CRISPR-engineered T cells in patients with refractory c

Science 367, DOI: 10.1126/science.aba7365

Citation Report

#	Article	IF	CITATIONS
1	Advances in chimeric antigen receptor T cells. Current Opinion in Hematology, 2020, 27, 368-377.	1.2	24
2	Immunotherapy in multiple myeloma: when, where, and for who?. Current Opinion in Oncology, 2020, 32, 664-671.	1.1	5
3	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	1.0	37
4	Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38, 788-802.	7.7	273
5	CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality?. Molecular Therapy, 2020, 28, 2320-2339.	3.7	194
6	CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Frontiers in Immunology, 2020, 11, 2062.	2.2	45
7	Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. Nanoscale, 2020, 12, 21001-21014.	2.8	20
8	Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Scientific Reports, 2020, 10, 17753.	1.6	29
9	Improving the therapeutic index in adoptive cell therapy: key factors that impact efficacy. , 2020, 8, e001619.		14
10	Identification of prognostic and immune-related gene signatures in the tumor microenvironment of endometrial cancer. International Immunopharmacology, 2020, 88, 106931.	1.7	21
11	Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. Nano-Micro Letters, 2020, 12, 185.	14.4	42
12	CAR Chase: Where Do Engineered Cells Go in Humans?. Frontiers in Oncology, 2020, 10, 577773.	1.3	7
13	Anticipating and Identifying Collateral Damage in Genome Editing. Trends in Genetics, 2020, 36, 905-914.	2.9	28
14	Sharpening gene editing toolbox in Arabidopsis for plants. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 769-784.	0.9	12
15	Immune Literacy: Reading, Writing, and Editing Adaptive Immunity. IScience, 2020, 23, 101519.	1.9	16
16	An old BATF's new T-ricks. Nature Immunology, 2020, 21, 1309-1310.	7.0	0
17	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―CAR T and CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	2.2	85
18	Gene therapy: a double-edged sword with great powers. Molecular and Cellular Biochemistry, 2020, 474, 73-81.	1.4	44

ATION RED

ARTICLE IF CITATIONS # Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects 19 1.1 14 Underlying Disease. Frontiers in Génetics, 2020, 11, 731. Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. 34 Molecular Therapy, 2020, 28, 1422-1431. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunology 21 9 1.1 Letters, 2020, 226, 71-82. The once and future gene therapy. Nature Communications, 2020, 11, 5820. 5.8 CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods and Protocols, 23 0.9 9 2020, 3, 79. Next-generation cell therapies: the emerging role of CAR-NK cells. Blood Advances, 2020, 4, 5868-5876. 2.5 Natural killer cell engineering – a new hope for cancer immunotherapy. Seminars in Hematology, 2020, 25 1.8 11 57, 194-200. CRISPR/Cas9 ablating viral microRNA promotes lytic reactivation of Kaposi's sarcoma-associated 1.0 26 herpesvirus. Biochemical and Biophysical Research Communications, 2020, 533, 1400-1405. Future of CAR T cells in multiple myeloma. Hematology American Society of Hematology Education 27 0.9 22 Program, 2020, 2020, 272-279. Next-generation cell therapies: the emerging role of CAR-NK cells. Hematology American Society of Hematology Education Program, 2020, 2020, 570-578. Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. 29 2.1 10 Vaccines, 2020, 8, 733. Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by <i>Ab Initio</i> Dynamics. ACS Catalysis, 2020, 10, 13596-13605. INDEL detection, the †Achilles heel' of precise genome editing: a survey of methods for accurate $\mathbf{31}$ 6.5 51 profiling of gene editing induced indels. Nucleic Acids Research, 2020, 48, 11958-11981. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of 1.8 Translational Medicine, 2020, 18, 428 Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules, 2020, 25, 33 1.7 27 3489. Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on Î³Î T 1.8 53 and NK Cells. Cells, 2020, 9, 1757. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. 35 1.8 5 Seminars in Hematology, 2020, 57, 83-91. The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell 1.8 Antitumor Responses. Cells, 2020, 9, 1720.

	Сітатіо	n Report	
#	Article	IF	Citations
37	Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell, 2020, 38, 473-488.	7.7	342
38	Improving CAR T-cells: The next generation. Seminars in Hematology, 2020, 57, 115-121.	1.8	13
39	Designing Safer CRISPR/Cas9 Therapeutics for HIV: Defining Factors That Regulate and Technologies Used to Detect Off-Target Editing. Frontiers in Microbiology, 2020, 11, 1872.	1.5	11
40	Overcoming key challenges in cancer immunotherapy with engineered T cells. Current Opinion in Oncology, 2020, 32, 398-407.	1.1	9
41	Pharmacological and genetic strategies for targeting adenosine to enhance adoptive T cell therapy of cancer. Current Opinion in Pharmacology, 2020, 53, 91-97.	1.7	5
42	Synthetic Lethality through the Lens of Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 14151-14183.	2.9	31
43	Lentiviral delivery of combinatorial CAR/CRISPRi circuit into human primary T cells is enhanced by TBK1/IKKÉ› complex inhibitor BX795. Journal of Translational Medicine, 2020, 18, 363.	1.8	12
44	Designing custom CRISPR libraries for hypothesis-driven drug target discovery. Computational and Structural Biotechnology Journal, 2020, 18, 2237-2246.	1.9	10
45	Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. Journal of Controlled Release, 2020, 327, 788-800.	4.8	26
46	Steering Chimeric Antigen Receptor T Cells Into the Hodgkin Lymphoma Niche. Journal of Clinical Oncology, 2020, 38, 3816-3818.	0.8	3
47	Commentary: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Frontiers in Oncology, 2020, 10, 1726.	1.3	2
48	The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for late-stage lung cancer. Signal Transduction and Targeted Therapy, 2020, 5, 168.	7.1	16
49	Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR Journal, 2020, 3, 253-275.	1.4	19
50	Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 2020, 19, 776-800.	21.5	264
51	Breaking Bottlenecks for the TCR Therapy of Cancer. Cells, 2020, 9, 2095.	1.8	35
52	p53 Hinders CRISPR/Cas9-Mediated Targeted Gene Disruption in Memory CD8 T Cells In Vivo. Journal of Immunology, 2020, 205, 2222-2230.	0.4	9
53	TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Frontiers in Immunology, 2020, 11, 1689.	2.2	63
54	Engineering Immune Cells for in vivo Secretion of Tumor-Specific T Cell-Redirecting Bispecific Antibodies. Frontiers in Immunology, 2020, 11, 1792.	2.2	14

	CITATION	REPORT	
#	Article	IF	Citations
55	New targets and technologies for CAR-T cells. Current Opinion in Oncology, 2020, 32, 510-517.	1.1	12
56	Using Gene Editing Approaches to Fine-Tune the Immune System. Frontiers in Immunology, 2020, 11, 570672.	2.2	13
57	Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers, 2020, 12, 2360.	1.7	9
58	Modeling pediatric AML FLT3 mutations using CRISPR/Cas12a- mediated gene editing. Leukemia and Lymphoma, 2020, 61, 3078-3088.	0.6	2
59	Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction. Cancers, 2020, 12, 2326.	1.7	6
60	Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses, 2020, 12, 1443.	1.5	58
61	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252.	2.7	31
62	Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. Immuno-Oncology Technology, 2020, 8, 2-11.	0.2	8
63	CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Molecular Therapy - Methods and Clinical Development, 2020, 19, 149-161.	1.8	14
64	Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet, The, 2020, 396, 1885-1894.	6.3	206
65	Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nature Communications, 2020, 11, 6277.	5.8	7
66	Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers, 2020, 12, 3617.	1.7	7
67	Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.	1.9	7
68	Editorial overview: Cancer 2020 current mechanistic insights into the hypoxia-adenosine-A2A adenosinergic immunosuppressive axis in cancer immunotherapies. Current Opinion in Pharmacology, 2020, 53, iii-v.	1.7	1
69	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95
70	Screening for the Next-Generation T Cell Therapies. Cancer Cell, 2020, 37, 627-629.	7.7	1
71	Ushering in the Next CRISPR Decade. CRISPR Journal, 2020, 3, 2-2.	1.4	2
72	Prognostic significance of immune landscape in tumour microenvironment of endometrial cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 7767-7777.	1.6	65

#	Article	IF	CITATIONS
73	A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics, 2020, 10, 5532-5549.	4.6	96
74	Toward "offâ€ŧheâ€shelf―allogeneic CAR T cells. Advances in Cell and Gene Therapy, 2020, 3, e86.	0.6	20
75	p38 Kinase: A Key Target for Driving Potent T Cells for Adoptive Immunotherapy. Cancer Cell, 2020, 37, 756-758.	7.7	3
76	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, 11, 1109.	2.2	165
77	Editing of Endogenous Genes in Cellular Immunotherapies. Current Hematologic Malignancy Reports, 2020, 15, 235-240.	1.2	4
78	Introducing Chemistry Students to Emerging Technologies in Gene Editing, Their Applications, and Ethical Considerations. Journal of Chemical Education, 2020, 97, 1931-1943.	1.1	5
79	CRISPR-Cas9-Mediated Glucocorticoid Resistance in Virus-Specific T Cells for Adoptive T Cell Therapy Posttransplantation. Molecular Therapy, 2020, 28, 1965-1973.	3.7	17
80	First Trial of CRISPR-Edited T cells in Lung Cancer. Trends in Molecular Medicine, 2020, 26, 713-715.	3.5	20
81	Regulation of PD-1 in T cells for cancer immunotherapy. European Journal of Pharmacology, 2020, 881, 173240.	1.7	27
82	Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells, 2020, 9, 1485.	1.8	48
83	Orthotopic T-Cell Receptor Replacement—An "Enabler―for TCR-Based Therapies. Cells, 2020, 9, 1367.	1.8	12
84	Oncology Scan: Radiation Biology and Genomic Predictors of Response. International Journal of Radiation Oncology Biology Physics, 2020, 107, 393-397.	0.4	0
85	Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomarker Research, 2020, 8, 19.	2.8	42
86	Cancer labs reach beyond exhausted T cells. Nature Methods, 2020, 17, 367-370.	9.0	0
87	CRISPR-Edited Immune Effectors: The End of the Beginning. Molecular Therapy, 2020, 28, 995-996.	3.7	3
88	Multiparametric Assays for Accelerating Early Drug Discovery. Trends in Pharmacological Sciences, 2020, 41, 318-335.	4.0	14
89	Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. Journal of Leukocyte Biology, 2020, 108, 1067-1079.	1.5	50
90	Robust expansion of HIV CAR T cells following antigen boosting in ART-suppressed nonhuman primates. Blood, 2020, 136, 1722-1734.	0.6	37

