Prediction of heart disease and classifiers $\hat{a} \in \mathbb{R}$ is not the set of the set of

BMC Bioinformatics 21, 278 DOI: 10.1186/s12859-020-03626-y

Citation Report

#	Article	IF	CITATIONS
1	Applying Multiple Models to Improve the Accuracy of Prediction Results in Neural Networks. Lecture Notes in Computer Science, 2021, , 336-341.	1.3	0
2	Minimum Relevant Features to Obtain Explainable Systems for Predicting Cardiovascular Disease Using the Statlog Data Set. Applied Sciences (Switzerland), 2021, 11, 1285.	2.5	8
4	Trends in Using IoT with Machine Learning in Health Prediction System. Forecasting, 2021, 3, 181-206.	2.8	81
6	An approach for predicting heart failure rate using IBM Auto Al Service. , 2021, , .		3
7	Machine-Learning Techniques for Feature Selection and Prediction of Mortality in Elderly CABG Patients. Healthcare (Switzerland), 2021, 9, 547.	2.0	17
8	Intelligent Cardiovascular Disease Prediction Empowered with Gradient Descent Optimization. Heliyon, 2021, 7, e06948.	3.2	35
9	COVID-19 Classification using DCNNs and Exploration Correlation using Canonical Correlation Analysis. , 2021, , .		0
10	Classification of Coronary Artery Disease Using Multilayer Perceptron Neural Network. International Journal of Applied Evolutionary Computation, 2021, 12, 35-43.	1.0	0
11	Model Evaluation of Various Supervised Machine Learning Algorithm for Heart Disease Prediction. , 2021, , .		3
12	Heart Disease Risk Prediction Using Machine Learning Classifiers with Attribute Evaluators. Applied Sciences (Switzerland), 2021, 11, 8352.	2.5	43
13	Automated Learning of ECG Streaming Data Through Machine Learning Internet of Things. Intelligent Automation and Soft Computing, 2022, 32, 45-53.	2.1	9
14	Covid19â€Mexicanâ€Patients' Dataset (Covid19MPD) Classification and Prediction Using Feature Importance. Concurrency Computation Practice and Experience, 2021, , e6675.	2.2	6
15	A Review on Recent Machine Learning Algorithms Used in CAD diagnosis. , 2021, , .		1
16	Data-driven Preprocessing Techniques for Early Diagnosis of Diabetes, Heart and Liver Diseases. , 2021, , ·		3
17	A Modern Comparison of ML Algorithms for Cardiovascular Disease Prediction. , 2021, , .		2
18	Coronavirus Disease Predictor: An RNA-Seq based pipeline for dimension reduction and prediction of COVID-19. Journal of Physics: Conference Series, 2021, 2089, 012025.	0.4	1
19	Application for Early Heart Disease Prediction Based on Data Mining Approach. , 2021, , .		1
20	A Comparative Assessment Study on Machine Learning Classifiers for Cardiac Arrest Diagnosis and Prediction. , 2021, , .		1

# 21	ARTICLE Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction. Scientific Reports, 2022, 12, 1033.	IF 3.3	CITATIONS
22	Heart Disease Classification Using Machine Learning Models. Communications in Computer and Information Science, 2022, , 35-49.	0.5	6
23	Performance Comparison of Various Machine Learning Approaches to Identify the Best One in Predicting Heart Disease. Journal of Computer and Communications, 2022, 10, 1-18.	0.9	8
24	Early Stage Diabetes Risk Prediction via Machine Learning. Lecture Notes in Networks and Systems, 2022, , 451-461.	0.7	5
25	Leveraging Machine Learning for WBANs. Communications in Computer and Information Science, 2022, , 38-59.	0.5	1
28	A Cloud Based Breast Cancer Risk Prediction (BCRP) System. Lecture Notes in Electrical Engineering, 2022, , 535-549.	0.4	0
29	Detection of Cardiovascular Disease Using Ensemble Feature Engineering with Decision Tree. International Journal of Ambient Computing and Intelligence, 2022, 13, 0-0.	1.1	1
30	A novel feature selection approach with integrated feature sensitivity and feature correlation for improved prediction of heart disease. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 12005-12019.	4.9	10
31	Impact of categorical and numerical features in ensemble machine learning frameworks for heart disease prediction. Biomedical Signal Processing and Control, 2022, 76, 103666.	5.7	15
32	Implementation of Artificial Intelligence in Disease Prediction and Healthcare System- A Survey. , 2021, ,		4
33	Heart disease diagnosis using optimized features of hybridized ALCSOGA algorithm and LSTM classifier. Network: Computation in Neural Systems, 2022, 33, 95-123.	3.6	1
34	A Hybrid System for Heart Disease Diagnosis Based on HPCBE Method. International Journal of Software Innovation, 2022, 10, 1-14.	0.4	5
35	Trends in using IoT with machine learning in smart health assessment. International Journal of Health Sciences, 0, , 3335-3346.	0.1	0
37	OPTIMIZATION ASSISTED HYBRID INTELLIGENT SYSTEM FOR HEART DISEASE PREDICTION. Journal of Mechanics in Medicine and Biology, 2022, 22, .	0.7	2
38	A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data. Medical Engineering and Physics, 2022, 105, 103825.	1.7	39
39	Rule Based Classification Using Particle Swarm Optimization forÂHeart Disease Prediction. Lecture Notes in Networks and Systems, 2022, , 268-277.	0.7	0
40	The Efficacy of Machine-Learning-Supported Smart System for Heart Disease Prediction. Healthcare (Switzerland), 2022, 10, 1137.	2.0	23
41	Applications of dynamic feature selection and clustering methods to medical diagnosis. Applied Soft Computing Journal, 2022, 126, 109293.	7.2	7

