A mobile robotic chemist

Nature 583, 237-241 DOI: 10.1038/s41586-020-2442-2

Citation Report

#	Article	IF	CITATIONS
1	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	5.8	96
2	Designing peptide nanoparticles for efficient brain delivery. Advanced Drug Delivery Reviews, 2020, 160, 52-77.	6.6	33
3	Much ado about nothing – a decade of porous materials research. Nature Communications, 2020, 11, 4985.	5.8	26
4	The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware. Energy and Al, 2020, 2, 100036.	5.8	12
5	On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020, 11, 5966.	5.8	167
6	The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society, 2020, 142, 20273-20287.	6.6	179
7	Automation in the Life Science Research Laboratory. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571777.	2.0	57
8	Navigating the design space of inorganic materials synthesis using statistical methods and machine learning. Dalton Transactions, 2020, 49, 11480-11488.	1.6	24
9	Automating Academic Laboratories: Promoting Reliability, Productivity, and Safety. ACS Energy Letters, 2020, 5, 2737-2738.	8.8	1
10	Digitising chemical synthesis in automated and robotic flow. Chemical Science, 2020, 11, 11973-11988.	3.7	26
11	Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future. ACS Catalysis, 2020, 10, 13213-13226.	5.5	99
12	Electrocatalyst design for aprotic Li–CO ₂ batteries. Energy and Environmental Science, 2020, 13, 4717-4737.	15.6	65
13	A Mild Method for Making MIDA Boronates. Organic Letters, 2020, 22, 9408-9414.	2.4	15
14	Boxing Clever: Robotic Screening of Catalysts Using an Adapted Gas Chromatograph. Matter, 2020, 3, 611-612.	5.0	5
15	Molecular Machine Learning: The Future of Synthetic Chemistry?. Angewandte Chemie - International Edition, 2020, 59, 18860-18865.	7.2	40
16	Molekulares maschinelles Lernen: Die Zukunft der Synthesechemie?. Angewandte Chemie, 2020, 132, 19020-19025.	1.6	3
17	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie - International Edition, 2020, 59, 17344-17354.	7.2	27
18	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie, 2020, 132, 17496-17506.	1.6	5

#	Article	IF	CITATIONS
19	Artificial intelligence and automation in computer aided synthesis planning. Reaction Chemistry and Engineering, 2021, 6, 27-51.	1.9	39
20	Time Economy in Total Synthesis. Journal of Organic Chemistry, 2021, 86, 1-23.	1.7	85
21	Machine learning in experimental materials chemistry. Catalysis Today, 2021, 371, 77-84.	2.2	36
22	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	6.4	48
23	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	3.6	135
24	Can we predict materials that can be synthesised?. Chemical Science, 2021, 12, 830-840.	3.7	34
25	Fully Exposed Cluster Catalyst (FECC): Toward Rich Surface Sites and Full Atom Utilization Efficiency. ACS Central Science, 2021, 7, 262-273.	5.3	163
26	Materials design by synthetic biology. Nature Reviews Materials, 2021, 6, 332-350.	23.3	190
27	Design of functionally cooperating systems and application towards self-propulsive mini-generators. Materials Chemistry Frontiers, 2021, 5, 129-150.	3.2	14
28	Automated Oligosaccharide Synthesis: Development of the Glyconeer®. , 2021, , 548-560.		0
29	Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells. RSC Advances, 2021, 11, 32126-32134.	1.7	7
30	Data-driven algorithms for inverse design of polymers. Soft Matter, 2021, 17, 7607-7622.	1.2	39
31	Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chemical Science, 2021, 12, 10742-10754.	3.7	52
32	Toward autonomous design and synthesis of novel inorganic materials. Materials Horizons, 2021, 8, 2169-2198.	6.4	61
33	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	1.3	2
34	Accelerating organic solar cell material's discovery: high-throughput screening and <i>big data</i> . Energy and Environmental Science, 2021, 14, 3301-3322.	15.6	51
35	Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design. Energy and Environmental Science, 2021, 14, 2549-2576.	15.6	34
36	Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy and Environmental Science, 2021, 14, 1140-1175.	15.6	128

#	Article	IF	CITATIONS
37	Automated and enabling technologies for medicinal chemistry. Progress in Medicinal Chemistry, 2021, 60, 191-272.	4.1	4
38	Machine-learning-assisted low dielectric constant polymer discovery. Materials Chemistry Frontiers, 2021, 5, 3823-3829.	3.2	26
39	Recent advances in analytical techniques for high throughput experimentation. Analytical Science Advances, 2021, 2, 109-127.	1.2	18
40	Sustainable Batteries—Quo Vadis?. Advanced Energy Materials, 2021, 11, 2003700.	10.2	46
41	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
42	Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2021, 14, 2620-2638.	15.6	68
43	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	18.7	175
44	Recent Advances in Silent Gene Cluster Activation in Streptomyces. Frontiers in Bioengineering and Biotechnology, 2021, 9, 632230.	2.0	45
45	Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 2021, 8, .	1.2	36
46	Toward Machine Learning-Enhanced High-Throughput Experimentation. Trends in Chemistry, 2021, 3, 120-132.	4.4	66
47	General synthetic strategy for regioselective ultrafast formation of disulfide bonds in peptides and proteins. Nature Communications, 2021, 12, 870.	5.8	39
48	Elucidating the Full Potential of OPV Materials Utilizing a High-Throughput Robot-Based Platform and Machine Learning. Joule, 2021, 5, 495-506.	11.7	86
49	Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals. Nature Communications, 2021, 12, 817.	5.8	31
50	A Programmable and Automated Platform for Integrated Synthesis and Evaluation of Water Electrolysis Catalysts. Advanced Materials Technologies, 2021, 6, 2001036.	3.0	3
51	Gammaâ€Ray Tolerant Flexible Pressure–Temperature Sensor for Nuclear Radiation Environment. Advanced Materials Technologies, 2021, 6, 2001039.	3.0	14
52	Integrating Computational and Experimental Workflows for Accelerated Organic Materials Discovery. Advanced Materials, 2021, 33, e2004831.	11.1	29
53	Data-Driven Strategies for Accelerated Materials Design. Accounts of Chemical Research, 2021, 54, 849-860.	7.6	168
54	Bayesian reaction optimization as a tool for chemical synthesis. Nature, 2021, 590, 89-96.	13.7	370

#	Article	IF	CITATIONS
55	Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Current Opinion in Biotechnology, 2021, 67, 88-98.	3.3	35
56	Machine learning for advanced energy materials. Energy and AI, 2021, 3, 100049.	5.8	96
57	Random sketch learning for deep neural networks in edge computing. Nature Computational Science, 2021, 1, 221-228.	3.8	19
58	Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6, .	9.9	67
59	Self-Driving Laboratories for Development of New Functional Materials and Optimizing Known Reactions. Nanomaterials, 2021, 11, 619.	1.9	28
60	Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit. Communications Materials, 2021, 2, .	2.9	25
61	Automated solubility screening platform using computer vision. IScience, 2021, 24, 102176.	1.9	31
62	Using Robotics in Laboratories During the COVID-19 Outbreak: A Review. IEEE Robotics and Automation Magazine, 2021, 28, 28-39.	2.2	11
64	Automation and computer-assisted planning for chemical synthesis. Nature Reviews Methods Primers, 2021, 1, .	11.8	83
65	Medical Robots for Infectious Diseases: Lessons and Challenges from the COVID-19 Pandemic. IEEE Robotics and Automation Magazine, 2021, 28, 18-27.	2.2	47
66	Bioinspired and biomimetic membranes for water purification and chemical separation: A review. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	26
67	Flow parallel synthesizer for multiplex synthesis of aryl diazonium libraries via efficient parameter screening. Communications Chemistry, 2021, 4, .	2.0	15
68	Using simulation to accelerate autonomous experimentation: A case study using mechanics. IScience, 2021, 24, 102262.	1.9	35
69	A data fusion approach to optimize compositional stability of halide perovskites. Matter, 2021, 4, 1305-1322.	5.0	75
70	Crystallography companion agent for high-throughput materials discovery. Nature Computational Science, 2021, 1, 290-297.	3.8	38
71	Toward Better and Smarter Batteries by Combining Al with Multisensory and Selfâ€Healing Approaches. Advanced Energy Materials, 2021, 11, 2100362	10.2	32
72	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83
73	High-throughput screening of ternary vanadate photoanodes for efficient oxygen evolution reactions: A review of band-gap engineering. Applied Catalysis A: General, 2021, 616, 118073.	2.2	5