#	Article	IF	CITATIONS
91	T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells, 2020, 9, 1588.	1.8	20
92	Therapeutic Editing of the TP53 Gene: Is CRISPR/Cas9 an Option?. Genes, 2020, 11, 704.	1.0	31
93	Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On―and Offâ€Target Damage. BioEssays, 2020, 42, e2000047.	1.2	9
94	Detection and Modulation of DNA Translocations During Multi-Gene Genome Editing in T Cells. CRISPR Journal, 2020, 3, 177-187.	1.4	31
95	The Unmet Needs of the Diagnosis, Staging, and Treatment of Gastrointestinal Tumors. Seminars in Nuclear Medicine, 2020, 50, 389-398.	2.5	5
96	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	1.8	67
97	Cancer immunotherapy comes of age and looks for maturity. Nature Communications, 2020, 11, 3325.	5.8	93
98	Knocking out barriers to engineered cell activity. Science, 2020, 367, 976-977.	6.0	10
99	A CRISPR Odyssey into Cancer Immunotherapy. CRISPR Journal, 2020, 3, 73-75.	1.4	1
100	Cancer immunotherapy: Current applications and challenges. Cancer Letters, 2020, 480, 1-3.	3.2	19
101	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	13.5	247
102	Nevertheless, They Persisted. Cell, 2020, 181, 4-5.	13.5	2
103	Sarcomas—A barren immunological wasteland or field of opportunity for immunotherapy?. Veterinary and Comparative Oncology, 2020, 18, 447-470.	0.8	4
104	Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.	1.7	19
105	Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature Medicine, 2020, 26, 732-740.	15.2	322
106	Human Vaccines & Immunotherapeutics: news. Human Vaccines and Immunotherapeutics, 2020, 16, 740-741.	1.4	0
107	Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell, 2020, 181, 728-744.e21.	13.5	131
108	Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Advanced Drug Delivery Reviews, 2021, 168, 158-180.	6.6	111

#	Article	IF	CITATIONS
109	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. British Journal of Haematology, 2021, 192, 33-49.	1.2	4
110	Cellular immunotherapies for cancer. Irish Journal of Medical Science, 2021, 190, 41-57.	0.8	45
111	Conventional T cell therapies pave the way for novel Treg therapeutics. Cellular Immunology, 2021, 359, 104234.	1.4	2
112	TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Progress in Retinal and Eye Research, 2021, 81, 100883.	7.3	40
113	Adaptive T cell immunotherapy in cancer. Science China Life Sciences, 2021, 64, 363-371.	2.3	13
114	Research on CRISPR/system in major cancers and its potential in cancer treatments. Clinical and Translational Oncology, 2021, 23, 425-433.	1.2	3
115	Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency. Biomaterials, 2021, 269, 120222.	5.7	5
116	Engineering antibody therapies for protective immunity. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1358-1361.	0.4	3
117	Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology, 2021, 39, 692-705.	4.9	52
118	Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, The, 2021, 397, 1010-1022.	6.3	196
119	Revisiting gene delivery to the brain: silencing and editing. Biomaterials Science, 2021, 9, 1065-1087.	2.6	14
120	CARâ€T TREK through the lymphoma universe, to boldly go where no other therapy has gone before. British Journal of Haematology, 2021, 193, 449-465.	1.2	17
121	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	2.3	28
122	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	7.7	78
123	The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. European Journal of Cancer, 2021, 144, 123-150.	1.3	85
124	HIV Gene Therapy: An Update. Human Gene Therapy, 2021, 32, 52-65.	1.4	13
125	The TOP vector: a new high-titer lentiviral construct for delivery of sgRNAs and transgenes to primary TÂcells. Molecular Therapy - Methods and Clinical Development, 2021, 20, 30-38.	1.8	4
126	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	2.0	87

ARTICLE IF CITATIONS # Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. British Journal of Cancer, 2021, 124, 127 2.9 590 359-367. Trends in CRISPR-Cas9 technology application in cancer. Progress in Molecular Biology and Translational Science, 2021, 178, 175-192. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian 129 2.7 43 Cells. Frontiers in Genome Editing, 2020, 2, 617910. Development and Proliferation of Flexible and Wearable Electronics: Opportunities and Challenges 0.4 for National Security. Advanced Sciences and Technologies for Security Applications, 2021, , 53-76. Inhibitory signaling sustains a distinct early memory CD8 ⁺ T cell precursor that is 131 5.6 52 resistant to DNA damage. Science Immunology, 2021, 6, . Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406. 2.7 Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews 133 12.8 436 Cancer, 2021, 21, 145-161. CRISPR/Cas-based Diagnostics and Gene Therapy. BIO Integration, 2021, 2, . 134 An update on B-cell maturation antigen-targeted therapies in Multiple Myeloma. Expert Opinion on 135 1.4 4 Biological Therapy, 2021, 21, 1025-1034. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection, 2021, 49, 377-385. 2.3 The Future of Transplantation: Hope, Investigative Discipline, and Fairness. Organ and Tissue 137 0.0 0 Transplantation, 2021, , 733-740. Genome editing of immune cells using CRISPR/Cas9. BMB Reports, 2021, 54, 59-69. 138 1.1 The role of small molecules in cell and gene therapy. RSC Medicinal Chemistry, 2021, 12, 330-352. 139 1.7 3 Challenges and future prospects of nano-enabled cancer management., 2021, , 229-233. 140 Gene Editing and Gene Therapies in Cancer Treatment. Advances in Medical Diagnosis, Treatment, and 141 0.1 0 Care, 2021, , 205-224. Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and 142 Translational Science, 2021, 181, 31-43. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Frontiers in Immunology, 143 2.219 2020, 11, 585385. 144 Therapeutic genome editing., 2021, , 193-211.

		CITATION REPORT		
#	ARTICLE	02110082	IF	CITATIONS
145	Cell therapies in ovarian cancer. Therapeutic Advances in Medical Oncology, 2021, 13, 1758835	92110083.	1.4	20
146	Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene edit treating hyperâ€lgM syndrome. EMBO Molecular Medicine, 2021, 13, e13545.	ing for	3.3	36
147	Universal toxin-based selection for precise genome engineering in human cells. Nature Communications, 2021, 12, 497.		5.8	29
148	Bioanalytical challenges and strategies of CRISPRÂgenome editors. Bioanalysis, 2021, 13, 169-1	79.	0.6	0
149	Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nature Protocols, 2 1331-1342.	2021, 16,	5.5	48
150	Genome-editing approaches and applications: a brief review on CRISPR technology and its role in cancer. 3 Biotech, 2021, 11, 146.	n	1.1	7
151	Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy. Transgenic Research, 2021, 30, 129-141.		1.3	4
152	Generation of a pHSPA6 gene-based multifunctional live cell sensor. Biochimica Et Biophysica Ac Molecular Cell Research, 2021, 1868, 118919.	ta -	1.9	1
153	CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/R B-cell Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2021, 27, 2764-2772.	lefractory	3.2	122
154	Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Front Immunology, 2020, 11, 611638.	iers in	2.2	26
155	Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therap Cancer. Cancer Discovery, 2021, 11, 560-574.	ies for	7.7	12
156	Crosstown Traffic: Lymphodepleting Chemotherapy Drives CAR T Cells. Cancer Cell, 2021, 39, 1	38-140.	7.7	6
157	CRISPR Takes the Front Seat in CART-Cell Development. BioDrugs, 2021, 35, 113-124.		2.2	10
158	Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene the Gene Therapy, 2021, 28, 549-559.	erapy?.	2.3	28
159	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 3	79-393.	12.5	128
161	Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Frontiers in Immunology, 2020, 11, 612848.		2.2	10
162	T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigatior Strategies. Cancers, 2021, 13, 598.	1	1.7	19
163	CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Molect Therapy, 2021, 29, 571-586.	ular	3.7	124

