Slotted ALOHA With NOMA for the Next Generation Io

IEEE Transactions on Communications 68, 6289-6301 DOI: 10.1109/tcomm.2020.3007744

Citation Report

#	Article	IF	CITATIONS
1	Random-Access NOMA in URLL Energy-Harvesting IoT Networks With Short Packet and Diversity Transmissions. IEEE Access, 2020, 8, 220734-220754.	4.2	20
2	On the Performance of Hybrid Satellite-Terrestrial Content Delivery Networks With Non-Orthogonal Multiple Access. IEEE Wireless Communications Letters, 2021, 10, 454-458.	5.0	17
3	A Framed Slotted ALOHA-Based MAC for Eliminating Vain Wireless Power Transfer in Wireless Powered IoT Networks. Electronics (Switzerland), 2021, 10, 9.	3.1	9
4	Throughput Analysis and User Barring Design for Uplink NOMA-Enabled Random Access. IEEE Transactions on Wireless Communications, 2021, 20, 6298-6314.	9.2	19
5	Age of Information of SIC-Aided Massive IoT Networks With Random Access. IEEE Internet of Things Journal, 2022, 9, 662-670.	8.7	19
6	Multi-User Joint Maximum-Likelihood Detection in Uplink NOMA-IoT Networks: Removing the Error Floor. IEEE Wireless Communications Letters, 2021, 10, 2459-2463.	5.0	18
7	Identifying the Effects of Security Measures on QoS Variations for IoT Network: An Application Perspective. , 2021, , .		1
8	Packet Squeezing of Random Access with 5G Real-Time Services for Internet of Things. Wireless Personal Communications, 2021, 118, 1365-1392.	2.7	0
9	Optimization of Ultra-Dense Wireless Powered Networks. Sensors, 2021, 21, 2390.	3.8	6
10	Performance Analysis of Distributed Uplink NOMA. IEEE Communications Letters, 2021, 25, 788-792.	4.1	8
11	A Comprehensive Review on Energy Harvesting Integration in IoT Systems from MAC Layer Perspective: Challenges and Opportunities. Sensors, 2021, 21, 3097.	3.8	13
12	Energy Efficient Data Gathering in IoT Networks With Heterogeneous Traffic for Remote Area Surveillance Applications: A Cross Layer Approach. IEEE Transactions on Green Communications and Networking, 2021, 5, 1165-1178.	5.5	6
13	Improving UAV base station energy efficiency for industrial IoT URLLC services by irregular repetition slotted-ALOHA. Computer Networks, 2021, 199, 108415.	5.1	8
14	Semi-Grant-Free Non-Orthogonal Multiple Access for Tactile Internet of Things. , 2021, , .		7
15	Congestion Control in Cognitive IoT-Based WSN Network for Smart Agriculture. IEEE Access, 2021, 9, 151401-151420.	4.2	19
16	On Throughput Bounds of NOMA-ALOHA. IEEE Wireless Communications Letters, 2022, 11, 165-168.	5.0	10
17	Nonlinear Energy Harvesting Evaluation through the Logit Pearson Distribution. , 2021, , .		1
18	Performance Analysis and Resource Allocation for a Relaying LoRa System Considering Random Nodal Distances IEEE Transactions on Communications 2022, 70, 1638-1652	7.8	4

CITATION REPORT

#	Article	IF	CITATIONS
19	On the Performance of Uplink Rate-Splitting Multiple Access. IEEE Communications Letters, 2022, 26, 523-527.	4.1	19
20	Energy-Aware Optimization of Zero-Energy Device Networks. IEEE Communications Letters, 2022, 26, 858-862.	4.1	6
21	Distributed collaboration and anti-interference optimization in edge computing for IoT. Journal of Parallel and Distributed Computing, 2022, 163, 156-165.	4.1	3
22	Anti-collision method of dense Internet of Things broadcast channel based on time slot ALOHA. , 2022, , ,		1
23	On the Distribution of the Sum of Double-Nakagami-\$m\$ Random Vectors and Application in Randomly Reconfigurable Surfaces. IEEE Transactions on Vehicular Technology, 2022, 71, 7297-7307.	6.3	25
24	Stochastic Game Analysis of Cooperation and Selfishness in a Random Access Mechanism. Mathematics, 2022, 10, 694.	2.2	Ο
25	Online Estimation and Adaptation for Random Access with Successive Interference Cancellation. IEEE Transactions on Mobile Computing, 2022, , 1-1.	5.8	2
26	Deep Reinforcement Learning based reliable spectrum sensing under SSDF attacks in Cognitive Radio networks. Journal of Network and Computer Applications, 2022, 205, 103454.	9.1	7
27	New Results for Pearson Type III Family of Distributions and Application in Wireless Power Transfer. IEEE Internet of Things Journal, 2022, 9, 24038-24050.	8.7	2
28	Millimeterâ€wave nonâ€orthogonal multiple access systems with sparse antenna arrays. Transactions on Emerging Telecommunications Technologies, 0, , .	3.9	Ο
29	Uplink Performance Analysis of Grant-Free NOMA Networks. , 2022, , .		1
30	Time-Offset ALOHA With SIC. IEEE Transactions on Mobile Computing, 2023, , 1-13.	5.8	Ο
31	Design and Analysis of a Dynamic Access Class Barring NOMA Random Access Algorithm. IEEE Communications Letters, 2022, 26, 3054-3058.	4.1	1
32	On the Ergodic Rate of Cognitive Radio Inspired Uplink Multiple Access. IEEE Communications Letters, 2023, 27, 95-99.	4.1	6
33	Wireless Powered Multiaccess Edge Computing With Slotted ALOHA. IEEE Communications Letters, 2023, 27, 273-277.	4.1	4
34	Spectrally Efficient Uplink Cooperative NOMA With Joint Decoding for Relay-Assisted IoT Networks. IEEE Internet of Things Journal, 2023, 10, 210-223.	8.7	7
35	Modelling Analysis of a Novel Frameless Slotted-ALOHA Protocol Based on the Number of Detectable Conflicting Users. Future Internet, 2022, 14, 279.	3.8	1
36	Design and performance evaluation of successive interference cancellation based Slotted Aloha MAC protocol. Physical Communication, 2022, 55, 101910.	2.1	3

