Immunophenotyping of COVID-19 and influenza highlig development of severe COVID-19

Science Immunology

5,

DOI: 10.1126/sciimmunol.abd1554

Citation Report

#	Article	IF	CITATIONS
1	Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nature Genetics, 2020, 52, 1283-1293.	9.4	217
2	Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nature Communications, 2020, 11, 5139.	5.8	131
3	Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends in Immunology, 2020, 41, 1083-1099.	2.9	154
4	Hydroxychloroquine Inhibits the Trained Innate Immune Response to Interferons. Cell Reports Medicine, 2020, 1, 100146.	3.3	24
5	Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Frontiers in Immunology, 2020, 11, 606456.	2.2	98
6	Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity, 2020, 53, 1296-1314.e9.	6.6	278
7	Single cell profiling of capillary blood enables out of clinic human immunity studies. Scientific Reports, 2020, 10, 20540.	1.6	6
8	Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances, 2020, 6, .	4.7	204
9	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020, 182, 1419-1440.e23.	13.5	1,162
10	The type I interferon response in COVID-19: implications for treatment. Nature Reviews Immunology, 2020, 20, 585-586.	10.6	317
11	Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. Journal of Translational Medicine, 2020, 18, 408.	1.8	16
12	Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. Journal of Experimental Medicine, 2020, 217, .	4.2	55
13	Accumulating evidence suggests anti-TNF therapy needs to be given trial priority in COVID-19 treatment. Lancet Rheumatology, The, 2020, 2, e653-e655.	2.2	119
14	Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Science Translational Medicine, 2020, 12, .	5.8	298
15	Janus Family kinase (<scp>JAK</scp>) inhibitors in <scp>HLH</scp> and severe <scp>COVID</scp> â€19. American Journal of Hematology, 2020, 95, 1448-1451.	2.0	6
16	Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets. Trends in Immunology, 2020, 41, 864-877.	2.9	51
17	Individuals with obesity and COVIDâ€19: A global perspective on the epidemiology and biological relationships. Obesity Reviews, 2020, 21, e13128.	3.1	824
18	Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine, 2020, 59, 102964.	2.7	80

#	Article	IF	CITATIONS
19	Intranasal Bifidobacterium longum protects against viral-induced lung inflammation and injury in a murine model of lethal influenza infection. EBioMedicine, 2020, 60, 102981.	2.7	47
20	Rationale for COVID-19 Treatment by Nebulized Interferon-β-1b–Literature Review and Personal Preliminary Experience. Frontiers in Pharmacology, 2020, 11, 592543.	1.6	11
21	Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Frontiers in Immunology, 2020, 11, 571481.	2.2	48
22	Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Frontiers in Immunology, 2020, 11, 586111.	2.2	26
23	NF- \hat{I}° B Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Frontiers in Immunology, 2020, 11, 598444.	2.2	153
24	Akt-Fas to Quell Aberrant T Cell Differentiation and Apoptosis in Covid-19. Frontiers in Immunology, 2020, 11, 600405.	2.2	15
25	Dysregulated Interferon Response Underlying Severe COVID-19. Viruses, 2020, 12, 1433.	1.5	64
26	The Landscape of Coronavirus Disease 2019 (COVID-19) and Integrated Analysis SARS-CoV-2 Receptors and Potential Inhibitors in Lung Adenocarcinoma Patients. Frontiers in Cell and Developmental Biology, 2020, 8, 577032.	1.8	6
27	Threading the Pieces Together: Integrative Perspective on SARS-CoV-2. Pathogens, 2020, 9, 912.	1.2	6
28	Macrophage responses associated with COVID-19: A pharmacological perspective. European Journal of Pharmacology, 2020, 887, 173547.	1.7	27
29	Perspective: Reducing SARS-CoV2 Infectivity and Its Associated Immunopathology. Frontiers in Immunology, 2020, 11, 581076.	2.2	6
30	Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral Immunology, 2021, 34, 307-320.	0.6	30
31	T-cell dysregulation in COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 204-210.	1.0	50
32	The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microbial Pathogenesis, 2021, 150, 104673.	1.3	116
33	Myxovirus resistance protein A in peripheral blood predicts supplemental oxygen need in COVID-19. Journal of Infection, 2021, 82, 186-230.	1.7	2
34	Systematic Examination of Antigen-Specific Recall T Cell Responses to SARS-CoV-2 versus Influenza Virus Reveals a Distinct Inflammatory Profile. Journal of Immunology, 2021, 206, 37-50.	0.4	28
35	Synergism of TNF- $\hat{1}$ ± and IFN- $\hat{1}$ 3 Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021, 184, 149-168.e17.	13.5	923
36	Typeâ€Interferon assessment in 45 minutes using the FilmArray [®] PCR platform in SARS oVâ€2 and other viral infections. European Journal of Immunology, 2021, 51, 989-994.	1.6	4

#	Article	lF	CITATIONS
37	Combined Anakinra and Ruxolitinib treatment to rescue extremely ill COVID-19 patients: A pilot study Autoimmunity Reviews, 2021, 20, 102726.	2.5	18
38	Cell-Type-Specific Immune Dysregulation in Severely Ill COVID-19 Patients. Cell Reports, 2021, 34, 108590.	2.9	116
39	Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid. Immunity, 2021, 54, 164-175.e6.	6.6	119
40	Biomimetic Human Disease Model of SARSâ€CoVâ€2â€Induced Lung Injury and Immune Responses on Organ Chip System. Advanced Science, 2021, 8, 2002928.	5.6	119
41	Time-dependent viral interference between influenza virus and coronavirus in the infection of differentiated porcine airway epithelial cells. Virulence, 2021, 12, 1111-1121.	1.8	11
43	Control and prevention of infectious diseases from a One Health perspective. Genetics and Molecular Biology, 2021, 44, e20200256.	0.6	38
44	A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Reports Medicine, 2021, 2, 100166.	3.3	102
45	Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. British Journal of Nutrition, 2021, 126, 1663-1672.	1.2	45
46	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	3.7	65
47	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	2.9	52
48	COVID-19: Integrating the Complexity of Systemic and Pulmonary Immunopathology to Identify Biomarkers for Different Outcomes. Frontiers in Immunology, 2020, 11, 599736.	2.2	16
49	An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight, 2021, 6, .	2.3	269
52	Roles of Type I and III Interferons in COVID-19. Yonsei Medical Journal, 2021, 62, 381.	0.9	17
53	Immune transcriptomes of highly exposed SARS-CoV-2 asymptomatic seropositive versus seronegative individuals from the Ischgl community. Scientific Reports, 2021, 11, 4243.	1.6	19
54	Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Frontiers in Cardiovascular Medicine, 2020, 7, 629933.	1.1	43
55	SARS-CoV-2 infection: molecular mechanisms of severe outcomes to suggest therapeutics. Expert Review of Proteomics, 2021, 18, 105-118.	1.3	10
56	Pathophysiology of acute respiratory syndrome coronavirus 2 infection: a systematic literature review to inform EULAR points to consider. RMD Open, 2021, 7, e001549.	1.8	14
57	AKI in Hospitalized Patients with COVID-19 and Seasonal Influenza: A Comparative Analysis. Kidney360, 2021, 2, 619-628.	0.9	5

