Durability challenges of anion exchange membrane fuel

Energy and Environmental Science 13, 2805-2838 DOI: 10.1039/d0ee01133a

Citation Report

#	Article	IF	CITATIONS
1	lonomers for electrochemical energy conversion & storage technologies. Polymer, 2020, 211, 123080.	1.8	53
2	Tuning Ion Exchange Capacity in Hydroxide-Stable Poly(arylimidazolium) Ionenes: Increasing the Ionic Content Decreases the Dependence of Conductivity and Hydration on Temperature and Humidity. Macromolecules, 2020, 53, 10548-10560.	2.2	23
3	Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System. Polymers, 2020, 12, 2758.	2.0	16
4	High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing Câ•O Links Free Backbone. Macromolecules, 2020, 53, 10988-10997.	2.2	36
5	Recent Advances in Bipolar Membrane Design and Applications. Chemistry of Materials, 2020, 32, 8060-8090.	3.2	96
6	Are Radicals Formed During Anion-Exchange Membrane Fuel Cell Operation?. Journal of Physical Chemistry Letters, 2020, 11, 7630-7636.	2.1	57
7	Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells. Journal of Materials Chemistry A, 2020, 8, 14135-14144.	5.2	60
8	Alkaline fuel cells consisting of imidazolium-based graft-type anion exchange membranes: Optimization of fuel cell conditions to achieve high performance and durability. Journal of Membrane Science, 2021, 620, 118844.	4.1	21
9	Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 327-337.	5.2	116
10	Recent Advancement on Anion Exchange Membranes for Fuel Cell and Water Electrolysis. ChemElectroChem, 2021, 8, 36-45.	1.7	68
11	Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^'2} . Angewandte Chemie - International Edition, 2021 7710-7718.	, <i>1</i> 5D,	185
12	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	5.2	12
13	Using Ultrasound to Effectively Homogenise Catalyst Inks: Is this Approach Still Acceptable?. Johnson Matthey Technology Review, 2022, 66, 61-76.	0.5	15
14	Anion exchange membranes containing no β-hydrogen atoms on ammonium groups: synthesis, properties, and alkaline stability. RSC Advances, 2021, 11, 1030-1038.	1.7	5
15	Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells. Membranes, 2021, 11, 102.	1.4	13
16	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	18.7	79
17	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	15.6	213
18	Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy, Macromolecules, 2021, 54, 2202-2212.	2.2	38

#	Article	IF	CITATIONS
19	Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^²2} . Angewandte Chemie, 2021, 133, 7789-7797.	1.6	29
20	Atomistic Insights into the Hydrogen Oxidation Reaction of Palladium-Ceria Bifunctional Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 2561-2571.	5.5	30
21	Polymer Electrolytes with High Ionic Concentration for Fuel Cells and Electrolyzers. ACS Applied Polymer Materials, 2021, 3, 1250-1270.	2.0	74
22	Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains. Scientific Reports, 2021, 11, 3764.	1.6	22
23	Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system. Applied Energy, 2021, 283, 116376.	5.1	50
24	Editors' Choice—Power-Generating Electrochemical CO ₂ Scrubbing from Air Enabling Practical AEMFC Application. Journal of the Electrochemical Society, 2021, 168, 024504.	1.3	9
25	Sustainable catalysts for water electrolysis: Selected strategies for reduction and replacement of platinum-group metals. Materials Today Sustainability, 2021, 11-12, 100060.	1.9	17
26	Performance hysteresis phenomena of anion exchange membrane fuel cells using an Fe–N–C cathode catalyst and an in-house-developed polymer electrolyte. Journal of Power Sources, 2021, 487, 229407.	4.0	13
27	Anion Exchange Ionomers: Impact of Chemistry on Thinâ€Film Properties. Advanced Functional Materials, 2021, 31, 2008778.	7.8	36
28	Separation of CO ₂ from Dilute Gas Streams Using a Membrane Electrochemical Cell. ACS ES&T Engineering, 2021, 1, 905-916.	3.7	13
29	Designing Highly Conductive Block Copolymer-Based Anion Exchange Membranes by Mesoscale Simulations. Journal of Physical Chemistry B, 2021, 125, 2729-2740.	1.2	11
30	Progress in Highâ€Performance Anion Exchange Membranes Based on the Design of Stable Cations for Alkaline Fuel Cells. Advanced Materials Technologies, 2021, 6, 2001220.	3.0	69
31	Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 2021, 33, e2006292.	11.1	300
32	Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability. Journal of Membrane Science, 2021, 621, 118964.	4.1	68
33	Critical Review of Platinum Group Metal-Free Materials for Water Electrolysis: Transition from the Laboratory to the Market. Johnson Matthey Technology Review, 2021, 65, 207-226.	0.5	17
34	Editors' Choice—Examining Performance and Durability of Anion Exchange Membrane Fuel Cells with Novel Spirocyclic Anion Exchange Membranes. Journal of the Electrochemical Society, 2021, 168, 044525.	1.3	14
35	Nanocomposite Anion Exchange Membranes with a Conductive Semi-Interpenetrating Silica Network. Membranes, 2021, 11, 260.	1.4	3
36	Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies, 2021, 14, 3193.	1.6	40

