Nitrous oxide emissions from permafrost-affected soils

Nature Reviews Earth & Environment

1, 420-434

DOI: 10.1038/s43017-020-0063-9

Citation Report

#	Article	IF	CITATIONS
1	A synthesis of methane dynamics in thermokarst lake environments. Earth-Science Reviews, 2020, 210, 103365.	4.0	28
2	The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 2020, 211, 103433.	4.0	111
3	Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nature Geoscience, 2020, 13, 794-798.	5.4	45
4	Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems. , 2021, , 1-54.		3
5	Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Molecules, 2021, 26, 2283.	1.7	10
6	In-situ soil greenhouse gas fluxes under different cryptogamic covers in maritime Antarctica. Science of the Total Environment, 2021, 770, 144557.	3.9	2
8	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	1.4	3
10	Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. Global Change Biology, 2022, 28, 480-492.	4.2	20
11	Nitrous oxide surface fluxes in a low Arctic heath: Effects of experimental warming along a natural snowmelt gradient. Soil Biology and Biochemistry, 2021, 160, 108346.	4.2	12
12	Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils. Science of the Total Environment, 2021, 795, 148847.	3.9	8
13	Spring thaw pulses decrease annual N2O emissions reductions by nitrification inhibitors from a seasonally frozen cropland. Geoderma, 2021, 403, 115310.	2.3	12
15	Nitrogen transport in a tundra landscape: the effects of early and late growing season lateral N inputs on arctic soil and plant N pools and N2O fluxes. Biogeochemistry, 2022, 157, 69-84.	1.7	9
16	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	2.2	29
17	Impacts of permafrost degradation on infrastructure. Nature Reviews Earth & Environment, 2022, 3, 24-38.	12.2	150
18	Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 2022, 3, 55-67.	12.2	124
19	Responses of nitrous oxide fluxes to autumn freeze–thaw cycles in permafrost peatlands of the Da Xing'an Mountains, Northeast China. Environmental Science and Pollution Research, 2022, 29, 31700-31712.	2.7	5
20	Emissions of atmospherically reactive gases nitrous acid and nitric oxide from Arctic permafrost peatlands. Environmental Research Letters, 2022, 17, 024034.	2.2	5
21	Permafrost Degradation Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghaiâ€Tibetan Plateau. Global Biogeochemical Cycles, 2022, 36, .	1.9	11

#	Article	IF	CITATIONS
22	Modelling impacts of lateral N flows and seasonal warming on an arctic footslope ecosystem N budget and N2O emissions based on species-level responses. Biogeochemistry, 2022, 158, 195-213.	1.7	4
23	Seasonal nitrogen fluxes of the Lena River Delta. Ambio, 2022, 51, 423-438.	2.8	20
24	Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nature Communications, 2022, 13, 950.	5.8	15
25	Driving Factors on Greenhouse Gas Emissions in Permafrost Region of Daxing'an Mountains, Northeast China. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
26	Carbon storage and burial in thermokarst lakes of permafrost peatlands. Biogeochemistry, 2022, 159, 69-86.	1.7	7
27	Using isotope pool dilution to understand how organic carbon additions affect N ₂ O consumption in diverse soils. Clobal Change Biology, 2022, 28, 4163-4179.	4.2	9
28	Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 2021, 12, 7107.	5.8	24
30	Contribution of the nongrowing season to annual N2O emissions from the permafrost wetland in Northeast China. Environmental Science and Pollution Research, 2022, 29, 61470-61487.	2.7	2
31	Normalizing Time in Terms of Space: What Drives the Fate of Spring Thaw-Released N in the Sloping Arctic Landscape?. SSRN Electronic Journal, 0, , .	0.4	0
32	The interaction between vegetation types and intensities of freeze-thaw cycles during the autumn freezing affected in-situ soil N2O emissions in the permafrost peatlands of the Great Hinggan Mountains, Northeastern China. Atmospheric Environment: X, 2022, 14, 100175.	0.8	1
33	Effects of fire on <scp>CO₂</scp> , <scp>CH₄</scp> , and <scp>N₂O</scp> exchange in a wellâ€drained Arctic heath ecosystem. Global Change Biology, 2022, 28, 4882-4899.	4.2	10
34	Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest. Science of the Total Environment, 2022, 838, 155886.	3.9	7
35	Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems. , 2022, , 23-76.		3
36	Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils. Biogeosciences, 2022, 19, 2683-2698.	1.3	4
37	Thawing Permafrost as a Nitrogen Fertiliser: Implications for Climate Feedbacks. Nitrogen, 2022, 3, 353-375.	0.6	4
38	Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic. Remote Sensing, 2022, 14, 2747.	1.8	9
39	<i>Candidatus</i> Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/alpine distribution. FEMS Microbes, 2022, 3, .	0.8	10
40	Alder-induced stimulation of soil gross nitrogen turnover in a permafrost-affected peatland of Northeast China. Soil Biology and Biochemistry, 2022, 172, 108757.	4.2	9