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
164	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22,	427-447.	7.7	63
165	Evaluating the potential of novel genetic approaches for the treatment of Duchenne n dystrophy. European Journal of Human Genetics, 2021, 29, 1369-1376.	nuscular	1.4	26
166	Artificial intelligence in cancer research: learning at different levels of data granularity. Oncology, 2021, 15, 817-829.	Molecular	2.1	15
167	Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanopa promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine. Journal of Nanobiotechnology, 2021, 19, 95.	ırticles: a	4.2	9
168	Lentiviral Capsid-Mediated <i>Streptococcus pyogenes</i> Cas9 Ribonucleoprotein De Efficient and Safe Multiplex Genome Editing. CRISPR Journal, 2021, , .	elivery for	1.4	18
169	Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers	s, 2021, 13, 1568.	1.7	21
170	Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing Biology, 2021, 22, 86.	. Genome	3.8	33
171	CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmenta Disorders. Frontiers in Pediatrics, 2021, 9, 592571.	al Neurological	0.9	4
172	Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Frontiers in Pharmac 639475.	ology, 2021, 12,	1.6	20
173	Genetic Correction of IL-10RB Deficiency Reconstitutes Anti-Inflammatory Regulation Macrophages. Journal of Personalized Medicine, 2021, 11, 221.	n iPSC-Derived	1.1	5
174	Adoptive Cellular Therapy for Solid Tumors. American Society of Clinical Oncology Edu / ASCO American Society of Clinical Oncology Meeting, 2021, 41, 57-65.	cational Book	1.8	10
175	Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokin 100049.	e: X, 2021, 3,	0.5	16
176	Separating the wheat from the chaff: Making sense of Treg heterogeneity for better ac therapy. Immunology Letters, 2021, 239, 96-112.	loptive cellular	1.1	4
177	Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by Cas9/sgRNA-assisted reverse PCR technique. Analytical and Bioanalytical Chemistry, 20	a D21, 413, 2447-2456.	1.9	4
178	Resistance to CART cell therapy: lessons learned from the treatment of hematological Leukemia and Lymphoma, 2021, 62, 2052-2063.	malignancies.	0.6	16
179	Promises and challenges of adoptive T-cell therapies for solid tumours. British Journal o 2021, 124, 1759-1776.	of Cancer,	2.9	113
180	Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sc 269, 119087.	iences, 2021,	2.0	108
181	Engineered cells as glioblastoma therapeutics. Cancer Gene Therapy, 2022, 29, 156-16	66.	2.2	7

#	Article	IF	CITATIONS
182	Oncolytic herpes simplex virus <scp>HF10</scp> (canerpaturev) promotes accumulation of <scp>CD8</scp> ⁺ <scp>PD</scp> â€1 ^{â^²} tumorâ€infiltrating T cells in <scp>PDâ€L1</scp> â€enriched tumor microenvironment. International Journal of Cancer, 2021, 149, 214-227.	2.3	13
183	InÂvivo CD8+ TÂcell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 2021, 184, 1262-1280.e22.	13.5	107
184	Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. Journal of Extracellular Vesicles, 2021, 10, e12076.	5.5	102
185	Interrogating IncRNA functions via CRISPR/Cas systems. RNA Biology, 2021, 18, 2097-2106.	1.5	14
186	Off-the-Shelf Chimeric Antigen Receptor T Cells. Cancer Journal (Sudbury, Mass), 2021, 27, 176-181.	1.0	4
187	Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Human Vaccines and Immunotherapeutics, 2021, 17, 1882-1896.	1.4	10
188	Beyond immune checkpoint blockade: emerging immunological strategies. Nature Reviews Drug Discovery, 2021, 20, 899-919.	21.5	208
189	Challenges and Solutions to Bringing Chimeric Antigen Receptor T-Cell Therapy to Myeloid Malignancies. Cancer Journal (Sudbury, Mass), 2021, 27, 143-150.	1.0	0
190	Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics. Chinese Journal of Chemical Engineering, 2021, 38, 216-216.	1.7	6
191	Highly efficient CRISPR-Cas9-mediated gene knockout in primary human B cells for functional genetic studies of Epstein-Barr virus infection. PLoS Pathogens, 2021, 17, e1009117.	2.1	17
193	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	9.4	305
194	Industrializing engineered autologous T cells as medicines for solid tumours. Nature Reviews Drug Discovery, 2021, 20, 476-488.	21.5	12
195	Nanocarrier vaccines for SARS-CoV-2. Advanced Drug Delivery Reviews, 2021, 171, 215-239.	6.6	66
196	Acceptance of CRISPR-based technologies for clinical application: a thematic analysis of attitudes on novel gene therapies in undergraduates. Journal of Biological Education, 0, , 1-12.	0.8	0
197	CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discovery, 2021, 7, 27.	3.1	20
198	State-of-Art of Cellular Therapy for Acute Leukemia. International Journal of Molecular Sciences, 2021, 22, 4590.	1.8	12
199	Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Therapeutics, 2021, 31, 145-154.	2.0	3
200	Determinants of Response and Mechanisms of Resistance of CAR T-cell Therapy in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 302-318.	2.6	40

#	Article	IF	CITATIONS
201	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	1.2	4
202	Immunotherapy to get on point with base editing. Drug Discovery Today, 2021, 26, 2350-2357.	3.2	4
203	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
204	CRISPR/Cas System: A Potential Technology for the Prevention and Control of COVID-19 and Emerging Infectious Diseases. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639108.	1.8	13
205	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	1.3	97
206	Stem Cell-Derived Viral Antigen-Specific T Cells Suppress HIV Replication and PD-1 Expression on CD4+ T Cells. Viruses, 2021, 13, 753.	1.5	4
207	CRISPR: A new paradigm of theranostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102350.	1.7	10
208	CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nature Communications, 2021, 12, 2437.	5.8	50
209	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	10.6	83
210	Postâ€ŧranscriptional control of Tâ€cell cytokine production: Implications for cancer therapy. Immunology, 2021, 164, 57-72.	2.0	3
211	CRISPR/Cas9 Gene-Editing in Cancer Immunotherapy: Promoting the Present Revolution in Cancer Therapy and Exploring More. Frontiers in Cell and Developmental Biology, 2021, 9, 674467.	1.8	22
212	A Chemical Toolbox for Labeling and Degrading Engineered Cas Proteins. Jacs Au, 2021, 1, 777-785.	3.6	10
213	CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synthetic Biology, 2021, 10, 1245-1267.	1.9	38
214	Conditioning treatment with CD27 Ab enhances expansion and antitumor activity of adoptively transferred T cells in mice. Cancer Immunology, Immunotherapy, 2021, , 1.	2.0	6
216	CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nature Communications, 2021, 12, 3236.	5.8	99
217	Single-cell Analysis Technologies for Immuno-oncology Research: from Mechanistic Delineation to Biomarker Discovery. Genomics, Proteomics and Bioinformatics, 2021, 19, 191-207.	3.0	5
218	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
219	Protective TÂcell receptor identification for orthotopic reprogramming of immunity in refractory virus infections. Molecular Therapy, 2022, 30, 198-208.	3.7	2

#	ARTICLE	IF	CITATIONS
220	Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine, 2021, 67, 103354.	2.7	48
221	Antibody-based cancer therapy. Oncogene, 2021, 40, 3655-3664.	2.6	42
222	Targeting public neoantigens for cancer immunotherapy. Nature Cancer, 2021, 2, 487-497.	5.7	79
223	Interrogating immune cells and cancer with CRISPR-Cas9. Trends in Immunology, 2021, 42, 432-446.	2.9	13
224	Base-edited CAR T cells for combinational therapy against T cell malignancies. Leukemia, 2021, 35, 3466-3481.	3.3	63
225	Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20, 531-550.	21.5	236
226	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	2.9	29
227	Pathogenesis and Function of Interleukin-35 in Rheumatoid Arthritis. Frontiers in Pharmacology, 2021, 12, 655114.	1.6	19
228	Cas9 leavage Sequences in Sizeâ€Reduced Plasmids Enhance Nonviral Genome Targeting of CARs in Primary Human T Cells. Small Methods, 2021, 5, e2100071.	4.6	20
229	TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis, 2021, 24, 453-470.	3.7	18
230	Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Current Medical Science, 2021, 41, 420-430.	0.7	5
231	Microfluidic and Nanofluidic Intracellular Delivery. Advanced Science, 2021, 8, e2004595.	5.6	34
232	Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers, 2021, 13, 3213.	1.7	16
233	New approaches to moderate CRISPR-Cas9 activity: Addressing issues of cellular uptake and endosomal escape. Molecular Therapy, 2022, 30, 32-46.	3.7	16
234	CRISPR-targeted <i>MAGT1</i> insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood, 2021, 138, 2768-2780.	0.6	20
235	Targeting cancer testis antigens in synovial sarcoma. , 2021, 9, e002072.		16
236	Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 592-606.	1.8	11
237	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	1.6	23

#	Article	IF	CITATIONS
238	T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. Journal of Hematology and Oncology, 2021, 14, 102.	6.9	64
239	Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Therapy, 2021, 28, 588-601.	2.3	13
240	NKG2D Natural Killer Cell Receptor—A Short Description and Potential Clinical Applications. Cells, 2021, 10, 1420.	1.8	22
241	CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. Materials, 2021, 14, 3164.	1.3	10
242	Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death and Disease, 2021, 12, 566.	2.7	44
243	Prediction and validation of hematopoietic stem and progenitor cell off-target editing in transplanted rhesus macaques. Molecular Therapy, 2022, 30, 209-222.	3.7	17
244	AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nature Communications, 2021, 12, 3908.	5.8	73
245	Personal regulome navigation of cancer. Nature Reviews Cancer, 2021, 21, 609-610.	12.8	3
246	CRISPAltRations: A validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 478-491.	1.8	18
247	Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Reports, 2021, 35, 109207.	2.9	91
248	Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9. Scientific Reports, 2021, 11, 11818.	1.6	6
249	Catch me if you can: how AML and its niche escape immunotherapy. Leukemia, 2022, 36, 13-22.	3.3	66
250	The potential of CAR T cell therapy for prostate cancer. Nature Reviews Urology, 2021, 18, 556-571.	1.9	25
251	Challenges and next steps in the advancement of immunotherapy: summary of the 2018 and 2020 National Cancer Institute workshops on cell-based immunotherapy for solid tumors. , 2021, 9, e003048.		4
252	Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nature Communications, 2021, 12, 4365.	5.8	53
253	The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients. Frontiers in Immunology, 2021, 12, 701636.	2.2	6
254	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	6.0	33
255	Optimizing interleukin-2 concentration, seeding density and bead-to-cell ratio of T-cell expansion for adoptive immunotherapy. BMC Immunology, 2021, 22, 43.	0.9	19

