Yottixel – An Image Search Engine for Large Archives Images

Medical Image Analysis 65, 101757

DOI: 10.1016/j.media.2020.101757

Citation Report

#	Article	IF	CITATIONS
1	Class-Aware Image Search for Interpretable Cancer Identification. IEEE Access, 2020, 8, 197352-197362.	4.2	4
2	Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence. Npj Digital Medicine, 2020, 3, 31.	10.9	71
3	Deep Learning Models for Gastric Signet Ring Cell Carcinoma Classification in Whole Slide Images. Technology in Cancer Research and Treatment, 2021, 20, 153303382110279.	1.9	25
4	Pay Attention with Focus: A Novel Learning Scheme for Classification of Whole Slide Images. Lecture Notes in Computer Science, 2021, , 350-359.	1.3	5
5	Advanced deep learning applications in diagnostic pathology. Translational and Regulatory Sciences, 2021, 3, 36-42.	0.2	0
6	Diagnostic Regions Attention Network (DRA-Net) for Histopathology WSI Recommendation and Retrieval. IEEE Transactions on Medical Imaging, 2021, 40, 1090-1103.	8.9	18
7	Deep Learning of Histopathology Images at the Single Cell Level. Frontiers in Artificial Intelligence, 2021, 4, 754641.	3.4	26
8	Searching Images for Consensus. American Journal of Pathology, 2021, 191, 1702-1708.	3.8	22
9	Learning Permutation Invariant Representations Using Memory Networks. Lecture Notes in Computer Science, 2020, , 677-693.	1.3	9
11	Encoding histopathology whole slide images with location-aware graphs for diagnostically relevant regions retrieval. Medical Image Analysis, 2022, 76, 102308.	11.6	12
12	A survey on graph-based deep learning for computational histopathology. Computerized Medical Imaging and Graphics, 2022, 95, 102027.	5.8	36
13	Federated learning and differential privacy for medical image analysis. Scientific Reports, 2022, 12, 1953.	3. 3	94
14	A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3163-3173.	6.3	15
15	A Similarity Measure of Histopathology Images by Deep Embeddings. , 2021, 2021, 3447-3450.		1
16	Evolutionary Computation in Action: Hyperdimensional Deep Embedding Spaces of Gigapixel Pathology Images. IEEE Transactions on Evolutionary Computation, 2023, 27, 52-66.	10.0	4
17	Multi-Magnification Image Search in Digital Pathology. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4611-4622.	6.3	2
18	Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology. Artificial Intelligence in Medicine, 2022, 132, 102368.	6.5	3
19	Unsupervised Nuclei Segmentation Using Spatial Organization Priors. Lecture Notes in Computer Science, 2022, , 325-335.	1.3	2

#	ARTICLE	IF	CITATIONS
20	A self-supervised contrastive learning approach for whole slide image representation in digital pathology. Journal of Pathology Informatics, 2022, 13, 100133.	1.7	9
22	Multi-modality artificial intelligence in digital pathology. Briefings in Bioinformatics, 2022, 23, .	6.5	7
23	RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval. Medical Image Analysis, 2023, 83, 102645.	11.6	49
24	Chaotic quantization based JPEG for effective compression of whole slide images. Visual Computer, 0, ,	3.5	1
25	Digital and Computational Pathology: A Specialty Reimagined. Future of Business and Finance, 2022, , 227-250.	0.4	4
26	Fast and scalable search of whole-slide images via self-supervised deep learning. Nature Biomedical Engineering, 2022, 6, 1420-1434.	22.5	32
27	Bias reduction in representation of histopathology images using deep feature selection. Scientific Reports, 2022, 12, .	3.3	7
28	Computationally Efficient AdaptiveDecompression for Whole Slide ImageProcessing. Biomedical Optics Express, 0, , .	2.9	0
29	Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images. Medical Image Analysis, 2023, 85, 102748.	11.6	6
30	Transformer-based personalized attention mechanism for medical images with clinical records. Journal of Pathology Informatics, 2023, 14, 100185.	1.7	3
31	ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification. , 2023, , .		9
32	Effects of Color Stain Normalization in Histopathology Image Retrieval using Deep Learning. , 2022, , .		0
33	Case-based similar image retrieval for weakly annotated large histopathological images of malignant lymphoma using deep metric learning. Medical Image Analysis, 2023, 85, 102752.	11.6	6
34	Customized EfficientNet for Histopathology Image Representation. , 2022, , .		0
35	Learning to predict RNA sequence expressions from whole slide images with applications for search and classification. Communications Biology, 2023, 6, .	4.4	12
37	Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis. IEEE Transactions on Medical Imaging, 2023, 42, 2726-2739.	8.9	2
38	Ranking loss and sequestering learning for reducing image search bias in histopathology. Applied Soft Computing Journal, 2023, 142, 110346.	7.2	3
39	Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning. Medical Image Analysis, 2023, 87, 102824.	11.6	5