#	ARTICLE	IF	CITATIONS
61	EULAR points to consider on pathophysiology and use of immunomodulatory therapies in COVID-19. Annals of the Rheumatic Diseases, 2021, 80, 698-706.	0.5	37
64	COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 2022, 41, 171-206.	1.5	30
65	The analysis of isolation measures for epidemic control of COVID-19. Applied Intelligence, 2021, 51, 3074-3085.	3.3	6
66	Signs of self-sustained inflammatory circuits in severe COVID pneumonia. Nature, 2021, 590, 553-554.	13.7	3
67	The cytokine storm and thyroid hormone changes in COVID-19. Journal of Endocrinological Investigation, 2021, 44, 891-904.	1.8	63
68	Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 625881.	2.2	30
69	Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nature Communications, 2021, 12, 1079.	5.8	81
70	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosnian Journal of Basic Medical Sciences, 2021, 21, 515-527.	0.6	4
71	Cutting Edge: Reduced Adenosine-to-Inosine Editing of Endogenous Alu RNAs in Severe COVID-19 Disease. Journal of Immunology, 2021, 206, 1691-1696.	0.4	12
73	Single-Cell Transcriptomic Analyses Define Distinct Peripheral B Cell Subsets and Discrete Development Pathways. Frontiers in Immunology, 2021, 12, 602539.	2.2	83
74	COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatology, The, 2021, 3, e224-e233.	2.2	125
78	Considering Personalized Interferon Beta Therapy for COVID-19. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
79	IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Communications Biology, 2021, 4, 290.	2.0	74
80	Integrated characterization of SARS-CoV-2 genome, microbiome, antibiotic resistance and host response from single throat swabs. Cell Discovery, 2021, 7, 19.	3.1	11
82	Association of administration of IFN- $\hat{l}\pm$ with mortality among patients hospitalized with coronavirus disease 2019. Future Virology, 2021, 16, 201-209.	0.9	1
83	Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions. Nature Communications, 2021, 12, 1660.	5.8	132
85	Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. Journal of Endocrinological Investigation, 2021, 44, 1801-1814.	1.8	67
87	In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon, 2021, 7, e06395.	1.4	29

#	Article	IF	CITATIONS
90	Navigating the Uncertainties of COVID-19â€"Associated Aspergillosis: A Comparison With Influenza-Associated Aspergillosis. Journal of Infectious Diseases, 2021, , .	1.9	50
91	Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission. Journal of Clinical Investigation, 2021, 131, .	3.9	66
92	COPD and the risk of poor outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine, 2021, 33, 100789.	3.2	160
93	Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection. Molecular Therapy - Methods and Clinical Development, 2021, 20, 109-121.	1.8	41
97	Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. Journal of Experimental Medicine, 2021, 218, .	4.2	259
98	SARS-CoV-2 and immune-microbiome interactions: Lessons from respiratory viral infections. International Journal of Infectious Diseases, 2021, 105, 540-550.	1.5	33
99	Longitudinal virological changes and underlying pathogenesis in hospitalized COVID-19 patients in Guangzhou, China. Science China Life Sciences, 2021, 64, 2129-2143.	2.3	3
100	Cellular Immune Response to COVID-19 and Potential Immune Modulators. Frontiers in Immunology, 2021, 12, 646333.	2.2	47
101	Network pharmacology and RNA-sequencing reveal the molecular mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction. Computers in Biology and Medicine, 2021, 131, 104293.	3.9	14
103	Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines, 2021, 9, 436.	2.1	152
104	Landscapes of SARS-CoV-2-reactive CD8+ T cells: heterogeneity of host immune responses against SARS-CoV-2. Signal Transduction and Targeted Therapy, 2021, 6, 146.	7.1	2
106	B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell, 2021, 184, 1790-1803.e17.	13.5	105
107	SARS-CoV-2 Switches  on' MAPK and NFκB Signaling via the Reduction of Nuclear DUSP1 and DUSP5 Expression. Frontiers in Pharmacology, 2021, 12, 631879.	1.6	50
108	Obesity and its impact on COVID-19. Journal of Molecular Medicine, 2021, 99, 899-915.	1.7	41
110	Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Frontiers in Immunology, 2021, 12, 593595.	2,2	32
111	Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019. Frontiers in Immunology, 2021, 12, 651656.	2.2	23
112	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184, 1895-1913.e19.	13.5	512
113	Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins. Briefings in Bioinformatics, 2021, 22, .	3.2	11

#	Article	IF	CITATIONS
114	Differential induction of type I and III interferon genes in the upper respiratory tract of patients with coronavirus disease 2019 (COVID-19). Virus Research, 2021, 295, 198283.	1.1	26
115	COVID-19 and the human innate immune system. Cell, 2021, 184, 1671-1692.	13.5	524
118	Interferon-λ3 Exacerbates the Inflammatory Response to Microbial Ligands: Implications for SARS-CoV-2 Pathogenesis. Journal of Inflammation Research, 2021, Volume 14, 1257-1270.	1.6	10
119	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	15.2	452
120	RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduction and Targeted Therapy, 2021, 6, 167.	7.1	87
121	The Prospects of tumor necrosis factor \hat{l}_{\pm} inhibitors use in patients with COVID-19. Sovremennaya Revmatologiya, 2021, 15, 89-93.	0.1	0
124	Virus Caused Imbalance of Type I IFN Responses and Inflammation in COVID-19. Frontiers in Immunology, 2021, 12, 633769.	2.2	20
126	Cellular and plasma proteomic determinants of COVID-19 and non-COVID-19 pulmonary diseases relative to healthy aging. Nature Aging, 2021, 1, 535-549.	5.3	22
127	Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nature Cell Biology, 2021, 23, 538-551.	4.6	114
128	Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Frontiers in Immunology, 2021, 12, 665773.	2.2	20
129	Type I and III interferon responses in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 750-760.	3.2	187
130	Immunological Biomarkers of Fatal COVID-19: A Study of 868 Patients. Frontiers in Immunology, 2021, 12, 659018.	2.2	14
132	The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Molecular Cancer, 2021, 20, 76.	7.9	42
134	SARSâ€CoVâ€2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIGâ€I/MDAâ€5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology, 2021, 5376-5389.	23,	153
135	Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Reports Medicine, 2021, 2, 100287.	3.3	183
136	CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature Medicine, 2021, 27, 1280-1289.	15.2	365
137	Potential role of IFN- \hat{l} ± in COVID-19 patients and its underlying treatment options. Applied Microbiology and Biotechnology, 2021, 105, 4005-4015.	1.7	25
138	Immune profiling of COVID-19: preliminary findings and implications for the pandemic., 2021, 9, e002550.		15

#	Article	IF	CITATIONS
139	Circulating Type I Interferon Levels and COVID-19 Severity: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 657363.	2.2	34
140	Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Medicine, 2021, 47, 761-771.	3.9	19
142	Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunology, 2021, 14, 1224-1234.	2.7	16
143	Transcriptomic Signature Differences BetweenÂSARS-CoV-2 and Influenza Virus Infected Patients. Frontiers in Immunology, 2021, 12, 666163.	2.2	27
144	Differential Cytokine Signatures of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Influenza Infection Highlight Key Differences in Pathobiology. Clinical Infectious Diseases, 2022, 74, 254-262.	2.9	28
145	The Coronavirus Network Explorer: mining a large-scale knowledge graph for effects of SARS-CoV-2 on host cell function. BMC Bioinformatics, 2021, 22, 229.	1.2	13
146	Type I, II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. Journal of Infectious Diseases, 2021, 224, 777-782.	1.9	26
147	Nasopharyngeal Type-I Interferon for Immediately Available Prophylaxis Against Emerging Respiratory Viral Infections. Frontiers in Immunology, 2021, 12, 660298.	2.2	8
148	High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Science Translational Medicine, 2021, 13, .	5.8	166
149	Single-cell RNA sequencing reveals the sustained immune cell dysfunction in the pathogenesis of sepsis secondary to bacterial pneumonia. Genomics, 2021, 113, 1219-1233.	1.3	29
151	Diverse functional autoantibodies in patients with COVID-19. Nature, 2021, 595, 283-288.	13.7	619
152	Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. International Journal of Molecular Sciences, 2021, 22, 7017.	1.8	43
155	Clinical and molecular characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nature Communications, 2021, 12, 3501.	5.8	40
156	Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution. IScience, 2021, 24, 102738.	1.9	6
157	Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Frontiers in Immunology, 2021, 12, 691725.	2.2	36
159	Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 2021, 34, .	5.7	141
160	SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nature Communications, 2021, 12, 4043.	5.8	175
161	Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Molecules and Cells, 2021, 44, 408-421.	1.0	18