#	Article	IF	CITATIONS
37	The effect of –NHâ^' on quaternized polybenzimidazole anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2021, 626, 119178.	4.1	58
38	Alkaline fuel cell technology - A review. International Journal of Hydrogen Energy, 2021, 46, 18489-18510.	3.8	166
39	Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2100284.	5.6	76
40	Progress in neutron techniques: towards improved polymer electrolyte membranes for energy devices. Journal of Physics Condensed Matter, 2021, 33, 264005.	0.7	3
41	Catalytic activity of Pt–CoTiO3 nanocatalysts supported on reduced graphene oxide functionalized with Cr organometallic compounds for the oxygen reduction reaction. Journal of Materials Research, 0, , 1.	1.2	5
42	Pore Modification and Phosphorus Doping Effect on Phosphoric Acid-Activated Fe-N-C for Alkaline Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 1519.	1.9	3
43	Ultrafine Nickel Nanoparticles Encapsulated in N-Doped Carbon Promoting Hydrogen Oxidation Reaction in Alkaline Media. ACS Catalysis, 2021, 11, 7422-7428.	5.5	57
44	Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. Electrochemical Energy Reviews, 2022, 5, 348-400.	13.1	62
45	Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. Polymer, 2021, 228, 123920.	1.8	12
46	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie - International Edition, 2021, 60, 19272-19280.	7.2	85
47	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie, 2021, 133, 19421-19429.	1.6	15
48	High performance carbon-supported IrRu alloy catalyst for the in an alkaline anion-exchange membrane fuel cell. Journal of Alloys and Compounds, 2021, 868, 159205.	2.8	10
49	Analytical transmission electron microscopy for emerging advanced materials. Matter, 2021, 4, 2309-2339.	5.0	71
50	Molecular Control of Carbonâ€Based Oxygen Reduction Electrocatalysts through Metal Macrocyclic Complexes Functionalization. Advanced Energy Materials, 2021, 11, 2100866.	10.2	60
51	Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5, 1660-1677.	11.7	65
52	A novel anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC. International Journal of Hydrogen Energy, 2021, 46, 24328-24338.	3.8	22
53	Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells. , 2022, 4, 1-11.		45
54	Interaction Regulation Between Ionomer Binder and Catalyst: Active Tripleâ€Phase Boundary and High Performance Catalyst Layer for Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2101744.	5.6	34

#	Article	IF	CITATIONS
55	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	19.8	238
56	Promotion Effect of Modified Ni/C by La–Ce Oxide for Durable Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 12508-12513.	3.2	23
57	Ion conductive membranes for flow batteries: Design and ions transport mechanism. Journal of Membrane Science, 2021, 632, 119355.	4.1	23
58	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77
59	Proton Exchange Membrane Fuel Cell (PEMFC) Durability Factors, Challenges, and Future Perspectives: A Detailed Review. Material Science Research India, 2021, 18, 217-234.	0.9	15
60	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate Framework <i>-</i> Derived Cobalt <i>–</i> Nitrogen <i>-</i> Doped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. ACS Nano, 2021, 15, 13240-13248.	7.3	38
61	Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. Journal of Membrane Science, 2021, 634, 119404.	4.1	51
62	Electrochemical performance of poly(arylene piperidinium) membranes and ionomers in anion exchange membrane fuel cells. Journal of Power Sources, 2021, 507, 230287.	4.0	22
63	Design Strategies for Alkaline Exchange Membrane–Electrode Assemblies: Optimization for Fuel Cells and Electrolyzers. Membranes, 2021, 11, 686.	1.4	8
64	Chemo-stable poly(quinquephenylene-co-diphenylene piperidinium) ionomers for anion exchange membrane fuel cells. Journal of Power Sources, 2021, 506, 230184.	4.0	32
65	Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts. Applied Catalysis B: Environmental, 2021, 292, 120170.	10.8	59
66	Fe, Co, N-doped carbon nanotubes as bifunctional oxygen electrocatalysts. Applied Surface Science, 2022, 572, 151459.	3.1	3
67	Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochimica Acta, 2021, 391, 138919.	2.6	31
68	Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.	2.6	14
69	Metallo-Polyelectrolyte-Based Robust Anion Exchange Membranes via Acetalation of a Commodity Polymer. Macromolecules, 2021, 54, 9145-9154.	2.2	20
70	Limitations of aqueous model systems in the stability assessment of electrocatalysts for oxygen reactions in fuel cell and electrolyzers. Current Opinion in Electrochemistry, 2021, 29, 100832.	2.5	45
71	Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. Journal of Membrane Science, 2022, 641, 119938.	4.1	21
72	A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere, 2021, 282, 130817.	4.2	103