#	Article	IF	CITATIONS
256	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
257	Clinical Trials with Biologic Primary Endpoints in Immuno-oncology: Concepts and Usage. Clinical Cancer Research, 2022, 28, 13-22.	3.2	4
258	Exploiting HIVâ€1 tropism to target CD4 ⁺ T cells for CRISPR. Immunology and Cell Biology, 2021, 99, 677-679.	1.0	1
259	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	0.5	13
260	ACT Up TIL Now: The Evolution of Tumor-Infiltrating Lymphocytes in Adoptive Cell Therapy for the Treatment of Solid Tumors. Immuno, 2021, 1, 194-211.	0.6	9
261	Strengthening the CARâ€T cell therapeutic application using CRISPR/Cas9 technology. Biotechnology and Bioengineering, 2021, 118, 3691-3705.	1.7	13
262	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	6.0	19
263	Small nucleic acids and the path to the clinic for anti-CRISPR. Biochemical Pharmacology, 2021, 189, 114492.	2.0	7
264	CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics, 2021, 37, i342-i348.	1.8	17
265	Immunotherapy with adoptive cytomegalovirusâ€specific T cells transfer: Summarizing latest gene engineering techniques. Health Science Reports, 2021, 4, e322.	0.6	5
266	High-affinity T-cell receptor specific for MyD88 L265P mutation for adoptive T-cell therapy of B-cell malignancies. , 2021, 9, e002410.		9
267	Quadrupleâ€editing of the MAPK and PI3K pathways effectively blocks the progression of KRASâ€mutated colorectal cancer cells. Cancer Science, 2021, 112, 3895-3910.	1.7	3
268	New CARs on and off the road: challenges and new developments in CAR-T cell therapy. Current Opinion in Pharmacology, 2021, 59, 116-126.	1.7	2
269	Fast and Efficient Genome Editing of Human FOXP3+ Regulatory T Cells. Frontiers in Immunology, 2021, 12, 655122.	2.2	10
270	Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics: Targets and Therapy, 2021, Volume 15, 353-361.	3.0	75
271	Cas9-derived peptides presented by MHC Class II that elicit proliferation of CD4+ T-cells. Nature Communications, 2021, 12, 5090.	5.8	12
272	Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cellular and Molecular Immunology, 2021, 18, 2188-2198.	4.8	90
273	Adoptive cell therapy for solid tumors: Chimeric antigen receptor T cells and beyond. Current Opinion in Pharmacology, 2021, 59, 70-84.	1.7	18

#	Article	IF	CITATIONS
274	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
275	Engineering-enhanced CAR T cells for improved cancer therapy. Nature Cancer, 2021, 2, 780-793.	5.7	60
276	Stem cellâ€like memory T cells: The generation and application. Journal of Leukocyte Biology, 2021, 110, 1209-1223.	1.5	14
277	Manipulating the NKC2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Frontiers in Immunology, 2021, 12, 712722.	2.2	2
278	"Builtâ€in†PDâ€1 blocker to rescue NKâ€92 activity from PDâ€L1–mediated tumor escape mechanisms. Journal, 2021, 35, e21750.	FASEB	5
279	CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 269.	3.5	32
280	Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells, 2021, 10, 2250.	1.8	6
281	Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biology, 2021, 22, 236.	3.8	36
282	Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. International Immunology, 2021, 33, 551-562.	1.8	20
283	CAR T cells: Building on the CD19 paradigm. European Journal of Immunology, 2021, 51, 2151-2163.	1.6	43
284	A first step toward in vivo gene editing in patients. Nature Medicine, 2021, 27, 1515-1517.	15.2	5
286	Innovations in CRISPR-Based Therapies. Molecular Biotechnology, 2021, , 1.	1.3	5
287	Recent advances in regenerative medicine strategies for cancer treatment. Biomedicine and Pharmacotherapy, 2021, 141, 111875.	2.5	38
288	A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications. Cytotherapy, 2021, 23, 852-860.	0.3	10
289	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	1.8	13
290	Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, 2021, 29, 3205-3218.	3.7	14
291	Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers, 2021, 13, 4519.	1.7	2
292	Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 2021, 12, 728520.	1.1	11

#	Article	IF	CITATIONS
293	Harnessing the Immune System to Fight Multiple Myeloma. Cancers, 2021, 13, 4546.	1.7	10
294	Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma. , 2021, 9, e002754.		7
295	Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Reviews in the Neurosciences, 2022, 33, 313-326.	1.4	1
296	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	3.7	87
298	BACH2 is a putative T cell lymphoma tumor suppressor that may play a role in product-derived CAR-T cell lymphomas. Blood, 2021, , .	0.6	4
299	Single-cell technologies to dissect heterogenous immune cell therapy products. Current Opinion in Biomedical Engineering, 2021, 20, 100343.	1.8	1
300	Engineering stem cells for cancer immunotherapy. Trends in Cancer, 2021, 7, 1059-1073.	3.8	22
301	Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells, 2021, 10, 2379.	1.8	23
302	The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Frontiers in Cell and Developmental Biology, 2021, 9, 718466.	1.8	11
303	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	9.4	119
304	Roadmap for the use of base editors to decipher drug mechanism of action. PLoS ONE, 2021, 16, e0257537.	1.1	1
305	Genome edited B cells: a new frontier in immune cell therapies. Molecular Therapy, 2021, 29, 3192-3204.	3.7	9
306	The promise and perils of immunotherapy. Blood Advances, 2021, 5, 3709-3725.	2.5	23
307	Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Human Gene Therapy, 2021, 32, 1011-1028.	1.4	14
308	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	1.8	2
309	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	2.8	3
310	Functionalized PDA/DEX-PEI@HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/Cas9 gene. Biomedicine and Pharmacotherapy, 2021, 142, 112061.	2.5	15
311	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	7.9	86

#	Article	IF	CITATIONS
312	CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy - Methods and Clinical Development, 2021, 23, 276-285.	1.8	13
313	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cellular Immunology, 2021, 369, 104436.	1.4	5
314	Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Letters, 2021, 520, 233-242.	3.2	19
315	Genome editing of therapeutic T cells. Gene and Genome Editing, 2021, 2, 100010.	1.3	1
316	TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, 2, 100007.	1.3	54
317	USMB-shMincle: a virus-free gene therapy for blocking M1/M2 polarization of tumor-associated macrophages. Molecular Therapy - Oncolytics, 2021, 23, 26-37.	2.0	15
318	Futuristic approach to cancer treatment. Gene, 2021, 805, 145906.	1.0	17
319	Enzymatically produced piggyBac transposon vectors for efficient non-viral manufacturing of CD19-specific CAR TÂcells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 119-127.	1.8	8
320	Immune responses to CRISPR-Cas protein. Progress in Molecular Biology and Translational Science, 2021, 178, 213-229.	0.9	1
321	Patents, ethics, biosafety and regulation using CRISPR technology. Progress in Molecular Biology and Translational Science, 2021, 181, 345-365.	0.9	4
322	Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy. Cancer Treatment and Research Communications, 2021, 27, 100289.	0.7	7
323	Exploiting the CRISPR as9 geneâ€editing system for human cancers and immunotherapy. Clinical and Translational Immunology, 2021, 10, e1286.	1.7	11
324	The Landscape of Cell and Gene Therapies for Solid Tumors. Cancer Cell, 2021, 39, 7-8.	7.7	18
326	Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers, 2021, 13, 271.	1.7	39
327	Letter to the editor: Checking the pulse of adoptive cell therapy for solid tumors. Thoughts from the abstracts submitted to the 35th Annual Meeting of the Society for the Immunotherapy of Cancer (SITC) Tj ETQq	0 0 0 rgBT	/Ooverlock 10
328	DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Research in Cardiology, 2021, 116, 2.	2.5	5
329	RGEN Editing of RNA and DNA: The Long and Winding Road from Catalytic RNAs to CRISPR to the Clinic. Cell, 2020, 181, 955-960.	13.5	5
330	World-First Phase I Clinical Trial for CRISPR-Cas9 PD-1-Edited T-Cells in Advanced Nonsmall Cell Lung Cancer. Global Medical Genetics, 2020, 07, 073-074.	0.4	11

#	Article	IF	CITATIONS
335	CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 5127-5141.	3.9	49
336	Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. Journal of Clinical Investigation, 2020, 130, 6021-6033.	3.9	102
337	Evolution of Lung Cancer in the Context of Immunotherapy. Clinical Medicine Insights: Oncology, 2020, 14, 117955492097969.	0.6	6
338	Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI Journal, 2021, 20, 19-45.	0.5	6
339	Internal Checkpoint Regulates T Cell Neoantigen Reactivity and Susceptibility to PD1 Blockade. SSRN Electronic Journal, 0, , .	0.4	3
340	More Bang for Your Buck: "Off-The-Shelf―Solutions for Cell Replacement Therapy. StemJournal, 2020, 2, 1-5.	0.8	2
341	CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Frontiers in Oncology, 2020, 10, 697.	1.3	129
342	The Role of Immune Checkpoints after Cellular Therapy. International Journal of Molecular Sciences, 2020, 21, 3650.	1.8	7
343	The Application of the CRISPR/Cas9 System in the Treatment of Hepatitis B Liver Cancer. Technology in Cancer Research and Treatment, 2021, 20, 153303382110452.	0.8	1
344	Characterization of the Genomic and Immunologic Diversity of Malignant Brain Tumors through Multisector Analysis. Cancer Discovery, 2022, 12, 154-171.	7.7	34
345	A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 2021, 10, 2700.	1.8	25
346	Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Human Gene Therapy, 2021, 32, 1044-1058.	1.4	35
347	Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers, 2021, 13, 4986.	1.7	6
348	Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Molecular Cell, 2021, 81, 4747-4756.e7.	4.5	26
349	A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment. Biomolecules, 2021, 11, 1512.	1.8	12
350	Adoptive T-cell therapy for Hodgkin lymphoma. Blood Advances, 2021, 5, 4291-4302.	2.5	11
351	Speed and Location Both Matter: Antigen Stimulus Dynamics Controls CAR-T Cell Response. Frontiers in Immunology, 2021, 12, 748768.	2.2	4
352	Therapeutic application of sequence-specific binding molecules for novel genome editing tools. Drug Metabolism and Pharmacokinetics, 2021, 42, 100427.	1.1	3

