologies determine carbon dioxide emissions in G-7 economies. Sustainable Production and Consumption, 2022, 29, 406-420.	5.7	89

(ITATION REDODI	\sim			-	
		TATI	ON	REDC	דקר

#	Article	IF	CITATIONS
73	The effect of renewable energy on carbon dioxide emission in Taiwan: Quantile mediation analysis. Science Progress, 2021, 104, 003685042110585.	1.0	3
74	Determinants of ecological footprint in OCED countries: do environmental-related technologies reduce environmental degradation?. Environmental Science and Pollution Research, 2022, 29, 23779-23793.	2.7	55
75	R&D Spending in the Energy Sector and Achieving the Goal of Climate Neutrality. Energies, 2021, 14, 7875.	1.6	6
76	Pathway towards Sustainability in Selected Asian Countries: Influence of Green Investment, Technology Innovations, and Economic Growth on CO2 Emission. Sustainability, 2021, 13, 12873.	1.6	46
77	The cyclical impact of green and sustainable technology research on carbon dioxide emissions in BRICS economies. Environmental Science and Pollution Research, 2022, 29, 22687-22707.	2.7	34
78	Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: fresh evidence from the novel dynamic ARDL simulations approach. Economic Change and Restructuring, 2022, 55, 1767-1814.	2.5	56
79	Pattern Recognition of Green Energy Innovation Investments Using a Modified Decision Support System. IEEE Access, 2021, 9, 162006-162017.	2.6	4
80	A Symmetry and Asymmetry Investigation of the Nexus Between Environmental Sustainability, Renewable Energy, Energy Innovation, and Trade: Evidence From Environmental Kuznets Curve Hypothesis in Selected MENA Countries. Frontiers in Energy Research, 2022, 9, .	1.2	30
81	On the nexus between industrialization and carbon emissions: evidence from ASEAN + 3 economies. Environmental Science and Pollution Research, 2022, 29, 31476-31485.	2.7	41
82	How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques. Renewable Energy, 2022, 185, 996-1005.	4.3	158
83	Exploring the role of solar energy and foreign direct investment for clean environment: Evidence from top 10 solar energy consuming countries. Renewable Energy, 2022, 185, 147-158.	4.3	47
84	Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals. Technological Forecasting and Social Change, 2022, 176, 121417.	6.2	66
85	Assessing the effects of fuel energy consumption, foreign direct investment and GDP on CO2 emission: New data science evidence from Europe & Central Asia. Fuel, 2022, 314, 123098.	3.4	87
86	Investigating the nexus between CO2 emissions, renewable energy consumption, FDI, exports and economic growth: evidence from BRICS countries. Environment, Development and Sustainability, 2023, 25, 2234-2263.	2.7	55
87	Gender gap and ecological footprint: are there country variations? Evidence from quantile panel regression. Journal of Chinese Economic and Foreign Trade Studies, 2022, ahead-of-print, .	0.9	0
88	Impact of innovation in renewable energy generation, transmission, or distribution-related technologies on carbon dioxide emission in the USA. Environmental Science and Pollution Research, 2022, 29, 29756-29777.	2.7	24
89	A nexus between the rule of law, green innovation, growth and sustainable environment in top Asian countries: fresh insights from heterogeneous panel estimation. Economic Research-Ekonomska Istrazivanja, 2022, 35, 5434-5452.	2.6	9
90	Exploring the nexus between environment quality, economic development and industrialization in BRICS nations: the role of technological innovation and income inequality. Environmental Science and Pollution Research, 2022, 29, 37842-37853.	2.7	15