#	Article	IF	CITATIONS
43	DLMNN Based Heart Disease Prediction with PD-SS Optimization Algorithm. Intelligent Automation and Soft Computing, 2023, 35, 1353-1368.	2.1	0
44	Pervasive Healthcare Internet of Things: A Survey. Information (Switzerland), 2022, 13, 360.	2.9	4
45	Computational prediction for the metabolism of human UDP-glucuronosyltransferase 1A1 substrates. Computers in Biology and Medicine, 2022, 149, 105959.	7.0	2
46	A Brief Review on Gender Identification with Electrocardiography Data. Applied System Innovation, 2022, 5, 81.	4.6	0
47	A Survey on Deep Learning Model for Improved Disease Prediction with Multi Medical Data Sets. , 2022, , .		1
48	Cardiac disease detection using cuckoo search enabled deep belief network. Intelligent Systems With Applications, 2022, 16, 200131.	3.0	1
50	Improving theÂEffectiveness ofÂHeart Disease Diagnosis withÂMachine Learning. Communications in Computer and Information Science, 2022, , 222-231.	0.5	0
51	Heart Disease Prediction Framework Using Soft Voting-Based Ensemble Learning Techniques. Advances in Computational Intelligence and Robotics Book Series, 2022, , 147-165.	0.4	0
52	A machine learning based data modeling for medical diagnosis. Biomedical Signal Processing and Control, 2023, 81, 104481.	5.7	8
53	Multi-model Ensemble Based Approach for Heart Disease Diagnosis. , 2022, , .		0
53 54	Multi-model Ensemble Based Approach for Heart Disease Diagnosis. , 2022, , . Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067.	2.6	0 26
	Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data.	2.6 4.3	
54	Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067. A stacking classifiers model for detecting heart irregularities and predicting Cardiovascular Disease.		26
54 55	 Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067. A stacking classifiers model for detecting heart irregularities and predicting Cardiovascular Disease. Healthcare Analytics, 2023, 3, 100133. A Model to Predict Heartbeat Rate Using Deep Learning Algorithms. Healthcare (Switzerland), 2023, 11, 	4.3	26 11
54 55 56	 Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067. A stacking classifiers model for detecting heart irregularities and predicting Cardiovascular Disease. Healthcare Analytics, 2023, 3, 100133. A Model to Predict Heartbeat Rate Using Deep Learning Algorithms. Healthcare (Switzerland), 2023, 11, 330. Fuzzy AHP point factored inference system for detection of cardiovascular disease. Journal of 	4.3 2.0	26 11 1
54 55 56 57	 Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067. A stacking classifiers model for detecting heart irregularities and predicting Cardiovascular Disease. Healthcare Analytics, 2023, 3, 100133. A Model to Predict Heartbeat Rate Using Deep Learning Algorithms. Healthcare (Switzerland), 2023, 11, 330. Fuzzy AHP point factored inference system for detection of cardiovascular disease. Journal of Intelligent and Fuzzy Systems, 2023, 44, 6655-6684. An Ensemble Approach for Prediction of Cardiovascular Disease Using Meta Classifier Boosting 	4.3 2.0 1.4	26 11 1
54 55 56 57 58	 Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data. Diagnostics, 2022, 12, 3067. A stacking classifiers model for detecting heart irregularities and predicting Cardiovascular Disease. Healthcare Analytics, 2023, 3, 100133. A Model to Predict Heartbeat Rate Using Deep Learning Algorithms. Healthcare (Switzerland), 2023, 11, 330. Fuzzy AHP point factored inference system for detection of cardiovascular disease. Journal of Intelligent and Fuzzy Systems, 2023, 44, 6655-6684. An Ensemble Approach for Prediction of Cardiovascular Disease Using Meta Classifier Boosting Algorithms. International Journal of Data Warehousing and Mining, 2023, 18, 1-29. Neural Logic Circuits: An evolutionary neural architecture that can learn and generalize. 	4.3 2.0 1.4 0.6	26 11 1 6 0