	CHAHON	KLFORT	
# 353	ARTICLE Gene editing to enhance the efficacy of cancer cell therapies. Molecular Therapy, 2021, 29, 3153-3162.	lF 3.7	CITATIONS
354	Alignment of practices for data harmonization across multi-center cell therapy trials: a report from the Consortium for Pediatric Cellular Immunotherapy. Cytotherapy, 2021, , .	0.3	2
355	Application of genome editing technology in human gene therapy. Translational and Regulatory Sciences, 2020, 2, 100-106.	0.2	0
358	Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Molecular Therapy - Methods and Clinical Development, 2021, 23, 507-523.	1.8	21
360	The Future of Transplantation: Hope, Investigative Discipline, and Fairness. Organ and Tissue Transplantation, 2020, , 1-8.	0.0	0
361	Using X-ray Diffraction Techniques for Biomimetic Drug Development, Formulation, and Polymorphic Characterization. Biomimetics, 2021, 6, 1.	1.5	8
362	MHC and the Power of <i>P</i> . JNCI Cancer Spectrum, 2021, 5, pkaa116.	1.4	0
363	Double boost for cancer cell therapy. Nature Reviews Drug Discovery, 2020, 19, 165-165.	21.5	Ο
366	Contextual reprogramming of CAR-T cells for treatment of HER2+ cancers. Journal of Translational Medicine, 2021, 19, 459.	1.8	11
367	Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Scientific Reports, 2021, 11, 21407.	1.6	17
368	Engineered T-cell Receptor T Cells for Cancer Immunotherapy. Cancer Immunology Research, 2021, 9, 1252-1261.	1.6	16
369	Engineering T cells to survive and thrive in the hostile tumor microenvironment. Current Opinion in Biomedical Engineering, 2022, 21, 100360.	1.8	5
372	CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS ONE, 2020, 15, e0239411.	1.1	10
375	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	2.4	12
376	Intracellular RNase activity dampens zinc finger nuclease-mediated gene editing in hematopoietic stem and progenitor cells. Molecular Therapy - Methods and Clinical Development, 2022, 24, 30-39.	1.8	4
377	Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. Inorganics, 2021, 9, 83.	1.2	9
378	Born to survive: how cancer cells resist CAR T cell therapy. Journal of Hematology and Oncology, 2021, 14, 199.	6.9	59
379	CRISPR/Cas9-mediated TGFβRII disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells in vitro. Journal of Translational Medicine, 2021, 19, 482.	1.8	14

#	Article	IF	CITATIONS
380	Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Reports Medicine, 2021, 2, 100449.	3.3	39
381	Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. International Journal of Molecular Sciences, 2021, 22, 12126.	1.8	8
382	Emerging therapeutic targets for cerebral edema. Expert Opinion on Therapeutic Targets, 2021, 25, 917-938.	1.5	15
383	T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers, 2021, 13, 6067.	1.7	9
384	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	13.5	160
385	The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 2022, 40, 135-152.	4.4	16
386	Applications of CRISPR-Cas System in Tumor Biology. Oncologie, 2021, 23, 463-492.	0.2	1
387	Targeting the undruggable oncogenic KRAS: the dawn of hope. JCI Insight, 2022, 7, .	2.3	27
388	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	4.8	82
390	How CRISPR/Cas9 Gene Editing Is Revolutionizing T Cell Research. DNA and Cell Biology, 2022, 41, 53-57.	0.9	1
390 391	How CRISPR/Cas9 Gene Editing Is Revolutionizing T Cell Research. DNA and Cell Biology, 2022, 41, 53-57. Mitochondrial Genome Editing to Treat Human Osteoarthritis—A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467.	0.9 1.8	1
	Mitochondrial Genome Editing to Treat Human Osteoarthritis—A Narrative Review. International		
391	Mitochondrial Genome Editing to Treat Human Osteoarthritis—A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma.	1.8	8
391 392	 Mitochondrial Genome Editing to Treat Human Osteoarthritisâ€"A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467. Off-the-shelf, steroid-resistant, IL13Rî±2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. 	1.8 0.6	8 32
391 392 393	 Mitochondrial Genome Editing to Treat Human Osteoarthritis—A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Frontiers in Oncology, 2021, 11, 704999. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. Journal 	1.8 0.6 1.3	8 32 8
391 392 393 394	Mitochondrial Genome Editing to Treat Human Osteoarthritisâ€"A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467. Off-the-shelf, steroid-resistant, IL13RÎ+2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Frontiers in Oncology, 2021, 11, 704999. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. Journal of Allergy and Clinical Immunology, 2022, 149, 1-11. Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen	1.8 0.6 1.3 1.5	8 32 8 21
 391 392 393 394 395 	Mitochondrial Genome Editing to Treat Human Osteoarthritisâ€"A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 1467. Off-the-shelf, steroid-resistant, IL13RÎ+2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Frontiers in Oncology, 2021, 11, 704999. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. Journal of Allergy and Clinical Immunology, 2022, 149, 1-11. Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen Receptor T Cells in Solid Tumors. Molecular and Cellular Biology, 2022, 42, MCB0044921. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling.	1.8 0.6 1.3 1.5 1.1	8 32 8 21 8

#	Article	IF	CITATIONS
399	Clinical Pharmacology Perspectives for Adoptive Cell Therapies in Oncology. Clinical Pharmacology and Therapeutics, 2022, 112, 968-981.	2.3	11
400	ON-Target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. CRISPR Journal, 2022, 5, 19-30.	1.4	27
401	CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.	4.5	90
402	Impact of Formulation Conditions on Lipid Nanoparticle Characteristics and Functional Delivery of CRISPR RNP for Gene Knock-Out and Correction. Pharmaceutics, 2022, 14, 213.	2.0	13
403	CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochemical Genetics, 2022, 60, 1446-1470.	0.8	3
404	TCR-T Immunotherapy: The Challenges and Solutions. Frontiers in Oncology, 2021, 11, 794183.	1.3	36
405	Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells, 2022, 11, 410.	1.8	9
406	Current state and next-generation CAR-T cells in multiple myeloma. Blood Reviews, 2022, 54, 100929.	2.8	38
407	The potential of CRISPR guided therapies in the dermatology clinic. JID Innovations, 2022, 2, 100103.	1.2	1
408	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	0.9	11
409	CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nature Communications, 2022, 13, 627.	5.8	65
410	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	12.8	101
411	Challenges of CRISPR-Based Gene Editing in Primary T Cells. International Journal of Molecular Sciences, 2022, 23, 1689.	1.8	10
412	Transcriptional determinants of cancer immunotherapy response and resistance. Trends in Cancer, 2022, 8, 404-415.	3.8	9
413	CRISPR/Cas9-based multiplex genome editing of BCL11A and HBC efficiently induces fetal hemoglobin expression. European Journal of Pharmacology, 2022, 918, 174788.	1.7	10
414	Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive TÂcell therapy. Molecular Therapy - Oncolytics, 2022, 24, 417-428.	2.0	19
415	CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Science Translational Medicine, 2022, 14, eabg8027.	5.8	21
416	Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Frontiers in Immunology, 2022, 13, 830292.	2.2	24

#	Article	IF	CITATIONS
417	The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle?. Biomedicines, 2022, 10, 400.	1.4	5
418	Challenges of chimeric antigen receptor T-cell therapy in chronic lymphocytic leukemia: lessons learned. Experimental Hematology, 2022, 108, 1-7.	0.2	9
419	Elucidation of CRISPR-Cas9 application in novel cellular immunotherapy. Molecular Biology Reports, 2022, 49, 7069-7077.	1.0	9
420	Single-Cell Sequencing Unveils the Heterogeneity of Nonimmune Cells in Chronic Apical Periodontitis. Frontiers in Cell and Developmental Biology, 2021, 9, 820274.	1.8	9
421	Adoptive cell therapies in thoracic malignancies. Cancer Immunology, Immunotherapy, 2022, 71, 2077-2098.	2.0	4
422	Gene Editing with CRISPR/Cas Methodology and Thyroid Cancer: Where Are We?. Cancers, 2022, 14, 844.	1.7	5
423	Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nature Communications, 2021, 12, 7264.	5.8	55
424	Modified T cells as therapeutic agents. Hematology American Society of Hematology Education Program, 2021, 2021, 296-302.	0.9	3
425	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	7.9	85
426	CRISPR Genome Editing: Into the Second Decade. , 2022, 1, 37-39.		1
427	Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges. Cancers, 2022, 14, 947.	1.7	17
428	Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 2594.	1.8	14
429	Adoptive Cell Therapy in Pediatric and Young Adult Solid Tumors: Current Status and Future Directions. Frontiers in Immunology, 2022, 13, 846346.	2.2	9
430	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
431	CRISPR's Path to the Clinic. CRISPR Journal, 2022, 5, 2-3.	1.4	1
432	Molecular Manipulations and Intestinal Stem Cell-Derived Organoids in Inflammatory Bowel Disease. Stem Cells, 2022, 40, 447-457.	1.4	6
433	Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2022, 10, 830208.	1.8	13
436	Human epigenetic and transcriptional TÂcell differentiation atlas for identifying functional TÂcell-specific enhancers. Immunity, 2022, 55, 557-574.e7.	6.6	47