ARTICLE IF CITATIONS # Outage Analysis of Multiuser MIMO-NOMA Transmissions in Uplink Full-Duplex Cooperative System. 37 5.0 4 IEEE Wireless Communications Letters, 2022, 11, 2076-2079. Age-of-Information Dependent Random Access in Multiple-Relay Slotted ALOHA. IEEE Access, 2022, 10, 112076-112085. 4.2 Energy-Aware Design of UAV-Mounted RIS Networks for IoT Data Collection. IEEE Transactions on 39 7.8 15 Communications, 2023, 71, 1168-1178. Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users. IEEE 9.2 Transactions on Wireless Communications, 2023, 22, 4638-4653. A Hybrid Grant NOMA Random Access for Massive MTC Service. IEEE Internet of Things Journal, 2023, 10, 41 8.7 3 5490-5505. Low vs high spectral efficiency communications with SIC and random access., 2022, , . Real-Time Transmission Control for Multichannel NOMA Random Access Systems. IEEE Internet of 43 8.7 0 Things Journal, 2023, 10, 8984-8995. NOMA-dependent Low-Powered Retransmission in Sensing-based SPS for Cellular-V2X Mode 4., 2022, , . 44 45 Performance Analysis of Selective Decode-and-Forward Relaying for Satellite-IoT., 2022, , . 1 Resource Allocation for Double IRSs Assisted Wireless Powered NOMA Networks. IEEE Wireless Communications Letters, 2023, , 1-1. Statistical Learning-based Adaptive Network Access for the Industrial Internet-of-Things. IEEE Internet 47 8.7 1 of Things Journal, 2023, , 1-1. An Uplink Random Access Scheme Based on ALOHA System Assisted by Gain Division Multiple Access. 4.2 IEEE Access, 2023, 11, 28887-28895. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation 49 3.1 12 Tools, and Future Directions. Energies, 2023, 16, 3465. Maximizing Packets Collection in Wireless Powered IoT Networks with Charge-or-Data Time Slots. IEEE Transactions on Cognitive Communications and Networking, 2023, , 1-1. Deep-Reinforcement-Learning-Based NOMA-Aided Slotted ALOHA for LEO Satellite IoT Networks. IEEE 51 8.7 0 Internet of Things Journal, 2023, 10, 17772-17784. Slotted Aloha for Optical Wireless Communications in Internet of Underwater Things., 2023, , . Research on Random Access Technology of Satellite Internet of Things., 2023, , . 53 0 Performance Analysis and Resource Allocation of STAR-RIS-Aided Wireless-Powered NOMA System. IEEE 54 Transactions on Communications, 2023, 71, 5740-5755.

CITATION REPORT

#	Article	IF	CITATIONS
55	Channel-Aware Slotted ALOHA Networks Assisted by Intelligent Reflecting Surfaces. , 2023, , .		0
56	Performance Analysis of LEO Satellite-Based IoT Networks in the Presence of Interference. IEEE Internet of Things Journal, 2024, 11, 8783-8799.	8.7	0
57	Slotted ALOHA with Code Combining for IoT Networks. , 2023, , .		1
58	The role of SIC on the design of next generation multiple access. Annales Des Telecommunications/Annals of Telecommunications, 0, , .	2.5	0
59	Delayed Response and Random Backoff First for Low-Power Random Access of IoT Devices with Poor Channel Conditions. Sensors, 2023, 23, 9556.	3.8	0
60	On the Throughput of NOMA-ALOHA in Massive IoT With Sparse Active Users. IEEE Wireless Communications Letters, 2024, 13, 582-586.	5.0	Ο
61	Performance Analysis of NOMA-Based Slotted ALOHA for Massive Machine Type Communications. , 2023, , \cdot		0
62	Modeling and Performance Analysis of Slotted ALOHA with Interference Cancellation for mMTC. , 2023, , .		0
63	Timely and Efficient Information Delivery in Real-Time Industrial IoT Networks. , 2023, , .		0
64	Breaking Orthogonality in Uplink With Randomly Deployed Sources. IEEE Open Journal of the Communications Society, 2024, 5, 566-582.	6.9	0
65	Charging Selection Policies for Framed Slotted ALOHA on Wireless Networks with Directional Energy Transfer. Wireless Personal Communications, 2024, 134, 171-187.	2.7	0

CITATION REPORT