#	Article	IF	CITATIONS
73	Unveiling the influence of radiation-induced grafting methods on the properties of polyethylene-based anion-exchange membranes for alkaline fuel cells. Journal of Power Sources, 2021, 512, 230484.	4.0	14
74	High-performance poly(fluorenyl aryl piperidinium)-based anion exchange membrane fuel cells with realistic hydrogen supply. Journal of Power Sources, 2021, 512, 230474.	4.0	12
75	Chemically & physically stable crosslinked poly(aryl-co-aryl piperidinium)s for anion exchange membrane fuel cells. Journal of Membrane Science, 2021, 638, 119685.	4.1	57
76	Multi-layered thin film nanocomposite MoS2@MoO2/MWCNP/ITO-PET: Electrochemical approaches for synthesis and structural characterizations. Applied Surface Science, 2021, 565, 150508.	3.1	4
77	Performance of five commercial bipolar membranes under forward and reverse bias conditions for acid-base flow battery applications. Journal of Membrane Science, 2021, 640, 119748.	4.1	21
78	Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. Journal of Energy Chemistry, 2022, 66, 61-67.	7.1	45
79	High-performance radiation grafted anion-exchange membranes for fuel cell applications: Effects of irradiation conditions on ETFE-based membranes properties. Journal of Membrane Science, 2022, 641, 119879.	4.1	25
80	Preparation of crosslinker-free anion exchange membranes with excellent physicochemical and electrochemical properties based on crosslinked PPO-SEBS. Journal of Materials Chemistry A, 2021, 9, 1062-1079.	5.2	41
81	Machine learning analysis and prediction models of alkaline anion exchange membranes for fuel cells. Energy and Environmental Science, 2021, 14, 3965-3975.	15.6	29
82	Degradation study for the membrane electrode assembly of anion exchange membrane fuel cells at a single-cell level. Journal of Materials Chemistry A, 2021, 9, 18546-18556.	5.2	13
83	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
84	Improved Borohydride Oxidation Reaction Activity and Stability for Carbon-Supported Platinum Nanoparticles with Tantalum Oxyphosphate Interlayers. Journal of the Electrochemical Society, 2020, 167, 164508.	1.3	3
85	Electrocatalytic reduction of CO ₂ and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50, 12897-12914.	18.7	266
86	Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. Journal of Membrane Science, 2022, 643, 120008.	4.1	32
87	3Dâ€Zipped Interface: In Situ Covalent‣ocking for High Performance of Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2102637.	5.6	21
88	Highly Selective Anion Exchange Membrane Based on Quaternized Poly(triphenyl piperidine) for the Vanadium Redox Flow Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 14297-14306.	3.2	17
89	A review of the application of polyvinyl alcohol membranes for fuel cells. Ionics, 2022, 28, 1-13.	1.2	13
90	Silver Oxygen Reduction Electrocatalyst in Alkaline Medium: Aging and Protective Coating. Energy Technology, 2021, 9, 2100546.	1.8	1

#	ARTICLE	IF	CITATIONS
 91	Enhanced mass transport and water management of polymer electrolyte fuel cells via 3-D printed architectures, Journal of Power Sources, 2021, 515, 230636	4.0	17
92	Review—Challenges and Opportunities for Increased Current Density in Alkaline Electrolysis by Increasing the Operating Temperature. Journal of the Electrochemical Society, 2021, 168, 114501.	1.3	34
93	Alkaline Fuel Cells, Theory and Applications. , 2022, , 166-231.		0
94	Functionalized graphene oxide cross-linked poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity. Journal of Power Sources, 2022, 517, 230720.	4.0	39
95	A deep learning protocol for analyzing and predicting ionic conductivity of anion exchange membranes. Journal of Membrane Science, 2022, 642, 119983.	4.1	16
96	Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Applied Catalysis B: Environmental, 2022, 301, 120811.	10.8	16
97	Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis. Journal of Membrane Science, 2022, 642, 119966.	4.1	101
98	Fabrication of an Ionomer-Free Electrode Containing Vertically Aligned One-Dimensional Nanostructures for Alkaline Membrane Fuel Cells. Journal of the Electrochemical Society, 0, , .	1.3	2
99	A stable ion-solvating PBI electrolyte enabled by sterically bulky naphthalene for alkaline water electrolysis. Journal of Membrane Science, 2022, 643, 120042.	4.1	28
100	Direct borohydride fuel cells: A selected review of their reaction mechanisms, electrocatalysts, and influence of operating parameters on their performance. Current Opinion in Electrochemistry, 2022, 32, 100883.	2.5	12
101	Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells. Journal of Membrane Science, 2022, 644, 120109.	4.1	44
102	Anion Exchange Membranes with 1D, 2D and 3D Fillers: A Review. Polymers, 2021, 13, 3887.	2.0	12
103	Efficiency and Oxidation Performance of Densely Flexible Side-Chain Piperidinium-Functionalized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 14488-14496.	2.5	13
104	Eco-friendly synthesis of alkaline anion exchange membrane for fuel cells application. Brazilian Journal of Chemical Engineering, 2022, 39, 183-195.	0.7	1
105	Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications. Progress in Natural Science: Materials International, 2022, 32, 27-33.	1.8	11
106	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	2.5	18
107	Recent Progress and Viability of PGM-Free Catalysts for Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction. ACS Catalysis, 2022, 12, 1082-1089.	5.5	49
108	Recent Progress on Polyvinyl Alcohol-Based Materials for Energy Conversion. New Journal of Chemistry, 0, , .	1.4	2