#	Article	IF	CITATIONS
91	A Multicriteria Decision-Making Approach in Exploring the Nexus Between Wind and Solar Energy Generation, Economic Development, Fossil Fuel Consumption, and CO2 Emissions. Frontiers in Environmental Science, 2022, 9, .	1.5	13
92	Evaluation of low carbon city pilot policy effect on carbon abatement in China: An empirical evidence based on time-varying DID model. Cities, 2022, 123, 103582.	2.7	90
93	Does overseas ecoâ€friendly innovation collaboration matter for environmental quality sustainability in India?. OPEC Energy Review, 2022, 46, 250-284.	1.0	12
94	Pathways towards environmentalÂsustainability: exploring the influence of aggregate domestic consumption spending on carbon dioxide emissions in Pakistan. Environmental Science and Pollution Research, 2022, 29, 45013-45030.	2.7	20
95	Educational attainment and environmental Kuznets curve in China: an aggregate and disaggregate analysis. Environmental Science and Pollution Research, 2022, , 1.	2.7	5
96	Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in <scp>OECD</scp> countries. Sustainable Development, 2022, 30, 944-957.	6.9	91
97	Exploring the dynamic effects of shocks in monetary and fiscal policies on the environment of developing economies: evidence from the CS-ARDL approach. Environmental Science and Pollution Research, 2022, 29, 45665-45682.	2.7	24
98	Achieving green environment targets in the world's top 10 emitter countries: the role of green innovations and renewable electricity production. Economic Research-Ekonomska Istrazivanja, 2022, 35, 5310-5335.	2.6	15
99	Cogitating the role of Technological Innovation and Institutional Quality in Formulating the Sustainable Development Goal Policies for E7 Countries: Evidence from Quantile Regression. Global Business Review, 0, , 097215092110726.	1.6	43
100	The race to zero emissions: Can renewable energy be the path to carbon neutrality?. Journal of Environmental Management, 2022, 308, 114648.	3.8	155
101	Impact of innovation in marine energy generation, distribution, or transmission-related technologies on carbon dioxide emissions in the United States. Renewable and Sustainable Energy Reviews, 2022, 159, 112225.	8.2	50
102	What drives carbon emissions in the long-run? The role of renewable energy and agriculture in achieving the sustainable development goals. Economic Research-Ekonomska Istrazivanja, 2022, 35, 4603-4624.	2.6	30
103	The Role of Renewable Energy Consumption Towards Carbon Neutrality in BRICS Nations: Does Globalization Matter?. Frontiers in Environmental Science, 2021, 9, .	1.5	35
104	Product Returns: An Opportunity to Shift towards an Access-Based Economy?. Sustainability, 2022, 14, 410.	1.6	5
105	Environmental Effects of China's Overseas Direct Investment in South Asia. SAGE Open, 2022, 12, 215824402210783.	0.8	14
106	Decarbonization: examining the role of environmental innovation versus renewable energy use. Environmental Science and Pollution Research, 2022, 29, 48704-48719.	2.7	18
107	Solar energy technology adoption and diffusion by micro, small, and medium enterprises: sustainable energy for climate change mitigation. Environmental Science and Pollution Research, 2022, 29, 49385-49403.	2.7	30
108	Environmental impact of fiscal decentralization, green technology innovation and institution's efficiency in developed countries using advance panel modelling. Energy and Environment, 2023, 34, 1006-1030.	2.7	22

#	Article	IF	CITATIONS
109	China's 2060 carbon-neutrality agenda: the nexus between energy consumption and environmental quality. Environmental Science and Pollution Research, 2022, 29, 55728-55742.	2.7	17
110	Toward a sustainable environment and economic growth in BRICS economies: do innovation and globalization matter?. Environmental Science and Pollution Research, 2022, 29, 57740-57757.	2.7	84
111	Impact of financial development and renewable energy consumption on environmental sustainability: a spatial analysis in CEMAC countries. Environmental Science and Pollution Research, 2022, 29, 58341-58359.	2.7	4
112	An analysis of the impact of fiscal and monetary policy fluctuations on the disaggregated level renewable energy generation in the G7 countries. Renewable Energy, 2022, 189, 1154-1165.	4.3	23
113	The nexus of financial development, technological innovation, institutional quality, and environmental quality: evidence from OECD economies. Environmental Science and Pollution Research, 2022, 29, 58179-58200.	2.7	59
114	Linking natural resources, innovations, and environment in the Belt and Road Initiative countries using dynamic panel techniques: the role of innovations and renewable energy consumption. Environmental Science and Pollution Research, 2022, 29, 59666-59675.	2.7	8
115	Modelling the role of eco innovation, renewable energy, and environmental taxes in carbon emissions reduction in Eâ^'7 economies: Evidence from advance panel estimations. Renewable Energy, 2022, 190, 309-318.	4.3	75
116	Role of monetary policy on CO2 emissions in India. SN Business & Economics, 2022, 2, 1.	0.6	8
117	Environmental Regulations and CO2 Mitigation for Sustainability: Panel Data Analysis (PMG, CCEMG) for BRICS Nations. Sustainability, 2022, 14, 72.	1.6	11
118	ENERGY CONSUMPTION AND ECONOMIC GROWTH NEXUS: A COMPARATIVE ANALYSIS OF US, CHINA AND JAPAN. , 2021, , 58-74.		1
119	Consumption-based Carbon Dioxide Emissions and Their Impact on Energy Productivity in the G7 Countries. Journal of the Knowledge Economy, 2023, 14, 3260-3275.	2.7	2
120	Have international remittance inflows degraded environmental quality? A carbon emission mitigation analysis for Ghana. Environmental Science and Pollution Research, 2022, 29, 60354-60370.	2.7	12
121	Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. International Journal of Environmental Science and Technology, 2023, 20, 2683-2698.	1.8	14
122	The impact of green technological innovation and institutional quality on CO2 emissions in African countries. Technological Forecasting and Social Change, 2022, 180, 121670.	6.2	167
123	Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach. Sustainability, 2022, 14, 5260.	1.6	5
124	How globalization is reshaping the environmental quality in G7 economies in the presence of renewable energy initiatives?. Renewable Energy, 2022, 193, 128-135.	4.3	18
125	The role of tourism and renewable energy towards EKC in South Asian countries: fresh insights from the ARDL approach. Cogent Social Sciences, 2022, 8, .	0.5	5
126	The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model. Renewable Energy, 2022, 193, 334-343.	4.3	81