#	Article		CITATIONS
74	Two-step machine learning enables optimized nanoparticle synthesis. Npj Computational Materials, 2021, 7, .	3.5	86
75	Converging global crises are forcing the rapid adoption of disruptive changes in drug discovery. Drug Discovery Today, 2021, 26, 2489-2495.	3.2	1
76	Al tool makes phase identification crystal clear. Nature Computational Science, 2021, 1, 311-312.	3.8	0
78	Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints. SLAS Technology, 2021, 26, 247263032110217.	1.0	7
79	Multiâ€Fidelity Highâ€Throughput Optimization of Electrical Conductivity in P3HTâ€CNT Composites. Advanced Functional Materials, 2021, 31, 2102606.	7.8	20
80	A remote foaming experiment. Education for Chemical Engineers, 2021, 36, 171-175.	2.8	0
81	Tactile and Vision Perception for Intelligent Humanoids. Advanced Intelligent Systems, 2022, 4, 2100074.	3.3	16
82	The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA. Journal of Materials Science, 2021, 56, 16422-16446.	1.7	31
83	Expanding the Tool Kit of Automated Flow Synthesis: Development of In-line Flash Chromatography Purification. Journal of Organic Chemistry, 2021, 86, 14079-14094.	1.7	12
84	Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 2021, 6, 701-716.	23.3	179
86	The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Reports Physical Science, 2021, 2, 100482.	2.8	26
87	Future directions of chemical theory and computation. Pure and Applied Chemistry, 2021, 93, 1423-1433.	0.9	3
88	Olympus: a benchmarking framework for noisy optimization and experiment planning. Machine Learning: Science and Technology, 2021, 2, 035021.	2.4	31
89	Integration of data-intensive, machine learning and robotic experimental approaches for accelerated discovery of catalysts in renewable energy-related reactions. Materials Reports Energy, 2021, 1, 100049.	1.7	7
90	Data-science driven autonomous process optimization. Communications Chemistry, 2021, 4, .	2.0	94
91	Al-Driven Robotic Laboratories Show Promise. Engineering, 2021, 7, 1351-1353.	3.2	5
92	Application of artificial intelligence for predicting reaction results in advanced oxidation processes. Environmental Technology and Innovation, 2021, 23, 101550.	3.0	10
93	Automated and Continuous-Flow Platform to Analyze Semiconductor–Metal Complex Hybrid Systems for Photocatalytic CO ₂ Reduction. ACS Catalysis, 2021, 11, 11266-11277.	5.5	19

#	ARTICLE	IF	CITATIONS
94	Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis. ACS Catalysis, 2021, 11, 11109-11116.	5.5	47
95	Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions. Energy & Fuels, 2021, 35, 18957-18981.	2.5	9
96	Synthesis of donor-acceptor-type conjugated polymer dots as organic photocatalysts for dye degradation and hydrogen evolution. Polymer, 2021, 229, 124004.	1.8	13
97	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. Journal of Organic Chemistry, 2021, 86, 16035-16044.	1.7	19
98	Robots are taking up the challenges in photovoltaics R&D. Matter, 2021, 4, 2605-2607.	5.0	0
99	Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials & Interfaces, 2021, 13, 43290-43300.	4.0	5
100	Materials Informatics for 2D Materials Combined with Sparse Modeling and Chemical Perspective: Toward Small-Data-Driven Chemistry and Materials Science. Bulletin of the Chemical Society of Japan, 2021, 94, 2410-2422.	2.0	35
101	Rapid and Mild Oneâ€Flow Synthetic Approach to Unsymmetrical Sulfamides Guided by Bayesian Optimization. Chemistry Methods, 2021, 1, 484-490.	1.8	18
102	End-of-life or second-life options for retired electric vehicle batteries. Cell Reports Physical Science, 2021, 2, 100537.	2.8	77
103	Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 943-995.	0.2	14
104	Prediction of Multicomponent Reaction Yields Using Machine Learning. Chinese Journal of Chemistry, 2021, 39, 3231-3237.	2.6	19
105	Highâ€Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100169.	1.2	12
106	Accelerating antibiotic discovery through artificial intelligence. Communications Biology, 2021, 4, 1050.	2.0	68
107	Universal self-driving laboratory for accelerated discovery of materials and molecules. CheM, 2021, 7, 2541-2545.	5.8	19
108	Machine learning for materials discovery: Two-dimensional topological insulators. Applied Physics Reviews, 2021, 8, .	5.5	34
109	Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models. Advanced Intelligent Systems, 2021, 3, 2100101.	3.3	23
110	Computational design of moiré assemblies aided by artificial intelligence. Applied Physics Reviews, 2021, 8, .	5.5	10
111	Applied Machine Learning for Developing Nextâ€Generation Functional Materials. Advanced Functional Materials, 2021, 31, 2104195.	7.8	28

#	Article	IF	CITATIONS
112	Materials design for resilience in the biointegration of electronics. MRS Bulletin, 2021, 46, 860.	1.7	3
113	Seeing is believing: In-situ visualising dynamic evolution in CO2 electrolysis. Current Opinion in Electrochemistry, 2022, 31, 100846.	2.5	5
114	Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. Journal of Physical Chemistry Letters, 2021, 12, 8847-8854.	2.1	15
115	Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	5.0	143
116	Molecular Dynamics and Machine Learning in Catalysts. Catalysts, 2021, 11, 1129.	1.6	15
117	Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries. Advanced Materials, 2021, 33, e2102301.	11.1	29
118	Quick approach for optimization of monodisperse microsphere synthesis with a knowledge sharing strategy powered by machine learning. Chemical Physics Letters, 2021, 780, 138908.	1.2	0
119	Computational pharmaceutics - A new paradigm of drug delivery. Journal of Controlled Release, 2021, 338, 119-136.	4.8	75
120	Nano-bio-interface engineering of metal-organic frameworks. Nano Today, 2021, 40, 101256.	6.2	50
121	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	9.5	93
122	Fully Automated Data Acquisition for Laser Production Cyber-Physical System. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	1.9	7
123	A dual-interfacial system with well-defined spatially separated redox-sites for boosting photocatalytic overall H2S splitting. Chemical Engineering Journal, 2021, 423, 130201.	6.6	8
125	Voting Data-Driven Regression Learning for Accelerating Discovery of Advanced Functional Materials and Applications to Two-Dimensional Ferroelectric Materials. Journal of Physical Chemistry Letters, 2021, 12, 973-981.	2.1	11
126	Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1513.	6.2	21
127	Digital Transformation in Materials Science: A Paradigm Change in Material's Development. Advanced Materials, 2021, 33, e2004940.	11.1	37
128	Automated Experimentation Powers Data Science in Chemistry. Accounts of Chemical Research, 2021, 54, 546-555.	7.6	52
129	Hydrothermal polymerization of porous aromatic polyimide networks and machine learning-assisted computational morphology evolution interpretation. Journal of Materials Chemistry A, 2021, 9, 19754-19769.	5.2	7
130	The Future of Retrosynthesis and Synthetic Planning: Algorithmic, Humanistic or the Interplay?. Australian Journal of Chemistry, 2021, 74, 291-326.	0.5	9