#	Article	IF	CITATIONS
162	Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro. Science Translational Medicine, 2021, 13 , .	5.8	64
163	Phenotypes and Functions of SARS-CoV-2-Reactive T Cells. Molecules and Cells, 2021, 44, 401-407.	1.0	16
164	Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimer's Research and Therapy, 2021, 13, 110.	3.0	108
165	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine, the, 2021, 9, 622-642.	5.2	371
166	Inflammatory Mechanisms in COVID-19 and Atherosclerosis: Current Pharmaceutical Perspectives. International Journal of Molecular Sciences, 2021, 22, 6607.	1.8	50
168	Critical COVIDâ€19 is associated with distinct leukocyte phenotypes and transcriptome patterns. Journal of Internal Medicine, 2021, 290, 677-692.	2.7	20
169	Tofacitinib therapy intercepts macrophage metabolic reprogramming instigated by SARSâ€CoVâ€⊋ Spike protein. European Journal of Immunology, 2021, 51, 2330-2340.	1.6	16
170	An Impaired Inflammatory and Innate Immune Response in COVID-19. Molecules and Cells, 2021, 44, 384-391.	1.0	13
171	Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discovery, 2021, 7, 42.	3.1	23
172	Enhanced Expression of Autoantigens During SARS-CoV-2 Viral Infection. Frontiers in Immunology, 2021, 12, 686462.	2.2	18
173	Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature, 2021, 595, 565-571.	13.7	406
174	CD169 Defines Activated CD14+ Monocytes With Enhanced CD8+ T Cell Activation Capacity. Frontiers in Immunology, 2021, 12, 697840.	2.2	33
175	Discovery of potential imaging and therapeutic targets for severe inflammation in COVID-19 patients. Scientific Reports, 2021, 11, 14151.	1.6	8
176	Extracellular vesicleâ€mediated endothelial apoptosis and EVâ€associated proteins correlate with COVIDâ€19 disease severity. Journal of Extracellular Vesicles, 2021, 10, e12117.	5.5	63
177	Differential immune responses in pregnant patients recovered from COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 289.	7.1	28
178	Multiplexing Methods for Simultaneous Largeâ€6cale Transcriptomic Profiling of Samples at Singleâ€Cell Resolution. Advanced Science, 2021, 8, e2101229.	5.6	29
179	Immunometabolic bases of type 2 diabetes in the severity of COVID-19. World Journal of Diabetes, 2021, 12, 1026-1041.	1.3	9
180	Identification of COVID-19 subtypes based on immunogenomic profiling. International Immunopharmacology, 2021, 96, 107615.	1.7	5

#	Article	IF	CITATIONS
182	Multimodal single-cell omics analysis identifies epithelium–immune cell interactions and immune vulnerability associated with sex differences in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 292.	7.1	13
184	Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. Oxford Open Immunology, 2021, 2, .	1.2	7
185	Long noncoding RNAs in respiratory viruses: A review. Reviews in Medical Virology, 2022, 32, e2275.	3.9	13
186	Corticosteroids for COVID-19. Journal of Intensive Medicine, 2021, 1, 14-25.	0.8	40
187	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	5.8	170
188	SARS-CoV-2 viremia is associated with distinct proteomic pathways and predicts COVID-19 outcomes. Journal of Clinical Investigation, 2021, 131, .	3.9	94
189	50-gene risk profiles in peripheral blood predict COVID-19 outcomes: A retrospective, multicenter cohort study. EBioMedicine, 2021, 69, 103439.	2.7	20
190	Double stranded RNA drives anti-viral innate immune responses, sickness behavior and cognitive dysfunction dependent on dsRNA length, IFNAR1 expression and age. Brain, Behavior, and Immunity, 2021, 95, 413-428.	2.0	21
191	Complement Inhibition and COVID-19: The Story so Far. ImmunoTargets and Therapy, 2021, Volume 10, 273-284.	2.7	16
192	Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets. Nature Communications, 2021, 12, 4567.	5.8	43
193	The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Frontiers in Physiology, 2021, 12, 688946.	1.3	16
195	Abnormality in the NK-cell population is prolonged in severe COVID-19 patients. Journal of Allergy and Clinical Immunology, 2021, 148, 996-1006.e18.	1.5	38
196	High-Density Blood Transcriptomics Reveals Precision Immune Signatures of SARS-CoV-2 Infection in Hospitalized Individuals. Frontiers in Immunology, 2021, 12, 694243.	2.2	26
197	SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. Rna, 2021, 27, 1318-1329.	1.6	66
198	Monocytes and Macrophages in COVID-19. Frontiers in Immunology, 2021, 12, 720109.	2.2	168
199	Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity, 2021, 54, 1578-1593.e5.	6.6	75
200	Integrated longitudinal immunophenotypic, transcriptional, and repertoire analyses delineate immune responses in patients with COVID-19. Science Immunology, 2021, 6, .	5.6	108
201	COVID-19: Inflammatory Profile. Annual Review of Medicine, 2022, 73, 65-80.	5.0	43

#	Article	IF	CITATIONS
202	COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine and Growth Factor Reviews, 2021, 60 , $28-45$.	3.2	21
203	Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cellular and Molecular Immunology, 2021, 18, 2325-2333.	4.8	106
204	The â€~cytokine storm': molecular mechanisms and therapeutic prospects. Trends in Immunology, 2021, 42, 681-705.	2.9	156
205	A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging, 2021, 13, 20511-20533.	1.4	5
206	Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells. Journal of Virology, 2021, 95, e0060021.	1.5	9
207	Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. ELife, 2021, 10, .	2.8	12
208	Upregulation of oxidative stress gene markers during SARS-COV-2 viral infection. Free Radical Biology and Medicine, 2021, 172, 688-698.	1.3	53
209	A reference-free approach for cell type classification with scRNA-seq. IScience, 2021, 24, 102855.	1.9	6
210	Type I Interferons in COVID-19 Pathogenesis. Biology, 2021, 10, 829.	1.3	32
211	SARS-CoV-2 NSP12 Protein Is Not an Interferon-β Antagonist. Journal of Virology, 2021, 95, e0074721.	1.5	25
212	SARS-CoV-2 Impairs Dendritic Cells and Regulates DC-SIGN Gene Expression in Tissues. International Journal of Molecular Sciences, 2021, 22, 9228.	1.8	15
213	Increased Angiotensin-Converting Enzyme 2 and Loss of Alveolar Type II Cells in COVID-19–related Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1024-1034.	2.5	45
214	Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chemical Engineering Journal, 2021, 418, 129392.	6.6	53
216	Association of Varying Clinical Manifestations and Positive Anti–SARS-CoV-2 IgG Antibodies: A Cross-Sectional Observational Study. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3331-3338.e2.	2.0	9
217	Blood Divider for Simple, Surface Tensionâ€Based Isolation of Peripheral Blood Mononuclear Cells. Advanced Materials Technologies, 2022, 7, 2100691.	3.0	3
218	An interactive single cell web portal identifies gene and cell networks in COVID-19 host responses. IScience, 2021, 24, 103115.	1.9	10
219	Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Science Immunology, 2021, 6, eabd0205.	5.6	26
220	The role of exercise in rehabilitation of discharged COVID-19 patients. Sports Medicine and Health Science, 2021, 3, 194-201.	0.7	14