#	Article	IF	CITATIONS
40	High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, , 1-16.	13.9	O
41	Biased data, biased AI: deep networks predict the acquisition site of TCGA images. Diagnostic Pathology, 2023, 18, .	2.0	6
42	Learning binary and sparse permutation-invariant representations for fast and memory efficient whole slide image search. Computers in Biology and Medicine, 2023, 162, 107026.	7.0	3
43	Deep learning in computational dermatopathology of melanoma: A technical systematic literature review. Computers in Biology and Medicine, 2023, 163, 107083.	7.0	7
44	Applied machine learning in hematopathology. International Journal of Laboratory Hematology, 2023, 45, 87-94.	1.3	4
45	Histopathological Image Deep Feature Representation for CBIR in Smart PACS. Journal of Digital Imaging, 2023, 36, 2194-2209.	2.9	2
46	Machine learning in computational histopathology: Challenges and opportunities. Genes Chromosomes and Cancer, 2023, 62, 540-556.	2.8	3
47	Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nature Medicine, 2023, 29, 2110-2120.	30.7	44
48	WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering, 2023, 10, 1144.	3.5	4
49	Artificial intelligence for digital and computational pathology. , 2023, 1, 930-949.		9
50	Clinically Relevant Latent Space Embedding of Cancer Histopathology Slides Through Variational Autoencoder based Image Compression. , 2023, , .		0
51	Applications of discriminative and deep learning feature extraction methods for whole slide image analysis: A survey. Journal of Pathology Informatics, 2023, 14, 100335.	1.7	1
52	A radio-pathologic integrated model for prediction of lymph node metastasis stage in patients with gastric cancer. Abdominal Radiology, 2023, 48, 3332-3342.	2.1	0
54	Whole slide images classification model based on self-learning sampling. Biomedical Signal Processing and Control, 2024, 90, 105826.	5.7	0
55	Immunohistochemistry Biomarkers-Guided Image Search for Histopathology. , 2023, , .		0
56	Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach. IEEE Access, 2023, 11, 143387-143401.	4.2	1
58	Multimodal archive resources organization based on deep learning: a prospective framework. Aslib Journal of Information Management, 0, , .	2.1	0
59	Ensemble Learning-Based Solutions: An Approach for Evaluating Multiple Features in the Context of H&E Histological Images. Applied Sciences (Switzerland), 2024, 14, 1084.	2.5	0

CITATION REPORT

#	Article	IF	CITATIONS
60	Model-Agnostic Binary Patch Grouping for Bone Marrow Whole Slide Image Representation. American Journal of Pathology, 2024, 194, 721-734.	3.8	0
61	Creating an atlas of normal tissue for pruning WSI patching through anomaly detection. Scientific Reports, 2024, 14, .	3.3	0
62	Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques. Applied Sciences (Switzerland), 2024, 14, 2063.	2.5	0
63	Foundation Models for Histopathology—Fanfare or Flair. , 2024, 2, 165-174.		0
64	A visual-language foundation model for computational pathology. Nature Medicine, 2024, 30, 863-874.	30.7	0
65	Towards a general-purpose foundation model for computational pathology. Nature Medicine, 2024, 30, 850-862.	30.7	0