#	Article	IF	CITATIONS
131	High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. Journal of Materials Chemistry C, 2021, 9, 13557-13583.	2.7	20
132	Determining usefulness of machine learning in materials discovery using simulated research landscapes. Physical Chemistry Chemical Physics, 2021, 23, 14156-14163.	1.3	13
133	Organic materials as photocatalysts for water splitting. Journal of Materials Chemistry A, 2021, 9, 16222-16232.	5.2	50
134	Experimental design for the highly accurate prediction of material properties using descriptors obtained by measurement. Science and Technology of Advanced Materials Methods, 2021, 1, 152-161.	0.4	4
135	Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery. Accounts of Chemical Research, 2021, 54, 253-262.	7.6	61
136	Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal, 2020, 477, 4559-4580.	1.7	29
138	Bayesian optimization of nanoporous materials. Molecular Systems Design and Engineering, 2021, 6, 1066-1086.	1.7	47
139	DOREP 2.0: An Upgraded Version of Robot Control Teaching Experimental Platform with Reinforcement Learning and Visual Analysis. Lecture Notes in Computer Science, 2021, , 122-132.	1.0	0
140	DeepReac+: deep active learning for quantitative modeling of organic chemical reactions. Chemical Science, 2021, 12, 14459-14472.	3.7	20
141	Generative Al Models for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 221-243.	0.4	5
142	Colem: an algorithm for robust experiment and process optimization. Chemical Science, 2021, 12, 14792-14807.	3.7	12
143	A Dataset of Computational Reaction Barriers for the Claisen Rearrangement: Chemical and Numerical Analysis. Molecular Informatics, 2022, 41, e2100216.	1.4	2
144	Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochemical Journal, 2021, 478, 3685-3721.	1.7	8
145	Machine learning for high-throughput experimental exploration of metal halide perovskites. Joule, 2021, 5, 2797-2822.	11.7	44
146	A Multi‣ayer Device for Lightâ€Triggered Hydrogen Production from Alkaline Methanol. Angewandte Chemie, 2021, 133, 26898-26905.	1.6	1
147	Accelerated discovery of 3D printing materials using data-driven multiobjective optimization. Science Advances, 2021, 7, eabf7435.	4.7	56
148	An Openâ€Source Modular Framework for Automated Pipetting and Imaging Applications. Advanced Biology, 2022, 6, e2101063.	1.4	11
149	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced Materials, 2022, 34, e2107212.	11.1	81

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
150	Innovative Materials Science via Machine Learning. Advanced Functional Materials, 2022, 3	2, 2108044.	7.8	67
151	NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineer of Chemical Information and Modeling, 2021, 61, 5312-5319.	ring. Journal	2.5	31
152	Bayesian Optimization for Field Scale Geological Carbon Sequestration. , 2021, , .			0
153	Arranging test tubes in racks using combined task and motion planning. Robotics and Auto Systems, 2022, 147, 103918.	pnomous	3.0	5
154	A Multi‣ayer Device for Lightâ€Triggered Hydrogen Production from Alkaline Methanol. ⁄ Chemie - International Edition, 2021, 60, 26694-26701.	Angewandte	7.2	8
155	Highâ€Entropy Energy Materials in the Age of Big Data: A Critical Guide to Nextâ€Generatio Applications. Advanced Energy Materials, 2021, 11, 2102355.	on Synthesis and	10.2	37
156	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021,	2, 100179.	5.2	200
157	Accelerate Synthesis of Metal–Organic Frameworks by a Robotic Platform and Bayesian (ACS Applied Materials & Interfaces, 2021, 13, 53485-53491.	Optimization.	4.0	28
158	Levels of autonomy in synthetic biology engineering. Molecular Systems Biology, 2020, 16,	,e10019.	3.2	13
160	Development of a ROS Driver andÂSupport Stack for the KMR iiwaÂMobile Manipulator. Le Computer Science, 2021, , 304-314.	cture Notes in	1.0	1
161	Robotic fabrication of high-quality lamellae for aberration-corrected transmission electron microscopy. Scientific Reports, 2021, 11, 21599.		1.6	5
162	Flexible IoT Gas Sensor Node for Automated Life Science Environments Using Stationary an Robots. Sensors, 2021, 21, 7347.	ld Mobile	2.1	15
163	Computer Vision in Chemistry: Automatic Titration. Journal of Chemical Education, 2021, 9	8, 4067-4073.	1.1	12
164	Recent applications of solid-phase strategy in total synthesis of antibiotics. RSC Advances, 37942-37951.	2021, 11,	1.7	1
165	Optimization of Bi2O3/TS-1 preparation and photocatalytic reaction conditions for low cor Erythromycin wastewater treatment based on artificial neural network. Chemical Engineerin Research and Design, 2022, 157, 297-305.	ncentration ng	2.7	13
166	The roles of computer-aided drug synthesis in drug development. Green Synthesis and Cata 3, 11-24.	alysis, 2022,	3.7	8
167	Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry, 2022, 106, 449-459.		2.9	6
168	Self-Improving Photosensitizer Discovery System via Bayesian Search with First-Principle Sir Journal of the American Chemical Society, 2021, 143, 19769-19777.	mulations.	6.6	17

#	Article	IF	CITATIONS
169	Cross-Platform Bayesian Optimization System for Autonomous Biological Assay Development. SLAS Technology, 2021, 26, 579-590.	1.0	5
170	Implications of the BATTERY 2030+ Alâ€Assisted Toolkit on Future Lowâ€TRL Battery Discoveries and Chemistries. Advanced Energy Materials, 2022, 12, 2102698.	10.2	20
171	Storing energy with molecular photoisomers. Joule, 2021, 5, 3116-3136.	11.7	86
172	Tool for Designing Breakthrough Discovery in Materials Science. Materials, 2021, 14, 6946.	1.3	2
173	Modern nanoscience: Convergence of AI, robotics, and colloidal synthesis. Applied Physics Reviews, 2021, 8, .	5.5	18
174	Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning. Chemical Science, 2021, 12, 14987-15006.	3.7	16
175	Automation isn't automatic. Chemical Science, 2021, 12, 15473-15490.	3.7	44
176	Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing. SSRN Electronic Journal, 0, , .	0.4	3
177	Authentic Intelligent Machine for Scaling Driven Discovery: A Case for Chiral Quantum Dots. ACS Nano, 2022, 16, 1600-1611.	7.3	4
178	From Platform to Knowledge Graph: Evolution of Laboratory Automation. Jacs Au, 2022, 2, 292-309.	3.6	42
179	Design of Biointerfaces Using InformaticsÂ: From Monolayers to Polymer Surfaces. Vacuum and Surface Science, 2022, 65, 10-14.	0.0	0
180	Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chemical Society Reviews, 2022, 51, 71-127.	18.7	45
181	Automation for Life Science Laboratories. Advances in Biochemical Engineering/Biotechnology, 2021, , 3-22.	0.6	1
182	Machine learning enhanced spectroscopic analysis: towards autonomous chemical mixture characterization for rapid process optimization. , 2022, 1, 35-44.		9
183	Active meta-learning for predicting and selecting perovskite crystallization experiments. Journal of Chemical Physics, 2022, 156, 064108.	1.2	11
184	Deep learning for the automation of particle analysis in catalyst layers for polymer electrolyte fuel cells. Nanoscale, 2021, 14, 10-18.	2.8	14
185	Highâ€ŧhroughput and Highâ€speed Absorbance Measurements in Microfluidic Droplets using Hyperspectral Imaging. Chemistry Methods, 0, , .	1.8	1
187	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180