#	Article	IF	CITATIONS
221	Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Reports, 2021, 37, 109793.	2.9	29
223	The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell, 2021, 184, 4953-4968.e16.	13.5	165
224	Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomedicine and Pharmacotherapy, 2021, 141, 111794.	2.5	28
225	Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathogens, 2021, 17, e1009804.	2.1	39
226	Identifying Risk Factors for Secondary Infection Post-SARS-CoV-2 Infection in Patients With Severe and Critical COVID-19. Frontiers in Immunology, 2021, 12, 715023.	2.2	9
227	Abnormal Airway Mucus Secretion Induced by Virus Infection. Frontiers in Immunology, 2021, 12, 701443.	2.2	14
228	Clinical features of Chinese children with COVIDâ€19 and other viral respiratory infections. Pediatric Pulmonology, 2022, 57, 49-56.	1.0	6
229	Single-cell immune profiling reveals distinct immune response in asymptomatic COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 342.	7.1	22
230	Understanding the pathogenesis of infectious diseases by single-cell RNA sequencing. Microbial Cell, 2021, 8, 208-222.	1.4	7
231	Kinetic Multi-omic Analysis of Responses to SARS-CoV-2 Infection in a Model of Severe COVID-19. Journal of Virology, 2021, 95, e0101021.	1.5	21
232	SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunology Letters, 2021, 237, 33-41.	1.1	19
233	Immunopathology and Immunosenescence, the Immunological Key Words of Severe COVID-19. Is There a Role for Stem Cell Transplantation?. Frontiers in Cell and Developmental Biology, 2021, 9, 725606.	1.8	8
234	Therapeutic potential of melatonin and melatonergic drugs on K18â€ <i>hACE2</i> mice infected with SARSâ€CoVâ€2. Journal of Pineal Research, 2022, 72, e12772.	3.4	20
235	Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLoS Pathogens, 2021, 17, e1009878.	2.1	52
236	Risk factors for invasive aspergillosis in ICU patients with COVID-19: current insights and new key elements. Annals of Intensive Care, 2021, 11, 136.	2.2	31
238	Interfering with SARS-CoV-2: are interferons friends or foes in COVID-19?. Current Opinion in Virology, 2021, 50, 119-127.	2.6	32
239	Coronavirus disease-2019: A review on the disease exacerbation via cytokine storm and concurrent management. International Immunopharmacology, 2021, 99, 108049.	1.7	13
240	Meta-analysis of single-cell RNA-seq data reveals phenotypic switching of immune cells in severe COVID-19 patients. Computers in Biology and Medicine, 2021, 137, 104792.	3.9	25

#	Article	IF	CITATIONS
241	Nrf2 activator PB125 $\hat{A}^{@}$ as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radical Biology and Medicine, 2021, 175, 56-64.	1.3	16
242	Distinct blood transcriptomic signature of treatment in latent tuberculosis infected individuals at risk of developing active disease. Tuberculosis, 2021, 131, 102127.	0.8	13
244	Coâ€infection of influenza A virus and SARSâ€CoVâ€2: A retrospective cohort study. Journal of Medical Virology, 2021, 93, 2947-2954.	2.5	45
245	SARS-CoV-2-Specific T Cell Responses in Patients with COVID-19 and Unexposed Individuals. Immune Network, 2021, 21, e2.	1.6	12
246	Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Research, 2021, 31, 272-290.	5.7	229
248	Single Cell Transcriptomic Re-analysis of Immune Cells in Bronchoalveolar Lavage Fluids Reveals the Correlation of B Cell Characteristics and Disease Severity of Patients with SARS-CoV-2 Infection. Immune Network, 2021, 21, e10.	1.6	11
250	COVID-19: disease, or no disease? - that is the question. It's the dose stupid!. Microbes and Infection, 2021, 23, 104779.	1.0	7
251	Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. Journal of Leukocyte Biology, 2021, 110, 21-26.	1.5	82
252	SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Network, 2021, 21, e3.	1.6	43
253	Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Reports, 2021, 6, e885.	1.4	83
254	COVID-19 poses a riddle for the immune system. Nature, 2020, 584, 345-346.	13.7	29
255	Longitudinal transcriptome analyses show robust T cell immunity during recovery from COVID-19. Signal Transduction and Targeted Therapy, 2020, 5, 294.	7.1	62
256	SARS-CoV-2 infection and the antiviral innate immune response. Journal of Molecular Cell Biology, 2021, 12, 963-967.	1.5	18
257	T cell phenotypes in COVID-19 - a living review. Oxford Open Immunology, 2021, 2, iqaa007.	1.2	19
258	The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Current Opinion in HIV and AIDS, 2021, 16, 36-47.	1.5	6
282	MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology, 2020, 5, .	5.6	147
283	Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. Journal of Clinical Investigation, 2020, 130, 6204-6213.	3.9	59
284	SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets. F1000Research, 2020, 9, 992.	0.8	10

#	Article	IF	CITATIONS
285	Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVIDâ€19 pneumonia. EMBO Molecular Medicine, 2020, 12, e13001.	3.3	133
286	Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 2020, 41, 503-516.	0.9	60
287	Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. Life Science Alliance, 2021, 4, e202000955.	1.3	56
288	COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory Signaling That Mimics Bacterial Sepsis. Journal of Korean Medical Science, 2020, 35, e343.	1.1	156
289	Interferon therapy for COVID-19 and emerging infections: Prospects and concerns. Cleveland Clinic Journal of Medicine, 2020, , .	0.6	22
290	Factors of Severity in Patients with COVID-19: Cytokine/Chemokine Concentrations, Viral Load, and Antibody Responses. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2412-2418.	0.6	60
291	SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes. Briefings in Bioinformatics, 2022, 23, .	3.2	44
292	Focused evaluation of the roles of macrophages in chimeric antigen receptor (CAR) T cell therapy associated cytokine release syndrome. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	4
293	COVID-19-associated livedo and purpura: clinical and histopathological findings. European Journal of Dermatology, 2021, 31, 568-570.	0.3	0
294	Distinct immune signatures discriminate between asymptomatic and presymptomatic SARS-CoV-2pos subjects. Cell Research, 2021, 31, 1148-1162.	5.7	12
296	Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Seminars in Immunology, 2021, 55, 101508.	2.7	37
297	Diabetes, Heart Failure, and COVID-19: An Update. Frontiers in Physiology, 2021, 12, 706185.	1.3	7
298	Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Frontiers in Cellular and Infection Microbiology, 2021, 11, 766590.	1.8	16
299	Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduction and Targeted Therapy, 2021, 6, 367.	7.1	31
300	Untimely TGFÎ ² responses in COVID-19 limit antiviral functions of NK cells. Nature, 2021, 600, 295-301.	13.7	146
301	Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Frontiers in Immunology, 2021, 12, 738073.	2.2	24
302	A New Perspective of COVID-19 Infection: An Epigenetics Point of View. Global Medical Genetics, 2022, 09, 004-006.	0.4	6
303	Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Frontiers in Immunology, 2021, 12, 732913.	2.2	16