	CHAIDI	N KEPORT	
#	Article	IF	CITATIONS
109	Aquivion®-based anionic membranes for water electrolysis. Electrochimica Acta, 2022, 405, 139834.	2.6	5
110	Spatially resolved performance and degradation in a perfluorinated anion exchange membrane fuel cell. Electrochimica Acta, 2022, 406, 139812.	2.6	7
111	2, 6-Diaminopyridine decorated reduced graphene oxide as integrated electrode with excellent electrochemical properties for aqueous supercapacitors. Electrochimica Acta, 2022, 404, 139725.	2.6	10
112	Crossâ€linked of poly(biphenyl pyridine) and poly(styreneâ€bâ€(ethyleneâ€coâ€butylene)â€bâ€styrene) gra double cations for anion exchange membrane. Electrochimica Acta, 2022, 405, 139770.	ifted with 2.6	15
113	Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells. Journal of Membrane Science, 2022, 644, 120160.	4.1	23
114	Decoupling polymer, water and ion transport dynamics in ion-selective membranes for fuel cell applications. Journal of Non-Crystalline Solids: X, 2022, 13, 100073.	0.5	3
115	Anion-conducting polyelectrolytes for energy devices. Trends in Chemistry, 2022, 4, 236-249.	4.4	34
116	Effect of LDH platelets on the transport properties and carbonation of anion exchange membranes. Electrochimica Acta, 2022, 403, 139713.	2.6	16
117	Bis-pyridinium crosslinked poly(ether ether ketone) anion exchange membranes with enhancement of hydroxide conductivity and alkaline stability. International Journal of Hydrogen Energy, 2022, 47, 6097-6110.	3.8	18
118	Di-piperidinium-crosslinked poly(fluorenyl- <i>co</i> -terphenyl piperidinium)s for high-performance alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 3678-3687.	5.2	45
119	Strategies for Improving Anion Exchange Membrane Fuel Cell Performance by Optimizing Electrode Conditions. Journal of the Electrochemical Society, 2022, 169, 014515.	1.3	7
120	Carbon Dots Derived from Waste Psidium Guajava Leaves for Electrocatalytic Sensing of Chlorpyrifos. Electroanalysis, 2022, 34, 1141-1149.	1.5	7
121	Highly stable poly(p-quaterphenylene alkylene)-based anion exchange membranes. Journal of Membrane Science, 2022, 647, 120342.	4.1	35
122	Effect of water management in membrane and cathode catalyst layers on suppressing the performance hysteresis phenomenon in anion-exchange membrane fuel cells. Journal of Power Sources, 2022, 522, 230997.	4.0	13
123	La-Based Perovskite Oxide Catalysts for Alkaline Oxygen Reduction: The Importance of Electrochemical Stability. Journal of Physical Chemistry C, 2022, 126, 3098-3108.	1.5	7
124	Branched Anion-Conducting Poly(arylene alkylene)s for Alkaline Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 2462-2473.	2.5	27
125	Strategies to optimize water management in anion exchange membrane fuel cells. Journal of Power Sources, 2022, 525, 231141.	4.0	18
126	A hierarchical monolithic cobalt-single-atom electrode for efficient hydrogen peroxide production in acid. Catalysis Science and Technology, 2022, 12, 2416-2419.	2.1	14

#	Article	IF	CITATIONS
127	Oligomeric chain extender-derived anion conducting membrane materials with poly(<i>p</i> -phenylene)-based architecture for fuel cells and water electrolyzers. Journal of Materials Chemistry A, 2022, 10, 9693-9706.	5.2	22
128	Crosslinked Poly(M-Terphenyl N-Methyl Piperidinium)-Sebs Membranes with Aryl-Ether Free and Kinked Backbones as Highly Stable and Conductive Anion Exchange Membranes. SSRN Electronic Journal, 0, , .	0.4	0
129	Tuning hydrophobic composition in terpolymer-based anion exchange membranes to balance conductivity and stability. Molecular Systems Design and Engineering, 2022, 7, 798-808.	1.7	5
130	Dimensionally stable multication-crosslinked poly(arylene piperidinium) membranes for water electrolysis. Journal of Materials Chemistry A, 2022, 10, 8401-8412.	5.2	41
131	<i>In situ</i> construction of self-supporting Ni–Fe sulfide for high-efficiency oxygen evolution. New Journal of Chemistry, 2022, 46, 8250-8255.	1.4	8
132	The Influence of Various Cationic Group on Polynorbornene Based Anion Exchange Membranes with Hydrophobic Large Steric Hindrance Arylene Substituent. SSRN Electronic Journal, 0, , .	0.4	0
133	Highly Stable Nanocarbon Supported Pt Catalyst for Fuel Cell Via a Molten Salt Graphitization Strategy. SSRN Electronic Journal, 0, , .	0.4	0
134	Highly Stable Nanocarbon Supported Pt Catalyst for Fuel Cell Via a Molten Salt Graphitization Strategy. SSRN Electronic Journal, 0, , .	0.4	0
135	Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells. Nature Energy, 2022, 7, 329-339.	19.8	60
136	Hydrophobic Quaternized Poly(fluorene) Ionomers for Emerging Fuel Cells. ACS Applied Energy Materials, 2022, 5, 2663-2668.	2.5	7
137	Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nature Materials, 2022, 21, 555-563.	13.3	32
138	Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers, 2022, 14, 1197.	2.0	55
139	Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds. Polymer, 2022, 245, 124698.	1.8	7
140	Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. Journal of Membrane Science, 2022, 653, 120487.	4.1	28
141	Structural modification of electrode for anion exchange membrane fuel cell by controlling ionomer dispersion. International Journal of Energy Research, 2022, 46, 6471-6479.	2.2	7
142	A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells. Sustainability, 2021, 13, 13938.	1.6	10
143	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2022, 134, .	1.6	3
144	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2022, 61, e202114892.	7.2	77