#	Article	IF	CITATIONS
62	Comprehensive analysis of supervised algorithms for coronary artery heart disease detection. Expert Systems, 0, , .	4.5	0
63	Bidirectional Recurrent Network and Neuro-fuzzy Frequent Pattern Mining for Heart Disease Prediction. SN Computer Science, 2023, 4, .	3.6	0
64	A Comparative of Classification Models for Predicting of Heart Diseases. , 2023, , .		1
65	Heart Disease Prediction Model using various Supervised Learning Algorithm. , 2023, , .		0
66	A novel greedy genetic algorithm-based personalized travel recommendation system. Expert Systems With Applications, 2023, 230, 120580.	7.6	9
67	Improved and Intelligent Heart Disease Prediction System Using Machine Learning Algorithm. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 98-108.	0.3	0
68	Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization. Algorithms, 2023, 16, 308.	2.1	9
69	Improving Coronary Heart Disease Prediction Through Machine Learning andÂanÂInnovative Data Augmentation Technique. Cognitive Computation, 2023, 15, 1687-1702.	5.2	2
70	Al-Based Heart Disease andÂBrain Stroke Prediction Using Multi-modal Patient Data. Communications in Computer and Information Science, 2023, , 67-78.	0.5	0
71	A Novel Prediction System to Diagnose Heart Disease. , 2023, , .		0
72	Fuzzy DEMATEL Approach to Identify the Modifiable Risk Factors of Cardiovascular Disease. Lecture Notes in Networks and Systems, 2023, , 567-576.	0.7	0
73	Performance Analysis of Classification Algorithms for the Prediction of Cardiac Disease. Lecture Notes in Networks and Systems, 2023, , 433-446.	0.7	0
74	A New Approach to Heart Disease Prediction Using Clustering and Classification Algorithms. Communications in Computer and Information Science, 2023, , 40-51.	0.5	0
75	Fuzzy entropy DEMATEL inference system for accurate and efficient cardiovascular disease diagnosis. Computer Methods in Biomechanics and Biomedical Engineering, 0, , 1-32.	1.6	0
76	Early diagnosis and personalised treatment focusing on synthetic data modelling: Novel visual learning approach in healthcare. Computers in Biology and Medicine, 2023, 164, 107295.	7.0	0
77	Enhanced cardiovascular disease prediction model using random forest algorithm. Informatics in Medicine Unlocked, 2023, 41, 101316.	3.4	1
78	Comparative Analysis of Heart Disease Prediction Using Machine Learning Algorithms. Algorithms for Intelligent Systems, 2023, , 297-308.	0.6	0
79	Leveraging IoT and Machine Learning for Improved Health Prediction Systems. Impact of Meat Consumption on Health and Environmental Sustainability, 2024, , 278-306.	0.4	0

#	Article	IF	CITATIONS
80	Machine failure prediction using joint reserve intelligence with feature selection technique. International Journal of Computers and Applications, 2023, 45, 638-646.	1.3	0
81	Learning-based techniques for heart disease prediction: a survey of models and performance metrics. Multimedia Tools and Applications, 0, , .	3.9	0
82	Analysis of Hidden Pattern of Heart Disease Dataset Using Multiple Machine Learning Ensemble Methods. International Journal of Computer Theory and Engineering, 2023, 15, 178-185.	3.4	0
83	A hybrid machine learning method for prediction of heart disease. , 2023, , .		0
84	Brain Stroke Prediction using Decision Tree Algorithm. , 2023, , .		0
86	An Extensive Review of Machine Learning and Deep Learning Techniques on Heart Disease Classification and Prediction. Archives of Computational Methods in Engineering, 0, , .	10.2	0
87	A heart disease prognosis pipeline for the edge using federated learning. E-Prime, 2024, 7, 100490.	2.0	0