#	Article	IF	CITATIONS
305	Complete blood count alterations in COVID-19 patients. Biochemia Medica, 2021, 31, 403-415.	1.2	63
306	Human nasal wash RNA-Seq reveals distinct cell-specific innate immune responses in influenza versus SARS-CoV-2. JCI Insight, 2021, 6, .	2.3	16
307	Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses. Science Translational Medicine, 2021, 13, eabi7428.	5 . 8	84
308	Meta-analysis of COVID-19 single-cell studies confirms eight key immune responses. Scientific Reports, 2021, 11, 20833.	1.6	11
309	Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. IScience, 2021, 24, 103256.	1.9	26
313	The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 2021, 131, .	3.9	138
314	Elevated Anti-SARS-CoV-2 Antibodies and IL-6, IL-8, MIP- $1\hat{l}^2$, Early Predictors of Severe COVID-19. Microorganisms, 2021, 9, 2259.	1.6	14
315	Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis, 2022, 25, 225-240.	3.7	27
317	Potentials of Interferons and Hydroxychloroquine for the Prophylaxis and Early Treatment of COVID-19., 2020, 2, 333-340.		2
318	Comprehensive pathway enrichment analysis workflows: COVID-19 case study. Briefings in Bioinformatics, 2021, 22, 676-689.	3.2	5
319	Are Aspirin and Apixaban Sufficient to Prevent Immunothrombosis in COVID-19?. SSRN Electronic Journal, 0, , .	0.4	1
320	Dermatomyositis With Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Frontiers in Immunology, 2021, 12, 773352.	2.2	105
321	Management of Children with Psoriasis During the COVID-19 Pandemic. Voprosy Sovremennoi Pediatrii - Current Pediatrics, 2021, 20, 441-445.	0.1	0
322	Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Current Opinion in Nephrology and Hypertension, 2022, 31, 36-46.	1.0	11
323	Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2021, 6, 382.	7.1	53
324	Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Frontiers in Immunology, 2021, 12, 783725.	2.2	36
325	Syrian hamsters as a model of lung injury with SARS-CoV-2 infection: Pathologic, physiologic, and detailed molecular profiling. Translational Research, 2022, 240, 1-16.	2.2	33
326	Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation. Journal of Leukocyte Biology, 2021, 110, 1225-1239.	1.5	4

#	Article	IF	CITATIONS
334	Potential Implications of a Type 1 Interferon Gene Signature on COVID-19 Severity and Chronic Inflammation in Sickle Cell Disease. Frontiers in Medicine, 2021, 8, 679030.	1.2	0
335	Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?. Nature Reviews Immunology, 2022, 22, 47-56.	10.6	118
336	Association of Metabolic Syndrome with COVID-19 in the Republic of Korea. Diabetes and Metabolism Journal, 2022, 46, 427-438.	1.8	3
337	Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nature Medicine, 2022, 28, 201-211.	15.2	132
338	Single-cell landscape of peripheral immune responses to fatal SFTS. Cell Reports, 2021, 37, 110039.	2.9	19
339	The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochemical Pharmacology, 2022, 195, 114847.	2.0	31
341	Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. Journal of Clinical Investigation, 2021, 131 , .	3.9	25
342	A regulatory T cell signature distinguishes the immune landscape of COVID-19 patients from those with other respiratory infections. Science Advances, 2021, 7, eabj0274.	4.7	28
343	Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Non-coding RNA, 2021, 7, 74.	1.3	5
344	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
345	Innate Immune Response in Respiratory System. Infectious Diseases & Immunity, 2021, Publish Ahead of Print, .	0.2	1
346	People critically ill with COVID-19 exhibit peripheral immune profiles predictive of mortality and reflective of SARS-CoV-2 lung viral burden. Cell Reports Medicine, 2021, 2, 100476.	3.3	11
349	Single-cell immunology of SARS-CoV-2 infection. Nature Biotechnology, 2022, 40, 30-41.	9.4	78
350	The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature, 2022, 603, 145-151.	13.7	272
351	Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathogens, 2022, 18, e1010219.	2.1	35
352	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
353	Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications, 2022, 13, 440.	5.8	100
354	Communication Pattern Changes Along With Declined IGF1 of Immune Cells in COVID-19 Patients During Disease Progression. Frontiers in Immunology, 2021, 12, 729990.	2.2	3

#	Article	IF	Citations
355	Immune-Guided Therapy of COVID-19. Cancer Immunology Research, 2022, 10, 384-402.	1.6	20
356	A Novel Immunobiotics Bacteroides dorei Ameliorates Influenza Virus Infection in Mice. Frontiers in Immunology, 2021, 12, 828887.	2.2	13
358	Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 2022, 13, 21.	5.8	31
359	Long non-coding RNAs (IncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single-cell analysis. PLoS ONE, 2022, 17, e0261242.	1.1	37
360	Oral Chinese Herbal Medicine on Immune Responses During Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 2021, 8, 685734.	1.2	15
361	Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opinion on Therapeutic Targets, 2022, 26, 13-28.	1.5	5
362	COVID-19: systemic pathology and its implications for therapy. International Journal of Biological Sciences, 2022, 18, 386-408.	2.6	27
363	The Dual Role of CCR5 in the Course of Influenza Infection: Exploring Treatment Opportunities. Frontiers in Immunology, 2021, 12, 826621.	2.2	7
364	Alu RNA Structural Features Modulate Immune Cell Activation and A-to-I Editing of Alu RNAs Is Diminished in Human Inflammatory Bowel Disease. Frontiers in Immunology, 2022, 13, 818023.	2.2	5
365	HACE2-Exosome-Based Nano-Bait for Concurrent SARS-CoV-2 Trapping and Antioxidant Therapy. ACS Applied Materials & Description (1988) Ap	4.0	17
366	Low levels of CIITA and high levels of SOCS1 predict COVID-19 disease severity in children and adults. IScience, 2022, 25, 103595.	1.9	2
367	Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2022, 20, 824-837.	1.9	49
368	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches. BMB Reports, 2022, 55, 11-19.	1.1	7
371	Innate immunity: the first line of defense against SARS-CoV-2. Nature Immunology, 2022, 23, 165-176.	7.0	303
372	A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 2022, 185, 916-938.e58.	13.5	164
373	Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology, 2022, 30, 778-792.	3.5	41
375	Bioconjugation strategies and clinical implications of Interferon-bioconjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 157-167.	2.0	12
377	The relationship between peripheral immune response and disease severity in SARSâ€CoVâ€2â€infected subjects: A crossâ€sectional study. Immunology, 2022, 165, 481-496.	2.0	17