			-
#	ARTICLE	IF	CITATIONS
145	Enhancing side chain swing ability by novel all-carbon twisted backbone for high performance anion exchange membrane at relatively low IEC level. , 2021, 1, 100007.		7
146	Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2022, 14, 18261-18274.	4.0	28
147	Native Ligand Carbonization Renders Common Platinum Nanoparticles Highly Durable for Electrocatalytic Oxygen Reduction: Annealing Temperature Matters. Advanced Materials, 2022, 34, e2202743.	11.1	34
148	Anion-Exchange Membrane Water Electrolyzers. Chemical Reviews, 2022, 122, 11830-11895.	23.0	177
149	A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17, 629-636.	15.6	50
150	A Short Overview of Biological Fuel Cells. Membranes, 2022, 12, 427.	1.4	8
151	Improving the conductivity and dimensional stability of anion exchange membranes by grafting of quaternized dendrons. Journal of Polymer Science, 2022, 60, 2055-2068.	2.0	4
152	Crosslinked Anion Exchange Membranes Prepared from Highly Reactive Polyethylene and Polypropylene Intermediates. SSRN Electronic Journal, 0, , .	0.4	0
153	Impact of the Relative Humidity on the Performance Stability of Anion Exchange Membrane Fuel Cells Studied by Ion Chromatography. ACS Applied Polymer Materials, 2022, 4, 3962-3970.	2.0	7
154	Highly stable nanocarbon supported Pt catalyst for fuel cell via a molten salt graphitization strategy. International Journal of Hydrogen Energy, 2022, 47, 20494-20506.	3.8	12
155	Emerging Electrochemical Processes to Decarbonize the Chemical Industry. Jacs Au, 2022, 2, 1054-1070.	3.6	59
156	High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells. Journal of Membrane Science, 2022, 655, 120578.	4.1	45
157	Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules, 2022, 55, 4647-4655.	2.2	16
158	In Situ Crosslinked Side Chain Polybenzimidazole Based Anion Exchange Membranes for High Performance Alkaline Direct Methanol Fuel Cells. SSRN Electronic Journal, 0, , .	0.4	0
159	Oxygen Reduction Reaction in Alkaline Media Causes Iron Leaching from Fe–N–C Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 9753-9763.	6.6	59
160	Communication—Electropolymerization of Anion-Conducting Polymer Films. Journal of the Electrochemical Society, 0, , .	1.3	1
161	Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018. Energies, 2022, 15, 3787.	1.6	7
162	CeO ₂ Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells ACS Catalysis 2022, 12, 7014-7029	5.5	33

#	Article	IF	CITATIONS
163	Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules, 2022, 27, 3574.	1.7	6
164	Quaternary Ammonium-Biphosphate Ion-Pair Based Copolymers with Continuous H+ Transport Channels for High-Temperature Proton Exchange Membrane. SSRN Electronic Journal, 0, , .	0.4	0
165	Electrochemical Reactors for Continuous Decentralized H ₂ O ₂ Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
166	Electrochemical Reactors for Continuous Decentralized H ₂ O ₂ Production. Angewandte Chemie, 2022, 134, .	1.6	12
167	Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 8116-8126.	5.5	10
168	Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells. Journal of Power Sources, 2022, 541, 231599.	4.0	5
169	Alkaline stable piperidinium-based biphenyl polymer for anion exchange membranes. Solid State Ionics, 2022, 383, 115969.	1.3	5
170	On the stability of anion exchange membrane fuel cells incorporating polyimidazolium ionene (Aemion+®) membranes and ionomers. Sustainable Energy and Fuels, 2022, 6, 3551-3564.	2.5	18
171	Efficient Transport of Active Species in Triple-Phase Boundary Through "Paddle-Effect―of Ionomer for Alkaline Fuel Cells. SSRN Electronic Journal, 0, , .	0.4	0
172	New block poly(ether sulfone) based anion exchange membranes with rigid side-chains and high-density quaternary ammonium groups for fuel cell application. Polymer Chemistry, 2022, 13, 4395-4405.	1.9	7
173	Implementation of heteroatom-doped nanomaterial/core–shell nanostructure based electrocatalysts for fuel cells and metal-ion/air/sulfur batteries. Materials Advances, 2022, 3, 6096-6124.	2.6	8
174	Crosslinked Anion Exchange Membranes Prepared from Highly Reactive Polyethylene and Polypropylene Intermediates. SSRN Electronic Journal, O, , .	0.4	Ο
175	Support Effect in Bimetallic Particles PtNi for Hydrogen Oxidation Reaction in Alkaline Media. Topics in Catalysis, 2022, 65, 1251-1261.	1.3	2
176	A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone). Transactions of the Korean Hydrogen and New Energy Society, 2022, 33, 209-218.	0.1	0
177	Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design. Polymers, 2022, 14, 2860.	2.0	4
178	Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (XÂ= $1\hat{a}\in$ 3). Chem Catalysis, 2022, 2, 1961-1988.	2.9	7
179	A review on anion exchange membranes for fuel cells: Anion-exchange polyelectrolytes and synthesis strategies. International Journal of Hydrogen Energy, 2022, 47, 27800-27820.	3.8	42
180	Imidazole-Functionalized Multiquaternary Side-Chain Polyethersulfone Anion-Exchange Membrane for Fuel Cell Applications. ACS Applied Energy Materials, 2022, 5, 10023-10033.	2.5	9