#	Article	IF	CITATIONS
127	Sustainable Energy Development in Emerging Economies: A Study on BRICS. , 2022, , 23-35.		2
128	The Effect of Public-Private Partnership Investment, Financial Development and Renewable EnergyÂConsumption on Ecological Footprint in South Asia and Pacific Region. SSRN Electronic Journal, 0, , .	0.4	0
129	Linking personal remittance and fossil fuels energy consumption to environmental degradation: evidence from all SAARC countries. Environment, Development and Sustainability, 2023, 25, 8447-8468.	2.7	14
130	Performance investigation of a grid-connected system integrated photovoltaic, battery storage and electric vehicles: A case study for gymnasium building. Energy and Buildings, 2022, 270, 112255.	3.1	18
131	Revealing the nexus between tourism development and CO2 emissions in Asia: does asymmetry matter?. Environmental Science and Pollution Research, 2022, 29, 79016-79024.	2.7	27
132	Analyzing the Asymmetric Effect of Renewable Energy Consumption on Environment in STIRPAT-Kaya-EKC Framework: A NARDL Approach for China. International Journal of Environmental Research and Public Health, 2022, 19, 7100.	1.2	23
133	Investigating the moderating role of economic policy uncertainty in environmental Kuznets curve for South Africa: Evidence from the novel dynamic ARDL simulations approach. Environmental Science and Pollution Research, 2022, 29, 77199-77237.	2.7	50
134	An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for industry 5.0. Journal of Cleaner Production, 2022, 363, 132608.	4.6	134
135	An assessment of the effect of green innovation, income, and energy use on consumption-based CO2 emissions: Empirical evidence from emerging nations BRICS. Journal of Cleaner Production, 2022, 365, 132636.	4.6	44
136	The nexus between green innovations and natural resources commodity prices in China. Resources Policy, 2022, 78, 102719.	4.2	7
137	Impacts of Alternative Energy Production Innovation on Reduction of Carbon Dioxide Emissions: Evidence from China. SSRN Electronic Journal, 0, , .	0.4	0
138	Does Technological Innovation Curb O3 Pollution? Evidence from Three Major Regions in China. International Journal of Environmental Research and Public Health, 2022, 19, 7743.	1.2	1
139	Economic Freedom, Education and CO2 Emissions: A Causality Analysis for EU Member States. International Journal of Environmental Research and Public Health, 2022, 19, 8061.	1.2	9
140	Dissipating environmental pollution in the BRICS economies: do urbanization, globalization, energy innovation, and financial development matter?. Environmental Science and Pollution Research, 2022, 29, 82917-82937.	2.7	19
141	The impact of technological innovation on renewable energy production: accounting for the roles of economic and environmental factors using a method of moments quantile regression. Heliyon, 2022, 8, e09913.	1.4	29
142	Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions. Technological Forecasting and Social Change, 2022, 182, 121843.	6.2	73
143	Toward next-generation green solar cells and environmental sustainability: impact of innovation in photovoltaic energy generation, distribution, or transmission-related technologies on environmental sustainability in the United States. Environmental Science and Pollution Research, 2022, 29, 89662-89680.	2.7	23
144	The Impact of Biomass Energy Consumption on CO2 Emission and Ecological Footprint: The Evidence from BRICS Countries. International Journal of Environmental Research, 2022, 16, .	1.1	7