		_		
\sim $ -$	ATIC	SNI F		ODT
	ΔΙΙ()N F	7 F P(0141
<u> </u>				

#	Article		CITATIONS
188	Artificial intelligence–enabled fuel design. , 2022, , 47-67.		0
189	Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2022, 7, 214-244.	1.9	27
190	Sparse modeling for small data: case studies in controlled synthesis of 2D materials. , 2022, 1, 26-34.		11
192	Direct feature extraction from two-dimensional X-ray diffraction images of semiconductor thin films for fabrication analysis. Science and Technology of Advanced Materials Methods, 2022, 2, 23-37.	0.4	1
193	Automatic system for high-throughput and high-sensitivity diagnosis of SARS-CoV-2. Bioprocess and Biosystems Engineering, 2022, 45, 503-514.	1.7	3
194	Nonreactive Electrolyte Additives for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3-13.	2.5	12
195	Routescore: Punching the Ticket to More Efficient Materials Development. ACS Central Science, 2022, 8, 122-131.	5.3	8
196	Machine Learning Guided Dopant Selection for Metal Oxideâ€Based Photoelectrochemical Water Splitting: The Case Study of Fe ₂ O ₃ and CuO. Advanced Materials, 2022, 34, e2106776.	11.1	26
197	Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules, 2022, 27, 985.	1.7	0
198	High-throughput experiments for rare-event rupture of materials. Matter, 2022, 5, 654-665.	5.0	4
199	Toward autonomous materials research: Recent progress and future challenges. Applied Physics Reviews, 2022, 9, .	5.5	17
200	Sample-efficient parameter exploration of the powder film drying process using experiment-based Bayesian optimization. Scientific Reports, 2022, 12, 1615.	1.6	7
201	Towards robotic laboratory automation Plug & Play: The "LAPP―framework. SLAS Technology, 2022, 27, 18-25.	1.0	8
202	Concluding remarks: next generation nanoelectrochemistry – next generation nanoelectrochemists. Faraday Discussions, 2022, 233, 374-391.	1.6	17
203	Chemically-informed data-driven optimization (ChIDDO): leveraging physical models and Bayesian learning to accelerate chemical research. Reaction Chemistry and Engineering, 2022, 7, 855-865.	1.9	10
204	å¦,ä¼₂•拥抱智能时代——以化å¦å¦ç§ʻä,ºä¾‹. Scientia Sinica Chimica, 202	20,2	1
205	Autonomous platforms for data-driven organic synthesis. Nature Communications, 2022, 13, 1075.	5.8	25
206_	Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping. Frontiers in	1.0	6

#	Article	IF	CITATIONS
207	Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS Nano, 2022, 16, 4654-4665.	7.3	90
208	A self-driving laboratory advances the Pareto front for material properties. Nature Communications, 2022, 13, 995.	5.8	55
210	Methane transformation by photocatalysis. Nature Reviews Materials, 2022, 7, 617-632.	23.3	114
211	Machine intelligence for chemical reaction space. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	30
212	UnIC: Towards Unmanned Intelligent Cluster and Its Integration into Society. Engineering, 2022, 12, 24-38.	3.2	5
213	Emerging Strategies for CO ₂ Photoreduction to CH ₄ : From Experimental to Dataâ€Đriven Design. Advanced Energy Materials, 2022, 12, .	10.2	68
214	A Robot Skill Learning Framework Based on Compliant Movement Primitives. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	2.0	1
215	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	13.3	68
216	Automated synthesis and characterization techniques for solar fuel production. Nature Reviews Materials, 2022, 7, 251-253.	23.3	11
217	New era of artificial chemist. Scientia Sinica Chimica, 2022, , .	0.2	1
218	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , .	2.4	2
218 219	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345.	2.4	2 30
218 219 220	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345. Machine learning accelerated calculation and design of electrocatalysts for CO ₂ reduction. SmartMat, 2022, 3, 68-83.	2.4 11.1 6.4	2 30 31
218 219 220 221	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345. Machine learning accelerated calculation and design of electrocatalysts for CO ₂ reduction. SmartMat, 2022, 3, 68-83. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells, 2022, 11, 915.	2.4 11.1 6.4 1.8	2 30 31 8
218 219 220 221 222	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345. Machine learning accelerated calculation and design of electrocatalysts for CO ₂ reduction. SmartMat, 2022, 3, 68-83. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells, 2022, 11, 915. Phase control of heterogeneous Hf _x Zr _(1â~x) O ₂ thin films by machine learning. Japanese Journal of Applied Physics, 2022, 61, SH1009.	2.4 11.1 6.4 1.8 0.8	2 30 31 8 1
218 219 220 221 222 222	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345. Machine learning accelerated calculation and design of electrocatalysts for CO ₂ reduction. SmartMat, 2022, 3, 68-83. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells, 2022, 11, 915. Phase control of heterogeneous Hf _x Zr _(1â~x) O ₂ thin films by machine learning. Japanese Journal of Applied Physics, 2022, 61, SH1009. Arapid feature selection method for catalyst design: Iterative Bayesian additive regression trees (iBART). Journal of Chemical Physics, 2022, 156, 164105.	2.4 11.1 6.4 1.8 0.8	2 30 31 8 1 3
 218 219 220 221 222 222 223 224 	ARTS: autonomous research topic selection system using word embeddings and network analysis. Machine Learning: Science and Technology, 0, , . Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries. Advanced Materials, 2022, 34, e2201345. Machine learning accelerated calculation and design of electrocatalysts for CO ₂ Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells, 2022, 11, 915. Phase control of heterogeneous Hf _x Zr _(1â^'x) O ₂ thin films by machine learning. Japanese Journal of Applied Physics, 2022, 61, SH1009. Arapid feature selection method for catalyst design: Iterative Bayesian additive regression trees (IBART). Journal of Chemical Physics, 2022, 156, 164105. Automated Bioprocess Feedback Operation in a High-Throughput Facility via the Integration of a Mobile Robotic Lab Assistant. Frontiers in Chemical Engineering, 2022, 4, .	2.4 111.1 6.4 1.8 0.8 1.2 1.3	2 30 31 8 1 3