#	Article	IF	CITATIONS
437	CAR T cell therapy for multiple myeloma: What have we learned?. Leukemia, 2022, 36, 1481-1484.	3.3	3
438	Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2022, 23, 3154.	1.8	15
439	Emerging Strategies in TCR-Engineered T Cells. Frontiers in Immunology, 2022, 13, 850358.	2.2	20
440	Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Frontiers in Immunology, 2022, 13, 835762.	2.2	62
441	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	7.9	88
442	CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Frontiers in Genome Editing, 2022, 4, 793010.	2.7	2
443	STAT3 Role in T-Cell Memory Formation. International Journal of Molecular Sciences, 2022, 23, 2878.	1.8	10
444	Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Frontiers in Immunology, 2022, 13, 848327.	2.2	11
445	CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Molecular Cancer, 2022, 21, 83.	7.9	26
446	Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomarker Research, 2022, 10, 13.	2.8	4
447	CRISPR–Cas9 gene editing induced complex on-target outcomes in human cells. Experimental Hematology, 2022, 110, 13-19.	0.2	6
448	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med, 2022, 3, 167-187.	2.2	7
450	Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular Cancer, 2022, 21, 64.	7.9	45
451	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	5.8	40
452	Molecular and Functional Signatures Associated with CAR T Cell Exhaustion and Impaired Clinical Response in Patients with B Cell Malignancies. Cells, 2022, 11, 1140.	1.8	8
453	Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes. CRISPR Journal, 2022, 5, 397-409.	1.4	6
454	CRISPR Gene Editing of Human Primary NK and T Cells for Cancer Immunotherapy. Frontiers in Oncology, 2022, 12, 834002.	1.3	8
455	Donor T cells for CAR T cell therapy. Biomarker Research, 2022, 10, 14.	2.8	9

ARTICLE IF CITATIONS # Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and 456 3.7 17 purity. Molecular Therapy, 2022, 30, 2452-2463. Delivery of mRNA for regulating functions of immune cells. Journal of Controlled Release, 2022, 345, 4.8 28 494-511. Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing. 458 4.8 9 Journal of Controlled Release, 2022, 345, 108-119. CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology 1.1 Letters, 2022, 245, 18-28. InÂvivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Molecular Therapy 460 1.8 8 - Methods and Clinical Development, 2022, 25, 137-146. Strategies to Circumvent the Side-Effects of Immunotherapy Using Allogeneic CAR-T Cells and Boost Its Efficacy: Results of Recent Clinical Trials. Frontiers in Immunology, 2021, 12, 780145. 2.2 Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 TÂcell expansion 462 2.9 22 and anti-tumor immunity. Cell Reports, 2021, 37, 110083. Chimeric Antigen Receptors and Regulatory T Cells: The Potential for HLA-Specific Immunosuppression 3.2 in Transplantation. Engineering, 2022, 10, 30-43. You can't keep a bad idea down: Dark history, death, and potential rebirth of eugenics. Anatomical 464 0.8 8 Record, 2022, 305, 902-937. Genome Editing among Bioethics and Regulatory Practices. Biomolecules, 2022, 12, 13. 1.8 CRISPR Screens to Identify Regulators of Tumor Immunity. Annual Review of Cancer Biology, 2022, 6, 466 2.35 103-122. La modificaciÃ³n del cÃ³digo genético. Tarbiya Revista De InvestigaciÃ³n E InnovaciÃ³n Educativa, 2021, , . 0.1 Cancer therapies: Caveats, concerns, and momentum., 2022, , 401-430. 468 0 RNA delivery for cancer gene therapy., 2022, , 375-424. 469 470 Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99. 7.9 89 Computational normal mode analysis accurately replicates the activity and specificity profiles of CRISPR-Cas9 and high-fidelity variants. Computational and Structural Biotechnology Journal, 2022, 20, 471 1.9 <u>2013-2019.</u> Next-Generation CAR T-cell Therapies. Cancer Discovery, 2022, 12, 1625-1633. 472 7.7 53 Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. 473 Molecular Cancer, 2022, 21, 98.

	Сітатіо	n Report	
#	Article	IF	CITATIONS
474	Engineered cellular immunotherapies in cancer and beyond. Nature Medicine, 2022, 28, 678-689.	15.2	106
478	High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. Journal of Experimental Medicine, 2022, 219, .	4.2	30
479	Regulatory Considerations for Clinical Trial Applications with CRISPR-Based Medicinal Products. CRISPR Journal, 2022, 5, 364-376.	1.4	7
481	Role of CRISPR Technology in Gene Editing of Emerging and Re-emerging Vector Borne Disease. , 0, , .		1
482	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	3.9	8
483	Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells, 2022, 11, 1612.	1.8	7
484	Chimeric Antigen Receptor Based Cellular Therapy for Treatment Of T-Cell Malignancies. Frontiers in Oncology, 2022, 12, .	1.3	11
485	Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.	0.6	45
486	Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero?. Frontiers in Immunology, 2022, 13, .	2.2	31
487	Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials, 2022, 286, 121567.	5.7	19
488	Novel immunotherapies in multiple myeloma. International Journal of Hematology, 2022, 115, 799-810.	0.7	3
489	Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Frontiers in Oncology, 2022, 12, . 2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR,	1.3	4
490	Chiral Assays, Óligos; Nanomedicines Bioanalýsis; ICH M1Ó Section 7.1; Non-Liquid & Rare Matrices; Regulatory InputsÂ(<u>Part 1A</u> – Recommendations on Endogenous Compounds, Small Molecules,) 1	ij ETQqQQ0 rg	BT /Overlock
491	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2022, 255, 130.	1.6	17
492	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. , 2022, 10, e003486.		21
495	Genome Editing With TALEN, CRISPR-Cas9 and CRISPR-Cas12a in Combination With AAV6 Homology Donor Restores T Cell Function for XLP. Frontiers in Genome Editing, 2022, 4, .	2.7	8
496	Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
497	The origin of unwanted editing byproducts in gene editing. Acta Biochimica Et Biophysica Sinica, 2022, 54, 767-781.	0.9	6

#	Article	IF	CITATIONS
498	Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nature Communications, 2022, 13, .	5.8	18
499	Exhaustion of CAR T cells: potential causes and solutions. Journal of Translational Medicine, 2022, 20,	1.8	32
500	Irreversible Loss of HIV-1 Proviral Competence in Myeloid Cells upon Suppression of NF-κB Activity. Journal of Virology, 2022, 96, .	1.5	1
501	Epigenetic regulation of T cell exhaustion. Nature Immunology, 2022, 23, 848-860.	7.0	82
502	PTPN22: structure, function, and developments in inhibitor discovery with applications for immunotherapy. Expert Opinion on Drug Discovery, 2022, 17, 825-837.	2.5	3
503	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
504	Gene Editing of Checkpoint Molecules in Cord Blood-Derived Dendritic Cells and CD8 ⁺ T Cells Using CRISPR-Cas9. CRISPR Journal, 2022, 5, 435-444.	1.4	0
505	GREPore-seq: A robust workflow to detect changes after gene editing through long-range PCR and nanopore sequencing. Genomics, Proteomics and Bioinformatics, 2022, , .	3.0	5
506	PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	77
507	The Past, Present, and Future of Non-Viral CAR T Cells. Frontiers in Immunology, 0, 13, .	2.2	39
508	Review: Sustainable Clinical Development of CAR-T Cells – Switching From Viral Transduction Towards CRISPR-Cas Gene Editing. Frontiers in Immunology, 0, 13, .	2.2	20
509	Gene Edited T Cell Therapies for Inborn Errors of Immunity. Frontiers in Genome Editing, 0, 4, .	2.7	3
510	Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discover Oncology, 2022, 13, .	0.8	2
511	Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nature Communications, 2022, 13, .	5.8	8
513	Engineering Next-Generation CAR-T Cells: Overcoming Tumor Hypoxia and Metabolism. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 193-216.	3.3	15
514	Harnessing the T Cell to Treat Multiple Myeloma: Dawn of a New Therapeutic Paradigm. Frontiers in Oncology, 0, 12, .	1.3	2
515	Tumour burden and antigen-specific T cell magnitude represent major parameters for clinical response to cancer vaccine and TCR-engineered T cell therapy. European Journal of Cancer, 2022, 171, 96-105.	1.3	3
516	Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine, 2022, 156, 155920.	1.4	4