#	Article	IF	CITATIONS
145	Examining the impact of electricity production on economic growth and environmental quality in Japan: a disaggregated level analysis. Environmental Science and Pollution Research, 2023, 30, 849-868.	2.7	4
146	Spatio-temporal evolution and influencing factors of scientific and technological innovation level: A multidimensional proximity perspective. Frontiers in Psychology, 0, 13, .	1.1	4
147	Can digital economy alleviate CO ₂ emissions in the transport sector? Evidence from provincial panel data in China. Natural Resources Forum, 2022, 46, 289-310.	1.8	23
148	The Effect of Energy Consumption on China's Regional Economic Growth from a Spatial Spillover Perspective. Sustainability, 2022, 14, 9563.	1.6	2
149	Heterogeneous impact of eco-innovation on premature deaths resulting from indoor and outdoor air pollution: empirical evidence from EU29 countries. Environmental Science and Pollution Research, 2023, 30, 2298-2314.	2.7	3
150	Modeling for Insights: Does Fiscal Decentralization Impede Ecological Footprint?. International Journal of Environmental Research and Public Health, 2022, 19, 10146.	1.2	6
151	Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. Journal of Environmental Studies and Sciences, 2022, 12, 794-814.	0.9	69
152	Asymmetric linkages between renewable energy consumption, financial integration, and ecological sustainability: Moderating role of technology innovation and urbanization. Renewable Energy, 2022, 197, 1233-1243.	4.3	26
153	Dynamic Role of Green Energy Efficiency and Climate Technologies in Realizing Environmental Sustainability: Fresh Insights From China. Frontiers in Environmental Science, 0, 10, .	1.5	4
154	Drivers of climate change in selected emerging countries: the ecological effects of monetary restrictions and expansions. Cogent Economics and Finance, 2022, 10, .	0.8	0
155	Can energy productivity gains harness the carbon dioxideâ€inhibiting agenda of the Next 11 countries? Implications for achieving sustainable development. Sustainable Development, 2023, 31, 307-320.	6.9	29
156	Does sectoral energy consumption depend on trade, monetary, and fiscal policy uncertainty? Policy recommendations using novel bootstrap ARDL approach. Environmental Science and Pollution Research, 2023, 30, 12916-12928.	2.7	19
157	Clean technology and the environment: Key issues and implications in belt and road initiative economies. Frontiers in Environmental Science, 0, 10, .	1.5	0
158	Do renewable energy consumption and green innovation help to curb CO2 emissions? Evidence from E7 countries. Environmental Science and Pollution Research, 2023, 30, 21115-21131.	2.7	36
159	Consumption of energy from conventional sources a challenge to the green environment: evaluating the role of energy imports, and energy intensity in Australia. Environmental Science and Pollution Research, 2023, 30, 22712-22727.	2.7	9
160	A regional analysis of the urbanization-energy-economy-emissions nexus in China: based on the environmental Kuznets curve hypothesis. Applied Economics, 2023, 55, 5287-5302.	1.2	6
161	Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States. Journal of Cleaner Production, 2022, 379, 134746.	4.6	31
162	Are Mercosur economies going green or going away? An empirical investigation of the association between technological innovations, energy use, natural resources and GHG emissions. Gondwana Research, 2023, 113, 53-70.	3.0	86

#	Article	IF	CITATIONS
163	The effect of public–private partnership investment, financial development, and renewable energy consumption on the ecological footprint in South Asia and the Pacific region. Frontiers in Environmental Science, 0, 10, .	1.5	1
164	Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Science of the Total Environment, 2023, 859, 160181.	3.9	198
165	The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions. Energies, 2022, 15, 8486.	1.6	11
166	Symmetric and asymmetric nexus between economic policy uncertainty, oil price, and renewable energy consumption in the United States, China, India, Japan, and South Korea: Does technological innovation influence?. Frontiers in Energy Research, 0, 10, .	1.2	9
167	Do renewable energy consumption, technological innovation, and international integration enhance environmental sustainability in Brazil?. Renewable Energy, 2023, 202, 172-183.	4.3	7
168	Modeling the dynamic influences of economic growth and financial development on energy consumption in emerging economies: Insights from dynamic nonlinear approaches. Energy Economics, 2022, 116, 106404.	5.6	9
169	Modeling the impact of innovation in marine energy generation-related technologies on carbon dioxide emissions in South Korea. Journal of Environmental Management, 2023, 326, 116818.	3.8	10
170	Do Green Technology Innovation, Renewable Energy Consumption and Renewable Energy Investment Improve Environmental Quality?. Journal of Environmental Assessment Policy and Management, 2022, 24, .	4.3	3
171	Is Moderating effect of Uncertain Economic Policies helpful for a Sustainable Environment in Emerging Economies?. Environmental Science and Pollution Research, 0, , .	2.7	1
172	The asymmetric effect of technological innovation on CO2 emissions in South Africa: New evidence from the QARDL approach. Frontiers in Environmental Science, 0, 10, .	1.5	24
173	The environmental effects of the "twin―green and digital transition in European regions. Environmental and Resource Economics, 2023, 84, 877-918.	1.5	27
174	Can public–private partnership investment in energy (PPPI) mitigate CO2 emissions in South Africa? Fresh evidence from the novel dynamic ARDL simulations approach. Frontiers in Environmental Science, 0, 10, .	1.5	25
175	Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China. Energy, 2023, 268, 126684.	4.5	9
176	Analyzing the co-movement between CO2 emissions and disaggregated nonrenewable and renewable energy consumption in BRICS: evidence through the lens of wavelet coherence. Environmental Science and Pollution Research, 2023, 30, 38921-38938.	2.7	42
177	An Empirical Investigation of Waste Management and Ecological Footprints in OECD Countries. Environmental Footprints and Eco-design of Products and Processes, 2023, , 43-66.	0.7	2
178	Nexus between Industry 4.0 and environmental sustainability: A Fourier panel bootstrap cointegration and causality analysis. Journal of Cleaner Production, 2023, 386, 135786.	4.6	25
179	Does financial globalisation matter for environmental quality? A sustainability perspective of Asian economies. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	5
180	Integration of ecological innovation, institutional governance, and human capital development for a sustainable environment in Asian Countries. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	3