#	Article	IF	CITATIONS
226	Machine Learning in Materials Chemistry: An Invitation. Machine Learning With Applications, 2022, 8, 100265.	3.0	12
227	Intelligent disassembly of electric-vehicle batteries: a forward-looking overview. Resources, Conservation and Recycling, 2022, 182, 106207.	5.3	41
228	Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow. Mendeleev Communications, 2021, 31, 769-780.	0.6	9
229	Data-Driven Methods for Accelerating Polymer Design. ACS Polymers Au, 2022, 2, 8-26.	1.7	39
230	Flexible automation accelerates materials discovery. Nature Materials, 2022, 21, 722-726.	13.3	33
231	Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach. International Journal of Molecular Sciences, 2022, 23, 248.	1.8	4
232	Machine-Learning Assisted Exploration: Toward the Next-Generation Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 126523.	1.3	4
233	Moving Target Shooting Control Policy Based on Deep Reinforcement Learning. , 2021, , .		0
234	Rapidly Learning Generalizable and Robot-Agnostic Tool-Use Skills for a Wide Range of Tasks. Frontiers in Robotics and Al, 2021, 8, 726463.	2.0	2
235	System Concepts for Robots in Life Science Applications. Applied Sciences (Switzerland), 2022, 12, 3257.	1.3	2
236	Tuning of Bayesian optimization for materials synthesis: simulation of the one-dimensional case. Science and Technology of Advanced Materials Methods, 2022, 2, 119-128.	0.4	2
237	The case for data science in experimental chemistry: examples and recommendations. Nature Reviews Chemistry, 2022, 6, 357-370.	13.8	29
238	Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule, 2022, 6, 834-849.	11.7	69
239	Dataâ€Ðriven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113.	11.1	51
240	Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catalysis Science and Technology, 2022, 12, 3650-3669.	2.1	9
241	ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols. , 2022, 1, 313-324.		10
242	Predicting reaction conditions from limited data through active transfer learning. Chemical Science, 2022, 13, 6655-6668.	3.7	21
243	Accelerating materials discovery using artificial intelligence, high performance computing and	3.5	71

#	Article	IF	CITATIONS
245	High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends in Chemistry, 2022, 4, 577-579.	4.4	8
246	Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2022, 2, 1130-1143.	3.7	11
247	Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chemistry of Materials, 2022, 34, 4259-4273.	3.2	60
248	Conformationally engineering flexible peptides on silver nanoparticles. IScience, 2022, 25, 104324.	1.9	3
249	Opportunities for machine learning to accelerate halide-perovskite commercialization and scale-up. Matter, 2022, 5, 1353-1366.	5.0	8
250	On-the-fly autonomous control of neutron diffraction via physics-informed Bayesian active learning. Applied Physics Reviews, 2022, 9, 021408.	5.5	25
251	Materials genome engineering: a promising approach for the development of high-performance metal–organic frameworks. Science Bulletin, 2022, 67, 1197-1200.	4.3	4
252	Structured illumination with thermal imaging (SI-TI): A dynamically reconfigurable metrology for parallelized thermal transport characterization. Applied Physics Reviews, 2022, 9, .	5.5	3
253	Development of the Material Sequencer for Automatic Various Evaluations. Journal of Surface Analysis (Online), 2021, 28, 35-45.	0.1	0
254	Prediction of robust scientific facts from literature. Nature Machine Intelligence, 2022, 4, 445-454.	8.3	7
255	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	1.3	58
256	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
257	Machine learning enabling high-throughput and remote operations at large-scale user facilities. , 2022, 1, 413-426.		10
258	Skill-Agnostic analysis of reflection high-energy electron diffraction patterns for Si(111) surface superstructures using machine learning. Science and Technology of Advanced Materials Methods, 2022, 2, 162-174.	0.4	6
259	Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature. Scientific Data, 2022, 9, .	2.4	23
260	High-Throughput Discovery of Chemical Structure-Polarity Relationships Combining Automation and Machine Learning Techniques. SSRN Electronic Journal, 0, , .	0.4	0
261	Robotic Automation of Pharmaceutical and Life Science Industries. , 2022, , 381-414.		3
262	On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. Journal of the American Chemical Society, 2022, 144, 10353-10360.	6.6	16

#	Article	IF	CITATIONS
263	Evaluation guidelines for machine learning tools in the chemical sciences. Nature Reviews Chemistry, 2022, 6, 428-442.	13.8	49
264	Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis?. ACS Applied Bio Materials, 2022, 5, 2507-2535.	2.3	4
265	Application of Machine Learning in Optimizing Proton Exchange Membrane Fuel Cells: A Review. Energy and AI, 2022, 9, 100170.	5.8	54
266	Finding a novel electrolyte solution of lithium-ion batteries using an autonomous search system based on ensemble optimization. Journal of Power Sources, 2022, 541, 231698.	4.0	4
268	Linking Scientific Instruments and HPC: Patterns, Technologies, Experiences. SSRN Electronic Journal, 0, , .	0.4	5
269	Machine learning for design principles for single atom catalysts towards electrochemical reactions. Journal of Materials Chemistry A, 2022, 10, 15309-15331.	5.2	28
270	From computational high-throughput screenings to the lab: taking metal–organic frameworks out of the computer. Chemical Science, 2022, 13, 7990-8002.	3.7	8
271	Autonomous materials discovery and manufacturing (AMDM): A review and perspectives. IISE Transactions, 2023, 55, 75-93.	1.6	5
272	A generic battery-cycling optimization framework with learned sampling and early stopping strategies. Patterns, 2022, 3, 100531.	3.1	2
273	Dataâ€Driven Analysis of Highâ€Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity**. Chemistry Methods, 2022, 2, .	1.8	5
274	Al-chemist for chemistry synthesis, property characterization, and performance testing. Scientia Sinica Chimica, 2022, , .	0.2	1
275	Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO ₂ Fixation. Chemical Record, 2022, 22, .	2.9	12
276	Sintering of metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100932.	2.8	1
277	A4T: Hierarchical Affordance Detection for Transparent Objects Depth Reconstruction and Manipulation. IEEE Robotics and Automation Letters, 2022, 7, 9826-9833.	3.3	14
278	ARChemist: Autonomous Robotic Chemistry System Architecture*. , 2022, , .		4
279	Predicting Realâ€Time Spectra from Highâ€Speed Imaging: An Ultrafast Machine Vision Framework for Online Optical Control in Microfluidics. Advanced Materials Technologies, 0, , .	3.0	1
280	Chemical synthesis and materials discovery. , 2022, 1, 514-520.		15
281	Robotic search for optimal cell culture in regenerative medicine. ELife, 0, 11, .	2.8	25