#	Article	IF	CITATIONS
181	Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding. Journal of Electrochemical Science and Technology, 2022, 13, 369-376.	0.9	3
182	Design, synthesis and characterization of SEBS anion exchange membranes with ultrahigh dimensional stability. Journal of Polymer Research, 2022, 29, .	1.2	1
183	Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. Advanced Materials, 2023, 35, .	11.1	11
184	State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental, 2023, 325, 121733.	10.8	54
185	Co-, Ni-Catalyzed Borylation of Carbon Nanofibers for Oxygen Reduction Reaction in an Anion Exchange Membrane Fuel Cell. ACS Applied Energy Materials, 2022, 5, 10240-10253.	2.5	8
186	Cross-Linked Anion-Exchange Membranes with Dipole-Containing Cross-Linkers Based on Poly(terphenyl isatin piperidinium) Copolymers. ACS Applied Materials & Interfaces, 2022, 14, 39343-39353.	4.0	24
187	Recent Advances in Heterogeneous Electroreduction of CO2 on Copper-Based Catalysts. Catalysts, 2022, 12, 860.	1.6	11
188	Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. Journal of Membrane Science, 2022, 661, 120922.	4.1	28
189	Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 38132-38143.	4.0	11
190	Performance optimization of PGM and PGM-free catalysts in anion-exchange membrane fuel cells. Journal of Solid State Electrochemistry, 2022, 26, 2049-2057.	1.2	4
191	Novel poly(carbazole-butanedione) anion exchange membranes constructed by obvious microphase separation for fuel cells. International Journal of Hydrogen Energy, 2022, 47, 32262-32272.	3.8	17
192	Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane. Journal of Membrane Science, 2022, 660, 120878.	4.1	18
193	Alkaline direct liquid fuel cells: Advances, challenges and perspectives. Journal of Electroanalytical Chemistry, 2022, 922, 116712.	1.9	10
194	Crosslinked anion exchange membranes prepared from highly reactive polyethylene and polypropylene intermediates. Journal of Membrane Science, 2022, 661, 120921.	4.1	12
195	Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. Journal of Colloid and Interface Science, 2023, 629, 377-387.	5.0	38
196	Crosslinked Anion Exchange Membranes Prepared from Highly Reactive Polyethylene and Polypropylene Intermediates. SSRN Electronic Journal, 0, , .	0.4	0
197	Construction of symbiotic one-dimensional ionic channels in a cobalt-based covalent organic framework for high-performance oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 22781-22790.	5.2	2
198	Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chemical Society Reviews, 2022, 51, 7994-8044.	18.7	40

#	Article	IF	CITATIONS
199	Chemically stable piperidinium cations for anion exchange membranes. RSC Advances, 2022, 12, 26542-26549.	1.7	7
200	Field Grand Challenge for Membrane Science and Technology. , 0, 1, .		4
201	Efficient transport of active species in triple-phase boundary through "Paddle-Effect―of ionomer for alkaline fuel cells. Chemical Engineering Journal, 2023, 452, 139498.	6.6	7
202	The Influence of Various Cationic Group on Polynorbornene Based Anion Exchange Membranes with Hydrophobic Large Steric Hindrance Arylene Substituent. Chinese Journal of Polymer Science (English) Tj ETQq1	1 0278431	4 <mark>æ</mark> BT /Over
203	Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation. Nano Letters, 2022, 22, 7563-7571.	4.5	37
204	Biochar sacrificial anode assisted water electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 36482-36492.	3.8	13
205	Membrane Strategies for Water Electrolysis. ACS Energy Letters, 2022, 7, 3447-3457.	8.8	61
206	High-Entropy Alloy Nanosheets for Fine-Tuning Hydrogen Evolution. ACS Catalysis, 2022, 12, 11955-11959.	5.5	67
207	Pyrrolidiniumâ€Based Hyperbranched Anion Exchange Membranes with Controllable Microphase Separated Morphology for Alkaline Fuel Cells. Macromolecular Rapid Communications, 0, , 2200669.	2.0	3
208	PdNi Nanoframework and Nanochain Catalysts with Enhanced Oxygen Reduction Reaction Performance. ChemCatChem, 2022, 14, .	1.8	7
209	Performance and Stability of Membrane–Electrode Assemblies Using a Carbon-free Connected Pt–Fe Catalyst and Polyphenylene-Based Electrolytes for Direct Formate Anion-Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 13176-13188.	2.5	4
210	High-current density alkaline electrolyzers: The role of Nafion binder content in the catalyst coatings and techno-economic analysis. Frontiers in Chemistry, 0, 10, .	1.8	8
211	Grand challenges in membrane applications—Energy. , 0, 1, .		1
212	Progress and Understanding of CO ₂ /CO Electroreduction in Flow Electrolyzers. ACS Catalysis, 2022, 12, 12993-13020.	5.5	25
213	Templated Nitrogen-, Iron-, and Cobalt-Doped Mesoporous Nanocarbon Derived from an Alkylresorcinol Mixture for Anion-Exchange Membrane Fuel Cell Application. ACS Catalysis, 2022, 12, 14050-14061.	5.5	22
214	High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. Journal of Membrane Science, 2022, 664, 121071.	4.1	20
215	Dual-atom catalysts for oxygen electrocatalysis. Nano Energy, 2022, 104, 107927.	8.2	57
216	Alkaline anion exchange membrane containing pyrene-based π-π stacking interactions. Journal of Power Sources, 2023, 553, 232247.	4.0	29