#	Article	IF	CITATIONS
378	SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. Journal of Microbiology, 2022, 60, 290-299.	1.3	24
379	Clinical Features and Outcomes of Severe Pneumonia Caused by Endemic Human Coronavirus in Adults. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	0
380	SARS-CoV-2 infection causes intestinal cell damage: Role of interferon's imbalance. Cytokine, 2022, 152, 155826.	1.4	11
381	Modeling SARS-CoV-2 Infection in Mice Using Lentiviral hACE2 Vectors Infers Two Modes of Immune Responses to SARS-CoV-2 Infection. Viruses, 2022, 14, 11.	1.5	0
382	Regulation of early growth response-1 (Egr-1) gene expression by Stat1-independent type I interferon signaling and respiratory viruses. Computational and Mathematical Biophysics, 2021, 9, 289-303.	0.6	2
383	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	5.8	19
384	In silico evaluation of Vitis amurensis Rupr. Polyphenol compounds for their inhibition potency against COVID-19 main enzymes Mpro and RdRp. Saudi Pharmaceutical Journal, 2022, 30, 570-584.	1.2	8
385	Multiscale PHATE identifies multimodal signatures of COVID-19. Nature Biotechnology, 2022, 40, 681-691.	9.4	39
386	Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients. Frontiers in Immunology, 2022, 13, 812514.	2.2	12
387	Injection Effect of Anti-CD3 Monoclonal Antibody on Primo Vessel in Lymph Vessel of Rabbit with Lipopolysaccharide-Induced Inflammation. JAMS Journal of Acupuncture and Meridian Studies, 2022, 15, 37-42.	0.3	0
388	Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Medicine, 2022, 14, 16.	3.6	25
389	Programmed cell death: the pathways to severe COVID-19?. Biochemical Journal, 2022, 479, 609-628.	1.7	30
391	The immunology and immunopathology of COVID-19. Science, 2022, 375, 1122-1127.	6.0	434
392	Comparison of Lung-Homing Receptor Expression and Activation Profiles on NK Cell and T Cell Subsets in COVID-19 and Influenza. Frontiers in Immunology, 2022, 13, 834862.	2.2	23
393	Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence. Pathogens, 2022, 11, 311.	1.2	16
394	Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathogens, 2022, 18, e1010395.	2.1	23
396	Differences in SARS-CoV-2 Vaccine Response Dynamics Between Class-I- and Class-II-Specific T-Cell Receptors in Inflammatory Bowel Disease. Frontiers in Immunology, 2022, 13, 880190.	2.2	7
397	The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Frontiers in Immunology, 2022, 13, 832394.	2.2	56

#	Article	IF	CITATIONS
398	Expression analysis of IFNAR1 and TYK2 transcripts in COVID-19 patients. Cytokine, 2022, 153, 155849.	1.4	4
399	The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathology Research and Practice, 2022, 233, 153848.	1.0	17
400	Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Molecular Immunology, 2022, 145, 17-26.	1.0	4
401	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
402	CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation. Genome Biology, 2021, 22, 337.	3.8	14
404	Impact of chemotherapy and immunotherapy on the composition and function of immune cells in COVID-19 convalescent with gynecological tumors. Aging, 2021, 13, 24943-24962.	1.4	5
405	A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune $\hat{a} \in \hat{a}$ epithelial interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
406	Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nature Immunology, 2022, 23, 75-85.	7.0	3
407	SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases. Journal of Translational Autoimmunity, 2022, 5, 100154.	2.0	12
408	Interpretable Hierarchical Bayesian Modeling of Cell-Type Distributions in COVID-19 Disease. , 2022, , .		0
409	Abnormal global alternative RNA splicing in COVID-19 patients. PLoS Genetics, 2022, 18, e1010137.	1.5	21
410	Dysregulation of the leukocyte signaling landscape during acute COVID-19. PLoS ONE, 2022, 17, e0264979.	1.1	4
411	Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLoS Pathogens, 2022, 18, e1010464.	2.1	24
412	Global Transcriptomic Profiling Identifies Differential Gene Expression Signatures Between Inflammatory and Noninflammatory Aortic Aneurysms. Arthritis and Rheumatology, 2022, 74, 1376-1386.	2.9	4
420	SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation, 2022, 45, 1430-1449.	1.7	16
421	Angiopoietin 2 Is Associated with Vascular Necroptosis Induction in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. American Journal of Pathology, 2022, 192, 1001-1015.	1.9	19
422	Potential Implications of a Type 1 Interferon Gene Signature on COVID-19 Severity and Chronic Inflammation in Sickle Cell Disease. Frontiers in Medicine, 2021, 8, 679030.	1.2	4
423	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches BMB Reports, 2021, , .	1.1	0

#	Article	IF	CITATIONS
425	Integrated analysis of transcriptomic data reveals the platelet response in COVID-19 disease. Scientific Reports, 2022, 12, 6851.	1.6	7
426	Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 2022, 14, 46.	3.6	19
427	Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Frontiers in Immunology, 2022, 13, .	2.2	11
429	Classification and severity progression measure of COVID-19 patients using pairs of multi-omic factors. Journal of Applied Statistics, 2023, 50, 2473-2503.	0.6	1
431	A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight, 2022, 7, .	2.3	8
432	Organâ€specific immune response in lethal SARSâ€CoVâ€2 infection by deep spatial phenotyping. Clinical and Translational Immunology, 2022, 11, .	1.7	0
433	Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy. Frontiers in Immunology, 2022, 13, .	2.2	29
434	Autoantibodies against apolipoprotein Aâ \in 1 after COVIDâ \in 19 predict symptoms persistence. European Journal of Clinical Investigation, 2022, 52, .	1.7	12
435	The mechanistic basis linking cytokine storm to thrombosis in COVID-19. Thrombosis Update, 2022, 8, 100110.	0.4	2
436	Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses, 2022, 14, 1082.	1.5	20
438	mRNA-1273 vaccination protects against SARS-CoV-2–elicited lung inflammation in nonhuman primates. JCI Insight, 2022, 7, .	2.3	3
440	Tryptanthrin attenuates TLR3-mediated STAT1 activation in THP-1 cells. Immunologic Research, 2022, 70, 688-697.	1.3	4
441	Mechanism of COVID-19 Causing ARDS: Exploring the Possibility of Preventing and Treating SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	19
442	Redefining critical illness. Nature Medicine, 2022, 28, 1141-1148.	15.2	136
444	Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses, 2022, 14, 1349.	1.5	7
445	Lysozyme Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Inflammation in Human Corneal Epithelial Cells. , 2022, 63, 16.		9
446	Clinical and genetic predictors of cardiovascular events as the risk of an unfavorable course and outcomes of novel coronavirus infection. HERALD of North-Western State Medical University Named After II Mechnikov, 2022, 14, 5-16.	0.1	1
447	Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses, 2022, 14, 1247.	1.5	24

#	Article	IF	Citations
448	Longitudinal Analysis of Biologic Correlates of COVID-19 Resolution: Case Report. Frontiers in Medicine, $0, 9, .$	1.2	1
449	COVID-19 associated pediatric vasculitis: A systematic review and detailed analysis of the pathogenesis. Seminars in Arthritis and Rheumatism, 2022, 55, 152047.	1.6	24
450	Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: from prognostic marker to therapeutic agent. Cytokine, 2022, 157, 155934.	1.4	19
451	Interferon-α-mediated therapeutic resistance in early rheumatoid arthritis implicates epigenetic reprogramming. Annals of the Rheumatic Diseases, 2022, 81, 1214-1223.	0.5	18
452	Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. Journal of Interferon and Cytokine Research, 2022, 42, 369-392.	0.5	9
453	The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	28
454	A Landscape Study on COVID-19 Immunity at the Single-Cell Level. Frontiers in Immunology, 0, 13, .	2.2	1
455	The Cholesterol-Binding Sequence in Monomeric C-Reactive Protein Binds to the SARS-CoV-2 Spike Receptor-Binding Domain and Blocks Interaction With Angiotensin-Converting Enzyme 2. Frontiers in Immunology, 0, 13, .	2.2	2
456	Interferon induction, evasion, and paradoxical roles during SARS oVâ€⊋ infection*. Immunological Reviews, 2022, 309, 12-24.	2.8	39
457	Plasmacytoid dendritic cells during COVID-19: Ally or adversary?. Cell Reports, 2022, 40, 111148.	2.9	14
458	The deciphering of the immune cells and marker signature in COVIDâ€19 pathogenesis: An update. Journal of Medical Virology, 2022, 94, 5128-5148.	2.5	12
459	A Path-Based Analysis of Infected Cell Line and COVID-19 Patient Transcriptome Reveals Novel Potential Targets and Drugs Against SARS-CoV-2. Frontiers in Immunology, 0, 13, .	2.2	6
460	Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation(China), 2022, 3, 100289.	5.2	9
461	Regulatory T Cells Decreased during Recovery from Mild COVID-19. Viruses, 2022, 14, 1688.	1.5	9
462	PEtOxylated Interferon-α2a Bioconjugates Addressing H1N1 Influenza A Virus Infection. Biomacromolecules, 2022, 23, 3593-3601.	2.6	4
463	Dynamic changes in peripheral blood monocytes early after anti-PD-1 therapy predict clinical outcomes in hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2023, 72, 371-384.	2.0	7
464	An evolutionary approach to data valuation. , 2022, , .		0
465	Role of T Lymphocyte Activation Profile in Predicting SARS-CoV-2 Severity: Experience from Tertiary Care Centre of North India. Indian Journal of Hematology and Blood Transfusion, 0, , .	0.3	0