#	ARTICLE	IF	CITATIONS
282	Autonomous synthesis system integrating theoretical, informatics, and experimental approaches for large-magnetic-anisotropy materials. Science and Technology of Advanced Materials Methods, 2022, 2, 280-293.	0.4	3
283	Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS Applied Materials & amp; Interfaces, 2022, 14, 33076-33084.	4.0	3
284	Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Industrial & Engineering Chemistry Research, 2022, 61, 9901-9949.	1.8	63
285	Digitization and validation of a chemical synthesis literature database in the ChemPU. Science, 2022, 377, 172-180.	6.0	35
286	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	23.0	120
287	Study of grinding and polishing tools in automated processing of curved stone. Case Studies in Construction Materials, 2022, , e01358.	0.8	0
288	Recent Trends and Future Prospects of Materials and Process Informatics. Seikei-Kakou, 2022, 34, 250-256.	0.0	1
289	Designing lattices for impact protection using transfer learning. Matter, 2022, 5, 2829-2846.	5.0	10
290	Bayesian Optimization for Field-Scale Geological Carbon Storage. Engineering, 2022, 18, 96-104.	3.2	4
291	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323
292			
	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Uriving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466.	7.6	52
293	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975.	7.6 6.6	52 6
293 294	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975. Occlusion-Robust Method to Determine AGV's Stop Pose by Detecting Reference Object with Template Matching on 2D Environmental Map. , 2022, , .	7.6 6.6	52 6 0
293 294 295	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975. Occlusion-Robust Method to Determine AGV's Stop Pose by Detecting Reference Object with Template Matching on 2D Environmental Map. , 2022, , . Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. Npj Computational Materials, 2022, 8, .	7.6 6.6 3.5	52 6 0 10
293 294 295 296	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975. Occlusion-Robust Method to Determine AGV's Stop Pose by Detecting Reference Object with Template Matching on 2D Environmental Map. , 2022, , . Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. Npj Computational Materials, 2022, 8, . Robotic synthesis of peptides containing metal-oxide-based amino acids. CheM, 2022, 8, 2734-2748.	7.6 6.6 3.5 5.8	 52 6 0 10 12
293 294 295 296 297	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975. Occlusion-Robust Method to Determine AGV's Stop Pose by Detecting Reference Object with Template Matching on 2D Environmental Map. , 2022, , . Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. Npj Computational Materials, 2022, 8, . Robotic synthesis of peptides containing metal-oxide-based amino acids. CheM, 2022, 8, 2734-2748. Bayesian optimization with experimental failure for high-throughput materials growth. Npj Computational Materials, 2022, 8, .	7.6 6.6 3.5 5.8 3.5	52 6 0 10 12 9
293 294 295 296 297 298	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466. The chemistry of errors. Nature Chemistry, 2022, 14, 973-975. Occlusion-Robust Method to Determine AGV's Stop Pose by Detecting Reference Object with Template Matching on 2D Environmental Map., 2022, , . Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. Npj Computational Materials, 2022, 8, . Robotic synthesis of peptides containing metal-oxide-based amino acids. CheM, 2022, 8, 2734-2748. Bayesian optimization with experimental failure for high-throughput materials growth. Npj Computational Materials, 2022, 8, . Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nature Reviews Materials, 2022, 7, 991-1009.	7.6 6.6 3.5 5.8 3.5 23.3	 52 6 0 10 12 9 30

		CITATION REPO	RT	
#	Article	IF		Citations
301	An all-round Al-Chemist with a scientific mind. National Science Review, 2022, 9, .	4.	.6	46
302	When machine learning meets molecular synthesis. Trends in Chemistry, 2022, 4, 863-885.	4.	.4	18
303	The order–disorder conundrum: a trade-off between crystalline and amorphous porous orga polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-171	nic 5. 21.	.2	32
304	Bayesian Optimization of Photonic Curing Process for Flexible Perovskite Photovoltaic Devices Electronic Journal, 0, , .	s. SSRN o	.4	1
305	Modelling the Evolution of Chemical Knowledge. Wissenschaft Und Philosophie, 2022, , 23-33	О	.0	1
306	The way to Al-controlled synthesis: how far do we need to go?. Chemical Science, 2022, 13, 12	2604-12615. 3.	.7	2
307	Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chemical Society Reviews, 2022, 51, 6909-693	5. 18	8.7	31
308	An Object-Oriented Framework to Enable Workflow Evolution Across Materials Acceleration Platforms. SSRN Electronic Journal, 0, , .	0	.4	0
309	Where Shall I Touch? Vision-Guided Tactile Poking for Transparent Object Grasping. IEEE/ASME Transactions on Mechatronics, 2023, 28, 233-244.	3.	.7	7
310	Bayesian optimization with known experimental and design constraints for chemistry applicat 2022, 1, 732-744.	ions. ,		16
311	SOLIS: Autonomous Solubility Screening using Deep Neural Networks. , 2022, , .			4
312	Research Progress in High-Throughput Screening of CO2 Reduction Catalysts. Energies, 2022,	15, 6666. 1.	6	10
313	High-throughput discovery of chemical structure-polarity relationships combining automation machine-learning techniques. CheM, 2022, 8, 3202-3214.	and 5.	.8	15
314	Machine learning accelerated carbon neutrality research using big data—from predictive mod interatomic potentials. Science China Technological Sciences, 2022, 65, 2274-2296.	dels to 2.	.0	1
315	Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentat machine learning coupling. Nature Communications, 2022, 13, .	ion and 5.	.8	33
316	Efficient autonomous material search method combining <i>ab</i> initio calculations, autoend and multi-objective Bayesian optimization. Science and Technology of Advanced Materials Me 2022, 2, 365-371.	coder, thods, 0	.4	2
317	Challenges, Opportunities, and Prospects in Metal Halide Perovskites from Theoretical and Ma Learning Perspectives. Advanced Energy Materials, 2022, 12, .	ichine 10	0.2	19
318	An object-oriented framework to enable workflow evolution across materials acceleration platforms. Matter, 2022, 5, 3124-3134.	5.	.0	7

#	Article	IF	CITATIONS
319	An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances, 2022, 8, .	4.7	41
320	Into the Unknown: How Computation Can Help Explore Uncharted Material Space. Journal of the American Chemical Society, 2022, 144, 18730-18743.	6.6	15
321	Scanning probes as a materials automation platform with extremely miniaturized samples. Matter, 2022, 5, 3112-3123.	5.0	5
322	Donor-acceptor organic nanostructure based on conjugated polymer for improving visible light driven photocatalytic activity towards degradation of dye in aqueous medium. New Journal of Chemistry, 0, , .	1.4	0
323	Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO ₂ electroreduction. Reaction Chemistry and Engineering, 2023, 8, 323-331.	1.9	1
324	Exploring the Role of Electro-Tactile and Kinesthetic Feedback in Telemanipulation Task. , 2022, , .		3
325	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
326	Linking scientific instruments and computation: Patterns, technologies, and experiences. Patterns, 2022, 3, 100606.	3.1	17
327	Machine learning for a sustainable energy future. Nature Reviews Materials, 2023, 8, 202-215.	23.3	76
328	Automated stereocontrolled assembly-line synthesis of organic molecules. , 2022, 1, 902-907.		16
329	Chopstick-Like Structure for the Free Transfer of Microdroplets in Robot Chemistry Laboratory. Langmuir, 2022, 38, 13150-13157.	1.6	1
330	Computational modeling to assist in the discovery of supramolecular materials. Annals of the New York Academy of Sciences, 2022, 1518, 106-119.	1.8	4
331	Introducing Mobile Collaborative Robots into Bioprocessing Environments: Personalised Drug Manufacturing and Environmental Monitoring. Applied Sciences (Switzerland), 2022, 12, 10895.	1.3	1
332	Automated photo-aligned liquid crystal elastomer film fabrication with a low-tech, home-built robotic workstation. Scientific Reports, 2022, 12, .	1.6	1
333	A robot-assisted acoustofluidic end effector. Nature Communications, 2022, 13, .	5.8	24
334	On scientific understanding with artificial intelligence. Nature Reviews Physics, 2022, 4, 761-769.	11.9	71
335	Bayesian Optimization of photonic curing process for flexible perovskite photovoltaic devices. Solar Energy Materials and Solar Cells, 2023, 249, 112055.	3.0	5
336	An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Composites Science and Technology, 2023, 231, 109818.	3.8	15