#	Article	IF	CITATIONS
517	Approaches towards biomaterial-mediated gene editing for cancer immunotherapy. Biomaterials Science, 2022, 10, 6675-6687.	2.6	3
518	Protection is not always a good thing: The immune system's impact on gene therapy. Genetics and Molecular Biology, 2022, 45, .	0.6	2
519	NaÃ ⁻ ve Primary Mouse CD8+ T Cells Retain In Vivo Immune Responsiveness After Electroporation-Based CRISPR/Cas9 Genetic Engineering. Frontiers in Immunology, 0, 13, .	2.2	1
520	NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. , 2022, 10, e003811.		26
521	A TCR-like CAR Promotes Sensitive Antigen Recognition and Controlled T-cell Expansion Upon mRNA Vaccination. Cancer Research Communications, 2022, 2, 827-841.	0.7	5
522	Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nature Communications, 2022, 13, .	5.8	30
523	Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. Molecular Therapy - Nucleic Acids, 2022, 29, 979-995.	2.3	16
524	The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring "Multiple Myelomas― Cancers, 2022, 14, 3271.	1.7	5
525	Immunotherapy of sarcomas with modified T cells. Current Opinion in Oncology, 2022, 34, 362-370.	1.1	5
526	Progress of delivery methods for CRISPR-Cas9. Expert Opinion on Drug Delivery, 2022, 19, 913-926.	2.4	14
527	Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. , 2022, 39, .		0
528	EBAG9 silencing exerts an immune checkpoint function without aggravating adverse effects. Molecular Therapy, 2022, 30, 3358-3378.	3.7	2
529	Crosstalk of Redox-Related Subtypes, Establishment of a Prognostic Model and Immune Responses in Endometrial Carcinoma. Cancers, 2022, 14, 3383.	1.7	5
530	Barriers and Opportunities for CAR T-Cell Targeting of Solid Tumors. Immunological Investigations, 2022, 51, 2215-2225.	1.0	5
531	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	3.1	2
532	Therapeutic inÂvivo delivery of gene editing agents. Cell, 2022, 185, 2806-2827.	13.5	131
533	Antitumor CAR T-cell Screening Platform: Many Are Called, but Few Are Chosen. Cancer Research, 2022, 82, 2517-2519.	0.4	2
534	Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Reviews, 2023, 57, 100991.	2.8	5

	CITATION	KEPURI	
#	Article	IF	CITATIONS
535	Genome-Edited T Cell Therapies. Hematology/Oncology Clinics of North America, 2022, 36, 729-744.	0.9	0
536	CRISPR/Cas9-medaited knockout of endogenous T-cell receptor in Jurkat cells and generation of NY-ESO-1-specific T cells: An in vitro study. International Immunopharmacology, 2022, 110, 109055.	1.7	5
537	A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Frontiers in Pharmacology, 0, 13, .	1.6	10
538	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	2.7	5
539	Programming of Regulatory T Cells In Situ for Nerve Regeneration and Long-Term Patency of Vascular Grafts. Research, 2022, 2022, .	2.8	3
540	HIV cure strategies: which ones are appropriate for Africa?. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	4
541	PARP11 interfer(on)es with CAR T cell efficacy. Nature Cancer, 2022, 3, 790-792.	5.7	2
546	Non-synergy of PD-1 blockade with T-cell therapy in solid tumors. , 2022, 10, e004906.		3
547	Severe infections in recipients of cancer immunotherapy: what intensivists need to know. Current Opinion in Critical Care, 2022, 28, 540-550.	1.6	5
548	Internal checkpoint regulates TÂcell neoantigen reactivity and susceptibility to PD1 blockade. Med, 2022, 3, 682-704.e8.	2.2	22
549	Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discovery Today, 2022, 27, 103337.	3.2	2
550	Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Frontiers in Immunology, 0, 13, .	2.2	6
551	Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, .	2.2	22
552	Designing and executing prime editing experiments in mammalian cells. Nature Protocols, 2022, 17, 2431-2468.	5.5	35
553	Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Molecular Biotechnology, 0, , .	1.3	0
554	Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Frontiers in Immunology, 0, 13, .	2.2	8
555	The CRISPR Revolution in the Drug Discovery Workflow: An Industry Perspective. CRISPR Journal, 2022, 5, 634-641.	1.4	2
556	High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nature Biotechnology, 2023, 41, 521-531.	9.4	77

# 557	ARTICLE New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing	IF 1.8	CITATIONS
558	Delivery. International Journal of Molecular Sciences, 2022, 23, 8750. A bibliometric and scientific knowledge-map study of the chimeric antigen receptor (CAR) natural killer (NK) cell-related research from 2010 to 2022. Frontiers in Immunology, 0, 13, .	2.2	3
559	Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nature Biomedical Engineering, 2022, 6, 1284-1297.	11.6	27
560	RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature, 2022, 609, 174-182.	13.7	65
562	Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. Molecular Therapy - Nucleic Acids, 2022, 29, 551-562.	2.3	8
563	CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treatment and Research Communications, 2022, 33, 100641.	0.7	6
564	The Interface of Cancer, Their Microenvironment and Nanotechnology. Oncologie, 2022, 24, 371-411.	0.2	2
565	Allele-specific silencing of the gain-of-function mutation in Huntington's disease using CRISPR/Cas9. JCI Insight, 2022, 7, .	2.3	9
566	T-Cell-Based Cellular Immunotherapy of Multiple Myeloma: Current Developments. Cancers, 2022, 14, 4249.	1.7	2
567	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules, 2022, 27, 5607.	1.7	12
568	Paving the Way to Solid Tumors: Challenges and Strategies for Adoptively Transferred Transgenic T Cells in the Tumor Microenvironment. Cancers, 2022, 14, 4192.	1.7	6
569	Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature, 2022, 609, 369-374.	13.7	113
570	Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	97
571	Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9
572	Contribution of immune cells to bone metastasis pathogenesis. Frontiers in Endocrinology, 0, 13, .	1.5	1
573	Genome Editing Approaches with CRISPR/Cas9 for Cancer Treatment: Critical Appraisal of Preclinical and Clinical Utility, Challenges, and Future Research. Cells, 2022, 11, 2781.	1.8	4
574	Treatment of Genetic Diseases With CRISPR Genome Editing. JAMA - Journal of the American Medical Association, 2022, 328, 980.	3.8	9
576	Ethical assessment of genome editing applications in oncological patients. , 2022, , .		Ο

#	Article	IF	CITATIONS
577	Production and characterization of virus-free, CRISPR-CAR T cells capable of inducing solid tumor regression. , 2022, 10, e004446.		18
579	High-throughput TÂcell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity, 2022, 55, 1953-1966.e10.	6.6	17
580	Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS Nano, 2022, 16, 15653-15680.	7.3	5
581	Nanomaterial-assisted CRISPR gene-engineering – A hallmark for triple-negative breast cancer therapeutics advancement. Materials Today Bio, 2022, 16, 100450.	2.6	7
582	Gene Therapy for Human Diseases: Recent Achievements and Near-Term Development Prospects. Russian Archives of Internal Medicine, 2022, 12, 363-369.	0.0	1
583	Germline stem cells in human. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	12
584	Concurrent transposon engineering and CRISPR/Cas9 genome editing of primary CLL-1 chimeric antigen receptor–natural killer cells. Cytotherapy, 2022, 24, 1087-1094.	0.3	8
585	CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 2022, 185, 106480.	3.1	3
586	Recent advances in the production, reprogramming, and application of CAR-T cells for treating hematological malignancies. Life Sciences, 2022, 309, 121016.	2.0	6
587	Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by inÂvivo CRISPR-Cas9 delivery using adenoviral vectors. Molecular Therapy - Methods and Clinical Development, 2022, 27, 96-108.	1.8	9
588	CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technology in Cancer Research and Treatment, 2022, 21, 153303382211320.	0.8	9
589	The journey of CAR-T therapy in hematological malignancies. Molecular Cancer, 2022, 21, .	7.9	45
590	Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Science Translational Medicine, 2022, 14, .	5.8	52
591	Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system. Molecular Therapy, 2023, 31, 260-268.	3.7	1
592	Clinical application of cellâ€based therapies opportunities and challenges. Clinical and Translational Discovery, 2022, 2, .	0.2	0
593	Divergent clonal differentiation trajectories of T cell exhaustion. Nature Immunology, 2022, 23, 1614-1627.	7.0	49
594	Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. Journal of Hematology and Oncology, 2022, 15, .	6.9	59
595	CRISPR/Cas9-induced structural variations expand in T lymphocytes <i>in vivo</i> . Nucleic Acids Research, 2022, 50, 11128-11137.	6.5	9

#	Article	IF	CITATIONS
596	Enhancing the Antitumor Immunity of T Cells by Engineering the Lipid-Regulatory Site of the TCR/CD3 Complex. Cancer Immunology Research, 2023, 11, 93-108.	1.6	3
597	Tumor buster - where will the CAR-T cell therapy â€ [~] missile' go?. Molecular Cancer, 2022, 21, .	7.9	23
598	Next generations of CAR-T cells - new therapeutic opportunities in hematology?. Frontiers in Immunology, 0, 13, .	2.2	24
599	Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation, 2023, 107, 86-97.	0.5	5
600	Genome-edited allogeneic donor "universal―chimeric antigen receptor T cells. Blood, 2023, 141, 835-845.	0.6	11
602	Clinical implications of T cell exhaustion for cancer immunotherapy. Nature Reviews Clinical Oncology, 2022, 19, 775-790.	12.5	182
603	Emerging frontiers in immuno- and gene therapy for cancer. Cytotherapy, 2023, 25, 20-32.	0.3	3
604	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	1.7	5
605	Immunotherapy for the treatment of multiple myeloma. Frontiers in Immunology, 0, 13, .	2.2	11
606	Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clinical Cancer Research, 2023, 29, 843-857.	3.2	4
607	Bio-Orthogonal Chemistry Conjugation Strategy Facilitates Investigation of N-methyladenosine and Thiouridine Guide RNA Modifications on CRISPR Activity. CRISPR Journal, 2022, 5, 787-798.	1.4	4
608	Non-viral precision T cell receptor replacement for personalized cell therapy. Nature, 2023, 615, 687-696.	13.7	85
609	Enhanced T cell effector activity by targeting the Mediator kinase module. Science, 2022, 378, .	6.0	37
610	CRISPR nuclease off-target activity and mitigation strategies. Frontiers in Genome Editing, 0, 4, .	2.7	14
612	Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells, 2022, 11, 3626.	1.8	5
614	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
615	In vivo gene immunotherapy for cancer. Science Translational Medicine, 2022, 14, .	5.8	5
616	BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. Science Translational Medicine, 2022, 14, .	5.8	25

