Mining in Papua New Guinea: A complex story of trends

Science of the Total Environment 741, 140375

DOI: 10.1016/j.scitotenv.2020.140375

Citation Report

#	Article	IF	CITATIONS
1	Unseen existences: Stories of life from Venembeli, Papua New Guinea. The Extractive Industries and Society, 2021, 8, 100805.	1.2	1
2	Understanding why impact assessment fails; a case study of theory and practice from Wafi-Golpu, Papua New Guinea. Environmental Impact Assessment Review, 2021, 89, 106582.	9.2	6
3	Rendering mine closure governable and constraints to inclusive development in the Andean region. Resources Policy, 2021, 72, 102053.	9.6	7
4	The cost of mining benefits: Localising the resource curse hypothesis. Resources Policy, 2021, 74, 102289.	9.6	10
5	Assessing the Availability of Global Metals and Minerals for the Sustainable Century: From Aluminium to Zirconium. Sustainability, 2021, 13, 10855.	3.2	13
6	Impacts of mining projects in Papua New Guinea on livelihoods and poverty in indigenous mining communities. Mineral Economics, 2023, 36, 13-27.	2.8	3
7	A case based, combined LCA and S-ROI methodology for sustainable mining in the Suceava County, Romania. Present Environment and Sustainable Development, 2021, 15, 209-2020.	0.3	0
8	The world-wide waste web. Nature Communications, 2022, 13, 1615.	12.8	19
9	Regionalized Life Cycle Inventories of Global Sulfidic Copper Tailings. Environmental Science & Emp; Technology, 2022, 56, 4553-4564.	10.0	21
10	Rapid assessment of mine rehabilitation areas with airborne LiDAR and deep learning: bauxite strip mining in Queensland, Australia. Geocarto International, 2022, 37, 11223-11252.	3.5	9
11	The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science and Health, 2022, 27, 100347.	4.1	23
12	Ecological footprint accounting of mining areas and metal production of the world. Resources, Conservation and Recycling, 2022, 183, 106384.	10.8	7
13	The New Century for Nickel Resources, Reserves, and Mining: Reassessing the Sustainability of the Devil's Metal. Economic Geology, 2022, 117, 1961-1983.	3.8	19
14	Impact of mining on the metal content of dust in indigenous villages of northern Chile. Environment International, 2022, 169, 107490.	10.0	16
15	Local perceptions of small-scale metal mining development in post-conflict transition countries: The case of Bosnia and Herzegovina. The Extractive Industries and Society, 2023, 13, 101225.	1.2	0
16	Recent practices in mine tailings' recycling and reuse. , 2023, , 271-304.		2
17	Geochemical Characterization of Rock Samples from Selected Fiji Mine Sites to Evaluate On-Site Environmental Vulnerabilities. Minerals (Basel, Switzerland), 2023, 13, 661.	2.0	3
18	Multidimensional poverty and small-scale mining in the shadow of large-scale mines in Papua New Guinea. Journal of Rural Studies, 2023, 101, 103045.	4.7	0

CITATION REPORT

#	Article	IF	CITATION
19	History matters: societal acceptance of deep-sea mining and incipient conflicts in Papua New Guinea. Maritime Studies, 2023, 22, .	2.2	3
20	Ecotoxicological risks of metals in the subsistence food garden soils of Watut River floodplains, Papua New Guinea. Environmental Geochemistry and Health, 2023, 45, 8403-8415.	3.4	1
21	The coloniality of green extractivism: Unearthing decarbonisation by dispossession through the case of nickel. Political Geography, 2023, 107, 102997.	2.5	3
22	Environmental compliance assessment for the desulfurization of sulfide mine waste tailings: A case study of Ok Tedi Mine, Papua New Guinea. Environmental Challenges, 2024, 15, 100875.	4.2	0