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
41	In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environmental Microbiomes, 2022, 17, .	2.2	25
42	We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Frontiers in Environmental Science, 0, 10, .	1.5	9
43	Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications, 2022, 13, .	5.8	20
44	Effects of Heavy Degradation on Alpine Meadows: Soil N2O Emission Rates and Meta-Analysis in the Tibetan Plateau. Land, 2022, 11, 1255.	1.2	2
46	Effects of warming and nitrogen input on soil N2O emission from Qinghai-Tibetan Plateau: a synthesis. Agricultural and Forest Meteorology, 2022, 326, 109167.	1.9	6
47	Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions. Nitrogen, 2022, 3, 458-501.	0.6	5
48	Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3, 701-716.	12.2	70
49	Normalizing time in terms of space: What drives the fate of spring thaw-released nitrogen in a sloping Arctic landscape?. Soil Biology and Biochemistry, 2022, 175, 108840.	4.2	2
50	A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nature Communications, 2022, 13, .	5.8	7
51	Sentinel responses of Arctic freshwater systems to climate: linkages, evidence, and a roadmap for future research. Arctic Science, 2023, 9, 356-392.	0.9	4
52	Effects of plant communities on the emission of soil greenhouse gases in riparian wetlands during spring thaw. Ecohydrology, 0, , .	1.1	1
53	Rapid Permafrost Thaw Removes Nitrogen Limitation and Rises the Potential for N2O Emissions. Nitrogen, 2022, 3, 608-627.	0.6	1
54	Formation processes of shallow ground ice in permafrost in the Northeastern Qinghai-Tibet Plateau: A stable isotope perspective. Science of the Total Environment, 2023, 863, 160967.	3.9	0
55	Seasonal and Spatial Variability of Dissolved Nutrients in the Yenisei River. Water (Switzerland), 2022, 14, 3935.	1.2	Ο
56	Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra. Soil Biology and Biochemistry, 2023, 180, 109013.	4.2	1
57	Spatial Distribution of Bioavailable Inorganic Nitrogen From Thawing Permafrost. Global Biogeochemical Cycles, 2023, 37, .	1.9	4
58	Influence of wildfire on the rapidly changing features of patchy permafrost, Northeast China. Land Degradation and Development, 0, , .	1.8	0
59	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10

#	Article	IF	CITATIONS	
60	Hot moment of N2O emissions in seasonally frozen peatlands. ISME Journal, 2023, 17, 792-802	2. 4.4	3	
61	Weakening greenhouse gas sink of pristine wetlands under warming. Nature Climate Change, 2 462-469.	2023, 13, 8.1	17	
62	Nitrous Oxide Fluxes in Permafrost Peatlands Remain Negligible After Wildfire and Thermokarst Disturbance. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1	
63	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Disperse on Nâ€doped Carbon. Angewandte Chemie - International Edition, 2023, 62, .	d Fe 7.2	34	
64	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Disperse on Nâ€doped Carbon. Angewandte Chemie, 2023, 135, .	d Fe 1.6	1	
78	Crop Improvement in the Desert. , 2023, , 465-485.		О	
89	Organic matter storage and vulnerability in the permafrost domain. , 2024, , .		0	