#	Article	IF	CITATIONS
217	Side-chain structural engineering on poly(terphenyl piperidinium) anion exchange membrane for water electrolysers. Journal of Membrane Science, 2023, 665, 121135.	4.1	41
218	In-situ crosslinked, side chain polybenzimidazole-based anion exchange membranes for alkaline direct methanol fuel cells. Chemical Engineering Journal, 2023, 454, 140046.	6.6	8
219	Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review. Sustainability, 2022, 14, 14653.	1.6	15
220	Anion exchange membrane fuel cell: New insights and advancements. Wiley Interdisciplinary Reviews: Energy and Environment, 0, , .	1.9	2
221	Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells. International Journal of Hydrogen Energy, 2023, 48, 3593-3631.	3.8	33
222	Physically and Chemically Stable Anion Exchange Membranes with Hydrogen-Bond Induced Ion Conducting Channels. Polymers, 2022, 14, 4920.	2.0	8
223	Chain Architecture Dependence of Morphology and Water Transport in Poly(fluorene alkylene)-Based Anion-Exchange Membranes. Macromolecules, 2022, 55, 10607-10617.	2.2	18
224	Preparation of phosphotungstic acid hybrid proton exchange membranes by constructing proton transport channels for direct methanol fuel cells. Polymer, 2023, 265, 125589.	1.8	4
225	Poly(arylene alkylene)s with pendent benzyl-tethered ammonium cations for anion exchange membranes. Journal of Membrane Science, 2023, 668, 121229.	4.1	12
226	Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review. Arabian Journal of Chemistry, 2023, 16, 104451.	2.3	18
227	Tailoring the Durability of Carbon-Coated Pd Catalysts Towards Hydrogen Oxidation Reaction (HOR) in Alkaline Media. Electrocatalysis, 2023, 14, 267-278.	1.5	2
228	Impact of Catalyst Reconstruction on the Durability of Anion Exchange Membrane Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 16725-16733.	3.2	12
229	Transition Metal-Doped Nanocarbon Electrocatalysts for Oxygen Reduction Reaction. ACS Symposium Series, 0, , 133-150.	0.5	0
230	Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem, 2023, 5, 100093.	10.1	6
231	High Conductive Anion Exchange Membranes from All-Carbon Twisted Intrinsic Microporous Polymers. Macromolecules, 2022, 55, 10713-10722.	2.2	12
232	Plasma-Assisted Synthesis of Metal Nitrides for an Efficient Platinum-Group-Metal-Free Anion-Exchange-Membrane Fuel Cell. Nano Letters, 2023, 23, 107-115.	4.5	6
233	Development of Anion Exchange Membrane Water Electrolysis and the Associated Challenges: A Review. ChemElectroChem, 2023, 10, .	1.7	15
234	Terpolymer-Based Anion Exchange Membranes: Effect of Pendent Hexyl Groups on Membranes Properties. Bulletin of the Chemical Society of Japan, 2023, 96, 16-23.	2.0	1

#	Article	IF	CITATIONS
235	Crown-ether block copolymer based poly(isatin terphenyl) anion exchange membranes for electrochemical energy conversion devices. Chemical Engineering Journal, 2023, 455, 140776.	6.6	17
236	Alkali-Stable Anion Exchange Membranes Based on Poly(xanthene). ACS Macro Letters, 2023, 12, 20-25.	2.3	14
237	Secondary reduction strategy synthesis of Pt–Co nanoparticle catalysts towards boosting the activity of proton exchange membrane fuel cells. Particuology, 2023, 79, 18-26.	2.0	4
238	Dense 1,2,4,5-tetramethylimidazolium-functionlized anion exchange membranes based on poly(aryl) Tj ETQq1 1 (Energy, 2023, 48, 8165-8178.).784314 3.8	rgBT /Over 16
239	Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Đependent Electrochemiluminescence. Angewandte Chemie, 0, , .	1.6	1
240	Efficient Synthesis of High-Performance Anion Exchange Membranes by Applying Clickable Tetrakis(dialkylamino)phosphonium Cations. Polymers, 2023, 15, 352.	2.0	2
241	Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
242	Effects of hydrophobic side chains in poly(fluorenyl- <i>co</i> -aryl piperidinium) ionomers for durable anion exchange membrane fuel cells. Journal of Materials Chemistry A, 2023, 11, 2031-2041.	5.2	17
243	Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. Advanced Materials, 2023, 35, .	11.1	40
244	Progress in constructing high-performance anion exchange Membrane: Molecular design, microphase controllability and In-device property. Chemical Engineering Journal, 2023, 457, 141094.	6.6	18
245	Towards high alkaline stability and fuel cell performance in anion exchange membranes via backboneâ ⁹⁷ cation alkylene spacer tuning for quaternized poly(biphenylene alkylene)s. Journal of Power Sources, 2023, 557, 232590.	4.0	18
246	Micro-block poly(arylene ether sulfone)s with densely quaternized units for anion exchange membranes: Effects of benzyl N-methylpiperidinium and benzyl trimethyl ammonium cations. Journal of Membrane Science, 2023, 669, 121333.	4.1	9
247	Imidazolium-based AEMs with high dimensional and alkaline-resistance stabilities for extended temperature range of alkaline fuel cells. Journal of Membrane Science, 2023, 670, 121352.	4.1	10
248	Molecular-Level Control over Oxygen Transport and Catalyst–Ionomer Interaction by Designing Cis–Trans Isomeric Ionomers. ACS Energy Letters, 2023, 8, 790-799.	8.8	6
249	Quaternized Polyethersulfone (QPES) Membrane with Imidazole Functionalized Graphene Oxide (ImGO) for Alkaline Anion Exchange Fuel Cell Application. Sustainability, 2023, 15, 2209.	1.6	2
250	High-performing anion exchange membranes enabled by diversifying the polymer backbone of quaternized poly(arylene alkylene)s. Journal of Membrane Science, 2023, 678, 121667.	4.1	17
251	Highly alkali-stable polyolefin-based anion exchange membrane enabled by N-cyclic quaternary ammoniums for alkaline fuel cells. Journal of Membrane Science, 2023, 672, 121441.	4.1	17
252	Unsupervised Learningâ€Guided Accelerated Discovery of Alkaline Anion Exchange Membranes for Fuel Cells. Angewandte Chemie, 2023, 135, .	1.6	0