#	Article	IF	CITATIONS
617	Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. Journal of Translational Medicine, 2022, 20, .	1.8	11
618	Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sciences, 2023, 312, 121204.	2.0	4
619	Engineered TÂcell therapy for viral and non-viral epithelial cancers. Cancer Cell, 2023, 41, 58-69.	7.7	13
620	Current strategies employed in the manipulation of gene expression for clinical purposes. Journal of Translational Medicine, 2022, 20, .	1.8	12
621	Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins. Biomaterials, 2023, 293, 121959.	5.7	13
622	CRISPR/Cas systems: Delivery and application in gene therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	12
623	PD-1-CD28 fusion protein strengthens mesothelin-specific TRuC T cells in preclinical solid tumor models. Cellular Oncology (Dordrecht), 2023, 46, 227-235.	2.1	7
624	High-content CRISPR screening in tumor immunology. Frontiers in Immunology, 0, 13, .	2.2	3
625	Innovation in BCMA CAR-T therapy: Building beyond the Model T. Frontiers in Oncology, 0, 12, .	1.3	4
626	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
628	CRISPR screens for functional interrogation of immunity. Nature Reviews Immunology, 2023, 23, 363-380.	10.6	11
629	Optimization of <scp>CRISPR–Cas</scp> system for clinical cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	3.9	3
630	Cancer Immunotherapy Beyond Checkpoint Blockade. JACC: CardioOncology, 2022, 4, 563-578.	1.7	1
632	Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell, 2022, 40, 1470-1487.e7.	7.7	11
633	Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nature Genetics, 2023, 55, 34-43.	9.4	28
634	From amputations to antibiotics: A future beyond "hacksaw―gene editing. Molecular Therapy, 2022, 30, 3505-3506.	3.7	0
636	Cancer immunotherapy with CAR T cells: well-trodden paths and journey along lesser-known routes. Radiology and Oncology, 2022, 56, 409-419.	0.6	2
637	RNA in Therapeutics: CRISPR in the Clinic. Molecules and Cells, 2023, 46, 4-9.	1.0	1

#	Article	IF	Citations
638	Gene Therapy and Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2023, , 235-254.	0.8	1
640	Extru-seq: a method for predicting genome-wide Cas9 off-target sites with advantages of both cell-based and in vitro approaches. Genome Biology, 2023, 24, .	3.8	3
641	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.4	5
642	Nonchromatographic Purification of Synthetic RNA. , 2023, , 1-18.		0
643	Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Molecular Therapy, 2023, 31, 1088-1105.	3.7	6
644	Molecular and therapeutic effect of CRISPR in treating cancer. , 2023, 40, .		2
645	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
646	Towards Novel Gene and Cell Therapy Approaches for Cervical Cancer. Cancers, 2023, 15, 263.	1.7	2
647	The potential role of short chain fatty acids improving ex vivo T and CAR-T cell fitness and expansion for cancer immunotherapies. Frontiers in Immunology, 0, 14, .	2.2	0
648	Chimeric antigen receptor-modified cells for the treatment of solid tumors: First steps in a thousand-mile march. , 2023, , 97-131.		0
649	Emerging Challenges to Cellular Therapy of Cancer. Cancer Journal (Sudbury, Mass), 2023, 29, 20-27.	1.0	2
650	Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharmaceutical Research, 2023, 40, 3-25.	1.7	11
651	CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
652	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	1.6	0
653	Long-term persistence and functionality of adoptively transferred antigen-specific T cells with genetically ablated PD-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
654	Programming CAR T Cell Tumor Recognition: Tuned Antigen Sensing and Logic Gating. Cancer Discovery, 2023, 13, 829-843.	7.7	23
655	Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes and Diseases, 2024, 11, 268-282.	1.5	5
656	Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+. Nature Methods, 2023, 20, 706-713.	9.0	5

#	Article	IF	CITATIONS
657	Engineering second-generation TCR-T cells by site-specific integration of TRAF-binding motifs into the <i>CD247 </i> locus. , 2023, 11, e005519.		2
658	Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomedicine and Pharmacotherapy, 2023, 162, 114609.	2.5	4
659	Non-viral chimeric antigen receptor (CAR) T cells going viral. Immuno-Oncology Technology, 2023, 18, 100375.	0.2	8
660	Viral Vectors, Exosomes, and Vexosomes: Potential armamentarium for delivering CRISPR/Cas to cancer cells. Biochemical Pharmacology, 2023, 212, 115555.	2.0	8
662	Biology and status of chimeric antigen receptor-engineered T cell therapy. , 2023, , 149-165.		0
663	Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology, 2023, 12, 218.	1.3	27
664	CRISPR/Cas genome editing in triple negative breast cancer: Current situation and future directions. Biochemical Pharmacology, 2023, 209, 115449.	2.0	3
666	Retroviruses: Reversing the dogma of life - A review. Journal of Clinical Microbiology and Biochemical Technology, 2022, 8, 018-028.	0.4	0
667	The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells. ACS Synthetic Biology, 2023, 12, 375-389.	1.9	12
668	CRISPR-Cas9 Fundamental Uses: Analysis of Human Genome Engineering Through CRISPR/Cas9. , 2022, , 2464-2473.		0
669	Optimizing the manufacturing and antitumour response of CARÂT therapy. , 2023, 1, 271-285.		14
670	Learning from the nexus of autoimmunity and cancer. Immunity, 2023, 56, 256-271.	6.6	4
671	TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. Science Advances, 2023, 9, .	4.7	58
672	Immunogenicity of CRISPR therapeutics—Critical considerations for clinical translation. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	9
673	TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. , 2023, 11, e006121.		1
675	CAR immune cells: design principles, resistance and the next generation. Nature, 2023, 614, 635-648.	13.7	96
676	A Database of Lung Cancer-Related Genes for the Identification of Subtype-Specific Prognostic Biomarkers. Biology, 2023, 12, 357.	1.3	1
677	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6

#	ARTICLE	IF	CITATIONS
678	Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Therapy, 2023, 30, 936-954.	2.2	15
679	Selection of highly responsive T cell receptors by an analysis combining the expression of multiple markers. Cancer Science, 2023, 114, 2254-2264.	1.7	Ο
680	Single cell transcriptomics reveals reduced stress response in stem cells manipulated using localized electric fields. Materials Today Bio, 2023, 19, 100601.	2.6	2
681	Transgenic HA-1-Specific CD8+ T-Lymphocytes Selectively Target Leukemic Cells. Cancers, 2023, 15, 1592.	1.7	0
682	Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Frontiers in Immunology, 0, 14, .	2.2	13
683	Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Current Stem Cell Research and Therapy, 2024, 19, 307-315.	0.6	0
684	Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Frontiers in Immunology, 0, 14, .	2.2	12
685	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
686	Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	19
688	The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers, 2023, 15, 1813.	1.7	7
689	CLASH of the Titans: How CAR-T Cells Can Triumph Over Tumors. CRISPR Journal, 2023, 6, 87-89.	1.4	0
691	Remote control of cellular immunotherapy. , 2023, 1, 440-455.		4
692	CRISPR/Cas9 Gene Editing System Can Alter Gene Expression and Induce DNA Damage Accumulation. Genes, 2023, 14, 806.	1.0	0
693	Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Frontiers in Medicine, 0, 10, .	1.2	3
694	Harnessing the power of gene-editing to develop the next generation of CAR-T cells. , 2023, , .		1
695	CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103.	1.8	7
696	A lentiviral vector for the production of T cells with an inducible transgene and a constitutively expressed tumour-targeting receptor. Nature Biomedical Engineering, 2023, 7, 1063-1080.	11.6	3
697	Cardiac Mechanoperception and Mechanotransduction: Mechanisms of Stretch Sensing in Cardiomyocytes and Implications for Cardiomyopathy. Cardiac and Vascular Biology, 2023, , 1-35.	0.2	0

#	Article	IF	CITATIONS
698	Allogeneic chimeric antigen receptor-T cells with CRISPR-disrupted programmed death-1 checkpoint exhibit enhanced functional fitness. Cytotherapy, 2023, 25, 750-762.	0.3	4
711	A gentler yield of ex vivo-edited T cells. Nature Biomedical Engineering, 2023, 7, 607-608.	11.6	0
728	Nucleic Acid Editing. , 2023, , 365-416.		0
739	A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Functional and Integrative Genomics, 2023, 23, .	1.4	10
746	Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. Advances in Experimental Medicine and Biology, 2023, , 85-110.	0.8	0
750	The Promise of Immunotherapeutics and Vaccines in the Treatment of Cancer. , 2023, , 1-43.		1
751	Nonchromatographic Purification of Synthetic RNA. , 2023, , 2493-2510.		0
764	Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397, 1311-1326.	1.4	0
773	Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	0
796	T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nature Reviews Drug Discovery, 2023, 22, 996-1017.	21.5	7
797	CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nature Reviews Clinical Oncology, 2024, 21, 47-66.	12.5	14
811	Forks in the road for CAR T and CAR NK cell cancer therapies. Nature Immunology, 2023, 24, 1994-2007.	7.0	4
815	Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2024, , 151-165.	0.4	0
834	A society-wide conversation is needed about germline genome editing using CRISPR. Nature Medicine, 2024, 30, 30-32.	15.2	0
849	Gene Editing Approaches for Haematological Disorders. , 2024, , .		0
871	Gene Editing and Gene Therapies in Cancer Treatment. , 2023, , 690-710.		0