#	Article	IF	Citations
337	Delivering real-time multi-modal materials analysis with enterprise beamlines. Cell Reports Physical Science, 2022, 3, 101112.	2.8	1
338	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	16.0	19
339	Rapid Discovery of Efficient Long-Wavelength Emission Garnet:Cr NIR Phosphors via Multi-Objective Optimization. ACS Applied Materials & Interfaces, 2022, 14, 52124-52133.	4.0	20
340	Materials exploration: The next generation. MRS Bulletin, 0, , .	1.7	1
341	A Materials Acceleration Platform for Organic Laser Discovery. Advanced Materials, 2023, 35, .	11.1	10
342	Robotizing theÂSterility Testing Process: Scientific Challenges forÂBringing Agile Robots intoÂtheÂLaboratory. Lecture Notes in Networks and Systems, 2023, , 223-234.	0.5	0
343	自动化和智èf¼2化的化å¦å•̂æ^• Scientia Sinica Chimica, 2022, , .	0.2	0
344	<i>In situ</i> characterisation for nanoscale structure–performance studies in electrocatalysis. Nanoscale Horizons, 2023, 8, 146-157.	4.1	6
345	How machine learning can accelerate electrocatalysis discovery and optimization. Materials Horizons, 2023, 10, 393-406.	6.4	24
346	Machine learning utilized for the development of proton exchange membrane electrolyzers. Journal of Power Sources, 2023, 556, 232389.	4.0	6
347	Autonomous continuous flow reactor synthesis for scalable atom-precision. Carbon Trends, 2023, 10, 100234.	1.4	2
348	Machine learning for materials classifications from images. Journal of Physics: Conference Series, 2022, 2369, 012081.	0.3	1
349	A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives. Communications Chemistry, 2022, 5, .	2.0	2
350	Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nature Chemistry, 2022, 14, 1342-1356.	6.6	38
351	Skill generalization of tubular object manipulation with tactile sensing and Sim2Real learning. Robotics and Autonomous Systems, 2023, 160, 104321.	3.0	6
352	Research Acceleration in Selfâ€Driving Labs: Technological Roadmap toward Accelerated Materials and Molecular Discovery. Advanced Intelligent Systems, 2023, 5, .	3.3	10
353	Engineering Single Atom Catalysts for Flow Production: From Catalyst Design to Reactor Understandings. Accounts of Materials Research, 2023, 4, 27-41.	5.9	7
354	Recent advances and challenges in experiment-oriented polymer informatics. Polymer Journal, 2023, 55, 117-131.	1.3	9

	Сітат	ion Report	
#	Article	IF	CITATIONS
355	Bayesian optimisation for breeding schemes. Frontiers in Plant Science, 0, 13, .	1.7	3
356	Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opinion on Drug Delivery, 2023, 20, 241-257.	2.4	6
357	Fundamental Understanding of Nonaqueous and Hybrid Na–CO ₂ Batteries: Challenges ar Perspectives. Small, 2023, 19, .	ıd 5.2	10
358	Vending-Machine-Style Skin Excretion Sensing. ACS Sensors, 2023, 8, 326-334.	4.0	4
359	Perspective on machine learning in energy material discovery. SmartMat, 2023, 4, .	6.4	2
360	Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure–Property Relationship for Density Prediction of Energetic Materials. ACS Omega, 2023, 8, 2752-2759.	1.6	2
361	Validating and Utilizing Machine Learning Methods to Investigate the Impacts of Synthesis Parameters in Gold Nanoparticle Synthesis. Journal of Physical Chemistry C, 2023, 127, 1117-1125.	1.5	5
362	The Challenges of Integrating the Principles of Green Chemistry and Green Engineering to Heterogeneous Photocatalysis to Treat Water and Produce Green H2. Catalysts, 2023, 13, 154.	1.6	6
363	A Route Map of Machine Learning Approaches in Heterogeneous CO ₂ Reduction Reaction. Journal of Physical Chemistry C, 2023, 127, 871-881.	1.5	6
364	Perspectives for self-driving labs in synthetic biology. Current Opinion in Biotechnology, 2023, 79, 102881.	3.3	12
365	Robotic Powder Grinding with a Soft Jig for Laboratory Automation in Material Science. , 2022, , .		3
366	Core Processes in Intelligent Robotic Lab Assistants: Flexible Liquid Handling. , 2022, , .		6
367	An Integrated Method of Bayesian Optimization and D-Optimal Design for Chemical Experiment Optimization. Processes, 2023, 11, 87.	1.3	2
368	Autonomous experimentation in nanotechnology. , 2023, , 331-360.		0
369	Materials informatics for developing new restorative dental materials: A narrative review. Frontiers in Dental Medicine, 0, 4, .	0.5	3
370	High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nature Chemistry, 0, , .	6.6	2
371	Data-driven design of electrocatalysts: principle, progress, and perspective. Journal of Materials Chemistry A, 2023, 11, 3849-3870.	5.2	8
372	Organic reaction mechanism classification using machine learning. Nature, 2023, 613, 689-695.	13.7	31

#	Article	IF	CITATIONS
373	Navigating with chemometrics and machine learning in chemistry. Artificial Intelligence Review, 2023, 56, 9089-9114.	9.7	3
374	The rise of self-driving labs in chemical and materials sciences. , 2023, 2, 483-492.		63
375	A Review on Artificial Intelligence Enabled Design, Synthesis, and Process Optimization of Chemical Products for Industry 4.0. Processes, 2023, 11, 330.	1.3	11
376	Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm. Materials, 2023, 16, 1050.	1.3	4
377	AROPS: A Framework of Automated Reaction Optimization with Parallelized Scheduling. Journal of Chemical Information and Modeling, 2023, 63, 770-781.	2.5	1
378	Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nature Reviews Materials, 2023, 8, 241-260.	23.3	33
379	Globus automation services: Research process automation across the space–time continuum. Future Generation Computer Systems, 2023, 142, 393-409.	4.9	13
380	A Pipette Tip Integrated with a Capacitive Microsensor Fabricated by Combined 3D Printing and MEMS Process for Cell Detection and Transportation. , 2023, , .		0
382	Self-Driving Laboratory for Polymer Electronics. Chemistry of Materials, 2023, 35, 3046-3056.	3.2	12
383	Can Machine Learning Predict the Phase Behavior of Surfactants?. Journal of Physical Chemistry B, 2023, 127, 3711-3727.	1.2	3
384	Scalable multi-agent lab framework for lab optimization. Matter, 2023, 6, 1880-1893.	5.0	5
385	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	9.5	22
386	Accelerated Design of Architected Materials with Multifidelity Bayesian Optimization. Journal of Engineering Mechanics - ASCE, 2023, 149, .	1.6	2
387	Stoichiometric growth of SrTiO3 films via Bayesian optimization with adaptive prior mean. , 2023, 1, .		1
388	AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nature Communications, 2023, 14, .	5.8	32
389	A tailored and rapid approach for ozonation catalyst design. Environmental Science and Ecotechnology, 2023, 15, 100244.	6.7	3
390	The Intersection of Human and Artificial Creativity. Creativity Theory and Action in Education, 2022, , 19-34.	1.0	2
391	Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	19