#	Article	IF	Citations
466	Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Medicine, 2022, 14 , .	3.6	28
467	NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells, 2022, 11, 2619.	1.8	4
468	Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and coronaviruses. Autophagy, 2023, 19, 1055-1069.	4.3	5
469	Temporally restricted activation of IFN \hat{l}^2 signaling underlies response to immune checkpoint therapy in mice. Nature Communications, 2022, 13, .	5.8	12
470	Type I interferons during host–fungus interactions: Is antifungal immunity going viral?. PLoS Pathogens, 2022, 18, e1010740.	2.1	2
471	Interferon \hat{l}_{\pm} -2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: An open prospective cohort study. Frontiers in Immunology, 0, 13, .	2.2	2
472	COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts. Frontiers in Genetics, $0,13,.$	1.1	4
473	Comparable bidirectional neutrophil immune dysregulation between Kawasaki disease and severe COVID-19. Frontiers in Immunology, 0, 13 , .	2.2	3
474	COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Frontiers in Medicine, 0, 9, .	1.2	4
476	COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Frontiers in Immunology, 0, 13, .	2.2	5
478	Common human genetic variants of APOE impact murine COVID-19 mortality. Nature, 2022, 611, 346-351.	13.7	29
479	Case report: Understanding the impact of persistent tissue-localization of SARS-CoV-2 on immune response activity via spatial transcriptomic analysis of two cancer patients with COVID-19 co-morbidity. Frontiers in Immunology, $0,13,.$	2.2	3
480	COVIDâ€19 immunopathology: From acute diseases to chronic sequelae. Journal of Medical Virology, 2023, 95, .	2.5	24
481	Early stimulated immune responses predict clinical disease severity in hospitalized COVID-19 patients. Communications Medicine, 2022, 2, .	1.9	5
482	Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Frontiers in Immunology, 0 , 13 , .	2,2	3
483	Ivermectin-Induced Clinical Improvement and Alleviation of Significant Symptoms of COVID-19 Outpatients: A Cross-Sectional Study. Iranian Journal of Science and Technology, Transaction A: Science, 0, , .	0.7	0
484	IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Frontiers in Immunology, 0, 13 , .	2.2	12
485	Association of human myxovirus resistance protein A with severity of COVID-19. BMC Infectious Diseases, 2022, 22, .	1.3	2

#	Article	IF	Citations
486	Novel skewed usage of B-cell receptors in COVID-19 patients with various clinical presentations. Immunology Letters, 2022, 249, 23-32.	1.1	4
487	Scalable workflow for characterization of cell-cell communication in COVID-19 patients. PLoS Computational Biology, 2022, 18, e1010495.	1.5	2
488	Influenza vaccination features revealed by a singleâ€cell transcriptome atlas. Journal of Medical Virology, 2023, 95, .	2.5	5
489	Insights into pandemic respiratory viruses: manipulation of the antiviral interferon response by SARS-CoV-2 and influenzaÂA virus. Current Opinion in Immunology, 2022, 78, 102252.	2.4	5
491	Hospital trajectories and early predictors of clinical outcomes differ between SARS-CoV-2 and influenza pneumonia. EBioMedicine, 2022, 85, 104295.	2.7	5
492	Macrophage Boolean networks in the time of SARS-CoV-2. Frontiers in Immunology, $0,13,.$	2.2	0
493	Saliva metabolomic profile of COVID-19 patients associates with disease severity. Metabolomics, 2022, 18, .	1.4	15
495	Neuro–Immune Interactions in Severe COVID-19 Infection. Pathogens, 2022, 11, 1256.	1.2	1
496	Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neurons. MBio, 2022, 13, .	1.8	33
497	GM-CSF-activated human dendritic cells promote Tfh1 cell polarization in a CD40-dependent manner. Journal of Cell Science, 0 , , .	1.2	3
498	Renaissance of glucocorticoids in critical care in the era of COVID-19: ten urging questions. Critical Care, 2022, 26, .	2.5	7
499	Development of Single-Cell Transcriptomics and Its Application in COVID-19. Viruses, 2022, 14, 2271.	1.5	1
500	Bioinformatics analysis to identify intersection genes, associated pathways and therapeutic drugs between COVID-19 and Oral candidiasis. Combinatorial Chemistry and High Throughput Screening, 2022, 25, .	0.6	2
502	Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis. Experimental and Molecular Medicine, 2022, 54, 1756-1765.	3.2	5
505	Delineating the SARS-CoV-2 Induced Interplay between the Host Immune System and the DNA Damage Response Network. Vaccines, 2022, 10, 1764.	2.1	4
507	Comparison of cell type annotation algorithms for revealing immune response of COVID-19. Frontiers in Systems Biology, $0, 2, .$	0.5	1
508	Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space. Nature Communications, 2022, 13, .	5.8	29
509	Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	6

#	Article	IF	CITATIONS
510	A persistent neutrophil-associated immune signature characterizes post–COVID-19 pulmonary sequelae. Science Translational Medicine, 2022, 14, .	5.8	43
511	Prognostic peripheral blood biomarkers at ICU admission predict COVID-19 clinical outcomes. Frontiers in Immunology, 0, 13, .	2.2	1
512	Therapeutic considerations for prevention and treatment of thrombotic events in COVID-19. Thrombosis Update, 2022, , 100126.	0.4	0
513	Commentaries on Viewpoint: COVID-19 controls causing a kerfuffle. Journal of Applied Physiology, 2022, 133, 1222-1225.	1.2	3
514	Heterogeneity of neutrophils and inflammatory responses in patients with COVID-19 and healthy controls. Frontiers in Immunology, 0, 13, .	2.2	9
515	Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Frontiers in Immunology, $0,13,.$	2.2	1
516	Profiles of host immune impairment in Plasmodium and SARS-CoV-2 infections. Heliyon, 2022, , e11744.	1.4	1
517	Do selected lifestyle parameters affect the severity and symptoms of COVID-19 among elderly patients? The retrospective evaluation of individuals from the STOP-COVID registry of the PoLoCOV study. Journal of Infection and Public Health, 2023, 16, 143-153.	1.9	4
518	Synergism of TNF- \hat{l}_{\pm} and IFN- \hat{l}_{2} triggers human airway epithelial cells death by apoptosis and pyroptosis. Molecular Immunology, 2023, 153, 160-169.	1.0	10
519	Stimulation of interferon \hat{I}^2 responses by aberrant SARS-CoV-2 small viral RNAs acting as retinoic acid-inducible gene-I agonists. IScience, 2023, 26, 105742.	1.9	4
520	Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clinical Immunology, 2023, 246, 109209.	1.4	14
522	Coronavirus Disease-2019 in the Immunocompromised Host. Clinics in Chest Medicine, 2023, 44, 395-406.	0.8	5
523	SARS-CoV-2 epitopes inform future vaccination strategies. Frontiers in Immunology, 0, 13, .	2.2	3
524	Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Medicine, 2022, 14, .	3.6	10
525	Post Covid 19 Care: Tests and Scans might be Worth Taking Right Now. International Journal of Pharmaceutical Sciences Review and Research, 0, , 40-43.	0.1	0
526	Defective activation and regulation of type I interferon immunityÂis associated with increasing COVID-19 severity. Nature Communications, 2022, 13, .	5.8	26
527	Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Current Issues in Molecular Biology, 2023, 45, 33-50.	1.0	14
528	Age and Comorbidities Predict COVID-19 Outcome, Regardless of Innate Immune Response Severity: A Single Institutional Cohort Study., 2022, 4, e0799.		4