#	ARTICLE	IF	CITATIONS
253	A review of anion exchange membranes prepared via Friedel-Crafts reaction for fuel cell and water electrolysis. International Journal of Hydrogen Energy, 2023, 48, 25830-25858.	3.8	7
254	Host-guest coordination self-assembly gives anion exchange membranes better stability. Chemical Engineering Journal, 2023, 464, 142563.	6.6	11
255	Spray pyrolysis facilitated construction of carbon nanotube-embedded hollow CoFe electrocatalysts demonstrating excellent durability and activity for the oxygen reduction reaction. Journal of Alloys and Compounds, 2023, 944, 169232.	2.8	3
256	Optimization of cobalt on CNT towards the oxygen evolution reaction and its synergy with iron (II) phthalocyanine as bifunctional oxygen electrocatalyst. Catalysis Today, 2023, 418, 114057.	2.2	5
257	Switching the locus of oxygen reduction and evolution reactions between spinel active phase and carbon carrier upon heteroatoms doping. Catalysis Today, 2023, 418, 114043.	2.2	1
258	Understanding of hydroxide transport in poly(arylene indole piperidinium) anion exchange membranes: Effect of side-chain position. Separation and Purification Technology, 2023, 314, 123577.	3.9	4
259	Poly (ionic liquid) filled and cross-linked bacterial cellulose-based organic-inorganic composite anion exchange membrane with significantly improved ionic conductivity and mechanical strength. Journal of Membrane Science, 2023, 675, 121558.	4.1	5
260	Effects of the crown ether cavity on the performance of anion exchange membranes. Journal of Colloid and Interface Science, 2023, 643, 62-72.	5.0	15
261	CoOx-Fe3O4/N-rGO Oxygen Reduction Catalyst for Anion-Exchange Membrane Fuel Cells. Energies, 2023, 16, 3425.	1.6	3
262	Nanoscopic Roughness Characterization of Chitosan with Buried Graphene Oxide for Fuel Cell Application. , 0, , .		2
263	Operando EPR Study of Radical Formation in Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2023, 13, 2744-2750.	5.5	9
264	Microwave Assisted Grafting of Polyethylene Membrane through Imidazolium and Pyridinium Moieties as Alkaline Anion Exchanger for Fuel Cell Applications. Chemical Data Collections, 2023, 44, 101002.	1.1	0
265	Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers, 2023, 15, 1073.	2.0	3
266	Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy and Environmental Science, 2023, 16, 1384-1430.	15.6	49
267	Influence of Operating and Electrochemical Parameters on PEMFC Performance: A Simulation Study. Membranes, 2023, 13, 259.	1.4	5
268	A Review of Water Electrolysis, Fuel Cells and Its Use in Energy Storage. Studies in Infrastructure and Control, 2023, , 275-288.	0.4	0
269	Fluorination and its Effects on Electrocatalysts for Lowâ€Temperature Fuel Cells. Advanced Energy Materials, 2023, 13, .	10.2	11
270	Unsupervised Learningâ€Guided Accelerated Discovery of Alkaline Anion Exchange Membranes for Fuel Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9

#	Article	IF	CITATIONS
271	Adsorbed Enolate as the Precursor for the C–C Bond Splitting during Ethanol Electrooxidation on Pt. Journal of the American Chemical Society, 2023, 145, 6330-6338.	6.6	7
272	High-strength, ultra-thin anion exchange membranes with a branched structure toward alkaline membrane fuel cells. Journal of Materials Chemistry A, 2023, 11, 10738-10747.	5.2	20
273	Determining the change in performance from replacing a separator with an anion exchange membrane for alkaline water electrolysis. Journal of Physics: Conference Series, 2023, 2454, 012003.	0.3	0
274	Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers, 2023, 15, 1534.	2.0	9
275	Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers, 2023, 15, 1736.	2.0	5
276	Performance and Stability of Aemion and Aemion+ Membranes in Zeroâ€Gap CO ₂ Electrolyzers with Mild Anolyte Solutions. ChemSusChem, 2023, 16, .	3.6	5
277	Nafion-like structured perfluoropoly(diphenylene) graft polymers microphase separated anion exchange membranes. Desalination, 2023, 557, 116600.	4.0	4
278	The design and synthesis of a long-side-chain-type anion exchange membrane with a hydrophilic spacer for alkaline fuel cells. Journal of Membrane Science, 2023, 678, 121663.	4.1	12
279	Tailoring MOF structure via iron decoration to enhance ORR in alkaline polymer electrolyte membrane fuel cells. Chemical Engineering Journal, 2023, 465, 142987.	6.6	8
280	DFT insight of hydroxide degradation pathways for heterocyclic quaternary ammonium cations in anion exchange membranes. Journal of Membrane Science, 2023, 678, 121672.	4.1	6
281	Metal-nitrogen-carbon catalysts loaded on fluorinated carbon nanotubes for efficient oxygen reduction reaction. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	1
311	Ion Exchange Membranes in Electrochemical CO2 Reduction Processes. Electrochemical Energy Reviews, 2023, 6, .	13.1	6
362	An Investigative Study for the Commercialization of Anion Exchange Membrane-based Unitized Regenerative Fuel Cell. , 2023, , .		0
372	Smart electrolytes: materials, durability, and degradation issues. , 2024, , 91-141.		0