#	Article	IF	CITATIONS
392	Progress of Artificial Intelligence in Drug Synthesis and Prospect of Its Application in Nitrification of Energetic Materials. Molecules, 2023, 28, 1900.	1.7	0
393	Multi-fidelity cost-aware Bayesian optimization. Computer Methods in Applied Mechanics and Engineering, 2023, 407, 115937.	3.4	11
394	Virtual Infrastructure Twin for Computing-Instrument Ecosystems: Software and Measurements. IEEE Access, 2023, 11, 20254-20266.	2.6	2
395	Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning. Matter, 2023, 6, 677-690.	5.0	4
396	How to build an effective self-driving laboratory. MRS Bulletin, 2023, 48, 173-178.	1.7	3
397	Next-generation intelligent laboratories for materials design and manufacturing. MRS Bulletin, 2023, 48, 179-185.	1.7	5
398	Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules, 2023, 28, 2232.	1.7	2
399	A robotic platform for the synthesis of colloidal nanocrystals. , 2023, 2, 505-514.		32
400	Adaptively driven X-ray diffraction guided by machine learning for autonomous phase identification. Npj Computational Materials, 2023, 9, .	3.5	9
401	Self-driving laboratories: A paradigm shift in nanomedicine development. Matter, 2023, 6, 1071-1081.	5.0	8
402	Machine learning accelerates the investigation of targeted MOFs: Performance prediction, rational design and intelligent synthesis. Nano Today, 2023, 49, 101802.	6.2	9
403	Dual-Robotic-Manipulator Collaborative System Based on Depth Image. , 2022, , .		0
404	Robotic automation and unsupervised cluster assisted modeling for solving the forward and reverse design problem of paper airplanes. Scientific Reports, 2023, 13, .	1.6	1
405	Functional nanomaterials for energy and catalysis, what's next?. , 2023, , 100001.		0
406	Role of AI in experimental materials science. MRS Bulletin, 2023, 48, 134-141.	1.7	6
407	Editorial: Robotic intelligence and automation. , 2023, 43, 1-2.		0
408	Combinatorial synthesis for Al-driven materials discovery. , 2023, 2, 493-504.		11
409	Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae. Environmental Science & Technology, 2023, 57, 18127-18138.	4.6	2

#	Article	IF	CITATIONS
410	SAGAS: Simulated annealing and greedy algorithm scheduler for laboratory automation. SLAS Technology, 2023, 28, 264-277.	1.0	0
411	Chemistry in the Era of Artificial Intelligence. , 2023, 1, 127-128.		2
412	Artificial photosynthesis bringing new vigor into plastic wastes. SmartMat, 2023, 4, .	6.4	15
413	Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts. Molecular Catalysis, 2023, 541, 113096.	1.0	2
414	Optimized synthesis of the anti-COVID-19 drugs aided by retrosynthesis software. RSC Medicinal Chemistry, 0, , .	1.7	0
415	Data-driven discovery of low temperature denitration catalysts with strong anti-sulfur and anti-water property. Materials Letters, 2023, 342, 134315.	1.3	1
416	Autonomous experimental systems in materials science. Science and Technology of Advanced Materials Methods, 2023, 3, .	0.4	2
417	TEXplorer.org: Thermoelectric material properties data platform for experimental and first-principles calculation results. APL Materials, 2023, 11, .	2.2	4
418	Active Learning as a Tool for Optimizing "Plugâ€nâ€Play―Electrochemical Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
419	Accelerated electrosynthesis development enabled by high-throughput experimentation. Synthesis, 0, ,	1.2	2
420	Generative Models as an Emerging Paradigm in the Chemical Sciences. Journal of the American Chemical Society, 2023, 145, 8736-8750.	6.6	36
422	Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59, 5795-5806.	2.2	11
423	The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction. EScience, 2023, 3, 100136.	25.0	5
424	M-AResNet: a novel multi-scale attention residual network for melting curve image classification. Multimedia Tools and Applications, 0, , .	2.6	0
425	Photocatalysis in energy application: What's next?. , 2023, , 100016.		0
426	Surface-Initiated Controlled Radical Polymerization: Going beyond Laboratory Scale. ACS Applied Polymer Materials, 2023, 5, 3534-3541.	2.0	1
428	Data intelligence for molecular science. Chinese Science Bulletin, 2023, , .	0.4	1
429	Multistep automated synthesis of pharmaceuticals. Trends in Chemistry, 2023, 5, 432-445.	4.4	3

		CITATION REPORT		
#	Article		IF	CITATIONS
430	Challenges and opportunities of machine chemists. Scientia Sinica Chimica, 2023, , .		0.2	0
438	Bayesian optimisation for efficient material discovery: a mini review. Nanoscale, 2023,	15, 10975-10984.	2.8	3
444	Toward the Uniform of Chemical Theory, Simulation, and Experiments in Metaverse Teo 1, 192-198.	chnology. , 2023,		1
448	The promise and pitfalls of AI for molecular and materials synthesis. Nature Computatio 2023, 3, 362-364.	onal Science,	3.8	8
450	The Application of Novel Functional Materials to Machine Learning. , 2023, , 95-115.			0
455	Automate and digitize. , 2023, 2, 459-459.			0
459	The use of molecular electronic structure methods to investigate mechanically interloc molecules. Physical Chemistry Chemical Physics, 2023, 25, 19409-19421.	ked	1.3	3
463	Promises and realities of artificial creativity. , 2023, , 275-289.			2
472	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeab Chemical Society Reviews, 2023, 52, 5255-5316.	le batteries.	18.7	24
480	Autonomous experiments using active learning and Al. Nature Reviews Materials, 2023	, 8, 563-564.	23.3	11
483	Making the connections: Physical and electric interactions in biohybrid photosynthetic Energy and Environmental Science, 0, , .	systems.	15.6	0
491	Recent advances in the rational design of alkaline OER catalysts: from electronic struct industrial applications. Materials Chemistry Frontiers, 2023, 7, 5187-5214.	ures to	3.2	4
498	Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Org Challenges and Advances in Computational Chemistry and Physics, 2023, , 227-275.	anic Synthesis.	0.6	0
517	Optimization of Crescent Electrode Shape for Low-Voltage Actuation of EWOD*. , 202	3, , .		0
522	Leveraging Multi-modal Sensing for Robotic Insertion Tasks in R&D Laboratories. ,	2023, , .		1
523	Flexible Laboratory Automation System Based on Distributed Framework: Implementat Process in Polymer Materials Development. , 2023, , .	ion for Press		0
525	An Introduction to Machine Learning in Molecular Sciences. Challenges and Advances i Computational Chemistry and Physics, 2023, , 1-19.	n	0.6	0
526	RIMBO - An Ontology forÂModel Revision Databases. Lecture Notes in Computer Scien	ce, 2023, , 523-534.	1.0	0

#	Article	IF	CITATIONS
529	Bayesian optimization as a valuable tool for sustainable chemical reaction development. Nature Reviews Methods Primers, 2023, 3, .	11.8	0
533	An automatic robot system for machine learning–assisted high-throughput screening of composite electrocatalysts. , 0, , .		0
554	Machine learning for analysis of experimental scattering and spectroscopy data in materials chemistry. Chemical Science, 2023, 14, 14003-14019.	3.7	3
569	Named entity recognition of chemical experiment operations based on BERT. , 2023, , .		0
573	Functional requirements elicitation approach for the design and integration of robotic system for automation. , 2023, , .		0
575	High-Accuracy Injection Using a Mobile Manipulation Robot for Chemistry Lab Automation. , 2023, , .		0
576	Towards Flexible Biolaboratory Automation: Container Taxonomy-Based, 3D-Printed Gripper Fingers [*] . , 2023, , .		0
577	Robotic Powder Grinding with Audio-Visual Feedback for Laboratory Automation in Materials Science. , 2023, , .		0
578	Learning Robotic Powder Weighing from Simulation for Laboratory Automation. , 2023, , .		0
581	Understanding the Influence of Robot Motion on the Experimental Processes Present in Food Science Applications. , 2023, , .		0
599	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	18.7	0
601	Bringing digital synthesis to Mars. , 2024, 3, 284-285.		0
611	The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. Natural Products and Bioprospecting, 2024, 14, .	2.0	0
615	The rise of high-entropy battery materials. Nature Communications, 2024, 15, .	5.8	0
620	Robotic Automation System of Polymer Press Process for Materials Lab-Automation. , 2024, , .		0
627	Hospital Automation Robotics. , 2023, , 101-114.		0