#	Article	IF	CITATIONS
530	A B1a–natural IgG–neutrophil axis is impaired in viral- and steroid-associated aspergillosis. Science Translational Medicine, 2022, 14, .	5.8	14
533	The effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway on organ inflammatory injury and fibrosis. Frontiers in Pharmacology, 0, 13 , .	1.6	0
534	Multi-objective optimization identifies a specific and interpretable COVID-19 host response signature. Cell Systems, 2022, 13, 989-1001.e8.	2.9	3
535	Blood RNA alternative splicing events as diagnostic biomarkers for infectious disease. Cell Reports Methods, 2023, 3, 100395.	1.4	1
536	Functional changes in cytotoxic CD8+ T-cell cross-reactivity against the SARS-CoV-2 Omicron variant after mRNA vaccination. Frontiers in Immunology, 0, 13 , .	2.2	2
537	Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathogens, 2023, 19, e1011063.	2.1	7
539	Innate immune evasion strategies of SARS-CoV-2. Nature Reviews Microbiology, 0, , .	13.6	31
540	Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines, 2023, 11, 174.	2.1	2
541	Cutting Edge: Hyperinflammatory Monocytes Expressing CD56 Abound in Severe COVID-19 Patients. Journal of Immunology, 2022, 209, 655-659.	0.4	4
542	scAVENGERS: a genotype-based deconvolution of individuals in multiplexed single-cell ATAC-seq data without reference genotypes. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	3
543	Autoantibodies neutralizing antiinflammatory mediators in the context of SARS-CoV-2 infection and COVID-19., 2023,, 351-368.		0
544	Transcriptomic approaches in COVID-19: From infection to vaccines., 2023,, 125-144.		0
545	Systems biology in COVID-19., 2023, , 301-320.		0
546	An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. Journal of Immunology, 2023, 210, 774-785.	0.4	2
547	SARS-CoV-2 infection and immune responses. AIMS Microbiology, 2023, 9, 245-276.	1.0	2
549	Single cell RNA-seq resolution revealed CCR1+/SELL+/XAF+ CD14 monocytes mediated vascular endothelial cell injuries in Kawasaki disease and COVID-19. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166707.	1.8	1
551	The turning point of <scp>COVIDâ€19</scp> severity is associated with a unique circulating neutrophil gene signature. Immunology, 2023, 169, 323-343.	2.0	3
552	Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation. International Journal of Molecular Sciences, 2023, 24, 3570.	1.8	3

#	Article	IF	CITATIONS
553	Impact of COVID-19 on Cardiovascular Disease. Viruses, 2023, 15, 508.	1.5	15
554	Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine, 2023, 89, 104472.	2.7	10
555	Insights into COVID-19-associated critical illness: a narrative review. Annals of Translational Medicine, 2023, 11 , 220-220.	0.7	2
556	Blood Inflammatory Biomarkers Differentiate Inpatient and Outpatient Coronavirus Disease 2019 From Influenza. Open Forum Infectious Diseases, 2023, 10, .	0.4	O
557	Dual mechanism: Epigenetic inhibitor apabetalone reduces SARS-CoV-2 Delta and Omicron variant spike binding and attenuates SARS-CoV-2 RNA induced inflammation. International Immunopharmacology, 2023, 117, 109929.	1.7	2
558	HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines, 2023, 11, 548.	2.1	1
559	Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Molecules and Cells, 2023, 46, 120-129.	1.0	1
560	Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. International Journal of Molecular Sciences, 2023, 24, 4905.	1.8	4
561	Downregulation of <i>MALAT1</i> is a hallmark of tissue and peripheral proliferative T cells in COVID-19. Clinical and Experimental Immunology, 2023, 212, 262-275.	1.1	3
563	Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. Journal of Experimental Medicine, 2023, 220, .	4.2	10
564	Severe COVID-19 <i>versus</i> multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. European Respiratory Review, 2023, 32, 220197.	3.0	2
565	A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Frontiers in Genetics, 0, 14, .	1.1	1
566	A multiscale mechanistic model of human dendritic cells for in-silico investigation of immune responses and novel therapeutics discovery. Frontiers in Immunology, 0, 14, .	2.2	2
567	Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections. PLoS ONE, 2023, 18, e0281981.	1.1	1
569	Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Advances, 2023, 7, 4200-4214.	2.5	7
570	Role of OAS gene family in COVID-19 induced heart failure. Journal of Translational Medicine, 2023, 21, .	1.8	4
571	Corticosteroids reduce pathologic interferon responses by downregulating STAT1 in patients with high-risk COVID-19. Experimental and Molecular Medicine, 2023, 55, 653-664.	3.2	2
572	A comprehensive platform for analyzing longitudinal multi-omics data. Nature Communications, 2023, 14, .	5.8	9

#	Article	IF	CITATIONS
573	Clinical efficacy and safety of interferon (Type I and Type III) therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE, 2023, 18, e0272826.	1.1	7
574	Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. Journal of Infection, 2023, 86, 421-438.	1.7	9
575	Severe COVID-19 and non-COVID-19 severe sepsis converge transcriptionally after a week in the intensive care unit, indicating common disease mechanisms. Frontiers in Immunology, 0, 14, .	2.2	4
576	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0
577	Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Communications Biology, 2023, 6, .	2.0	3
578	Therapeutic Effectiveness of Interferon- $\hat{1}\pm2b$ against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. International Journal of Molecular Sciences, 2023, 24, 6887.	1.8	4
579	Immunological Facet and Inception after Post-COVID-19 Vaccination. Infectious Disorders - Drug Targets, 2023, 23, .	0.4	0
580	Distinctive Dynamics and Functions of the CD4+CD25+FOXP3+ Regulatory T Cell Population in Patients with Severe and Mild COVID-19. Journal of Immunology, 2023, 210, 1687-1699.	0.4	4
581	Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Frontiers in Immunology, 0, 14 , .	2.2	7
583	Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. Journal of Clinical Immunology, 2023, 43, 1278-1288.	2.0	5
585	Novel insight into the underlying dysregulation mechanisms of immune cell-to-cell communication by analyzing multitissue single-cell atlas of two COVID-19 patients. Cell Death and Disease, 2023, 14, .	2.7	3
595	The effect of COVID-19 on cancer immunotherapy and cancer care. , 2024, , 289-310.e7.		0
675	TLRs and other molecules signaling crosstalk in diseases. , 0, , .		0