#	Article	IF	CITATIONS
181	Can fiscal decentralization be the route to the race to zero emissions in South Africa? Fresh policy insights from novel dynamic autoregressive distributed lag simulations approach. Environmental Science and Pollution Research, 2023, 30, 46446-46474.	2.7	22
183	Role of nuclear energy in carbon mitigation to achieve United Nations net zero carbon emission: evidence from Fourier bootstrap Toda-Yamamoto. Environmental Science and Pollution Research, 2023, 30, 46185-46203.	2.7	5
184	A Battery Capacity Configuration Method of a Photovoltaic and Battery System Applied in a Building Complex for Increased Self-Sufficiency and Self-Consumption. Energies, 2023, 16, 2190.	1.6	0
185	The relationship between renewable energy consumption, international tourism, trade openness, innovation and carbon dioxide emissions: international evidence. International Journal of Sustainable Energy, 2023, 42, 397-416.	1.3	6
186	A step towards environmental mitigation: Do green technological innovation and institutional quality make a difference?. Technological Forecasting and Social Change, 2023, 190, 122413.	6.2	41
187	Revisiting the nexus between fiscal decentralization and CO2 emissions in South Africa: fresh policy insights. Financial Innovation, 2023, 9, .	3.6	26
188	Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies. Sustainability, 2023, 15, 3447.	1.6	11
189	Assessing the environmental sustainability corridor: An empirical study of Renewable energy consumption in BRICS nation. IOP Conference Series: Earth and Environmental Science, 2023, 1110, 012053.	0.2	5
190	Do trade openness and institutional quality contribute to carbon emission reduction? Evidence from BRICS countries. Environmental Science and Pollution Research, 2023, 30, 50986-51002.	2.7	29
191	A pathway to the green revolution in emerging economies: how does green technological innovation affect green growth and ecological sustainability?. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	1
192	Is green finance really "green� Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries. Renewable Energy, 2023, 208, 341-355.	4.3	55
193	Influence of green financing, technology innovation, and trade openness on consumption-based carbon emissions in BRICS countries. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	2
194	A step towards sustainable development: role of green energy and environmental innovation. Environment, Development and Sustainability, 2024, 26, 9603-9624.	2.7	10
195	Impact of Innovation in Solar Photovoltaic Energy Generation, Distribution, or Transmission-Related Technologies on Carbon Dioxide Emissions in China. Journal of the Knowledge Economy, 0, , .	2.7	9
196	Dynamic effect of exchange rate depreciation on carbon emission in the Mediterranean basin: fresh insights from linear and non-linear ARDL approaches. Environmental Science and Pollution Research, 2023, 30, 59481-59498.	2.7	2
197	The effect of technological innovation and clean energy consumption on carbon neutrality in top clean energy-consuming countries: A panel estimation. Energy Strategy Reviews, 2023, 47, 101091.	3.3	11
198	Do Urban Innovation Policies Reduce Carbon Emission? Empirical Evidence from Chinese Cities with DID. Sustainability, 2023, 15, 6739.	1.6	0
199	Environmental and financial multi-objective optimization: Hybrid wind-photovoltaic generation with battery energy storage systems. Journal of Energy Storage, 2023, 66, 107425.	3.9	8

ARTICLE

IF CITATIONS