Lasing at Multidimensional Topological States in a Two-Structure

ACS Photonics

7, 2027-2036

DOI: 10.1021/acsphotonics.0c00357

Citation Report

#	Article	IF	CITATIONS
1	Multipolar lasing modes from topological corner states. Nature Communications, 2020, 11, 5758.	12.8	132
2	Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform [Invited]. Optical Materials Express, 2021, 11, 319.	3.0	55
3	Two types of corner states in two-dimensional photonic topological insulators. Journal of Applied Physics, 2021, 129, 063104.	2.5	4
4	Higher-order topology in plasmonic Kagome lattices. Applied Physics Letters, 2021, 118, .	3.3	26
5	Theory of topological corner state laser in Kagome waveguide arrays. APL Photonics, 2021, 6, .	5 . 7	38
6	Nonlinear Imaging of Nanoscale Topological Corner States. Nano Letters, 2021, 21, 4592-4597.	9.1	51
7	Topological Corner State Laser in Kagome Waveguide Arrays. , 2021, , .		0
8	In-plane excitation of a topological nanophotonic corner state at telecom wavelengths in a cross-coupled cavity. Photonics Research, 2021, 9, 1423.	7.0	21
9	Nonlinear second-order photonic topological insulators. Nature Physics, 2021, 17, 995-1000.	16.7	117
10	Topological photonic crystal fibers based on second-order corner modes. Optics Letters, 2021, 46, 3849.	3.3	23
11	Second harmonic generation enhancement and directional emission from topological corner state based on the quantum spin Hall effect. Optics Express, 2021, 29, 26841.	3 . 4	14
12	Optimization and robustness of the topological corner state in second-order topological photonic crystals. Optics Express, 2021, 29, 30735.	3.4	13
13	Observation of the Dirac mode guidance in Kagome lattice of photonic crystals. Optics Communications, 2022, 503, 127449.	2.1	4
14	Robustness of topological corner modes in photonic crystals. Physical Review Research, 2020, 2, .	3 . 6	53
15	Single-mode lasing based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mimathvariant="script">PT</mml:mimathvariant="script"></mml:math> -breaking of two-dimensional photonic higher-order topological insulator. Physical Review B, 2021, 104, .	3 . 2	8
16	Measurement of Corner-Mode Coupling in Acoustic Higher-Order Topological Insulators. Frontiers in Physics, 2021, 9, .	2.1	2
17	Trapping light in a Floquet topological photonic insulator by Floquet defect mode resonance. APL Photonics, 2021, 6, .	5.7	8
18	Functionalized tellurene; a candidate large-gap 2D topological insulator. Journal of Physics Condensed Matter, 2022, 34, 08LT01.	1.8	1

#	ARTICLE	IF	CITATIONS
19	Exact higher-order bulk-boundary correspondence of corner-localized states. Physical Review B, 2021, 104, .	3.2	27
20	Topological states in the super-SSH model. Optics Express, 2021, 29, 42827.	3.4	20
21	Experimental observation of multiple edge and corner states in photonic slabs heterostructures. Photonics Research, 2022, 10, 197.	7.0	15
22	The Optimization of Two-Dimensional Photonic Crystals Resonator (PCR)-based Filter for Telecommunication Applications., 2021,,.		0
23	Roadmap on topological photonics. JPhys Photonics, 2022, 4, 032501.	4.6	56
24	Rainbow trapping based on higher-order topological corner modes. Optics Letters, 2022, 47, 1454.	3.3	26
25	Corner modes of the breathing kagome lattice: Origin and robustness. Physical Review B, 2022, 105, .	3.2	18
26	Dirac cones and higher-order topology in quasi-continuous media. Europhysics Letters, 2022, 137, 15001.	2.0	10
27	Experimental realization of topological corner states in long-range-coupled electrical circuits. Physical Review B, 2022, 105, .	3.2	24
28	A large-scale single-mode array laser based on a topological edge mode. Nanophotonics, 2022, 11, 2169-2181.	6.0	8
29	High-Quality Optical Hotspots with Topology-Protected Robustness. ACS Photonics, 2022, 9, 241-248.	6.6	5
30	Tunable two-dimensional laser arrays with zero-phase locking. Physical Review B, 2022, 105, .	3.2	10
31	Slow Light in Topological Coupled-Corner-State Waveguide. Journal Physics D: Applied Physics, 0, , .	2.8	2
32	A Flexible and Stretchable Photonic Crystal Sensor for Biosensing and Tactile Sensing. SSRN Electronic Journal, 0, , .	0.4	0
33	Corner states in second-order two-dimensional topological photonic crystals with reversed materials. Physical Review A, 2022, 106, .	2.5	10
34	Manipulation of coupling between topological edge state and corner state in photonic crystals. Optics and Laser Technology, 2022, 155, 108387.	4.6	14
35	Mutual coupling of corner-localized quasi-BICs in high-order topological PhCs and sensing applications. Optics Express, 2022, 30, 29258.	3.4	6
36	A brief review of topological photonics in one, two, and three dimensions. Reviews in Physics, 2022, 9, 100076.	8.9	43

#	ARTICLE	IF	CITATIONS
37	Terahertz Metamaterials for Free-Space and on-Chip Applications: From Active Metadevices to Topological Photonic Crystals. Advanced Devices & Instrumentation, 2022, 2022, .	6.5	11
38	Monolithically Integrated Ultralow Threshold Topological Corner State Nanolasers on Silicon. ACS Photonics, 2022, 9, 3824-3830.	6.6	4
39	A flexible and stretchable photonic crystal sensor for biosensing and tactile sensing. Heliyon, 2022, 8, e11697.	3.2	2
40	Topological metasurface: from passive toward active and beyond. Photonics Research, 2023, 11, B65.	7.0	16
41	Nonlinear photonic disclination states. APL Photonics, 2023, 8, .	5.7	5
42	Non-Hermitian topological photonics. Optical Materials Express, 2023, 13, 870.	3.0	7
43	Mode pumping in photonic lattices using a single tailored auxiliary waveguide. Physical Review A, 2023, 107, .	2.5	1
44	Photonic Majorana quantum cascade laser with polarization-winding emission. Nature Communications, 2023, 14, .	12.8	11
45	Influence of asymmetric long-range interactions on corner states in photonic higher-order topological insulators. Physical Review A, 2023, 107, .	2.5	3
46	Zero-energy edge states and solitons in strained photonic graphene. Physical Review A, 2023, 107, .	2.5	3
47	Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light: Science and Applications, 2023, 12, .	16.6	6
48	Photonic crystal cavity-mediated improved absorptive nonlinearity of C-4-hydroxy-3-methoxphenilcalix[4]resorcinarene. Physical Chemistry Chemical Physics, 2023, 25, 15839-15845.	2.8	0
49	Double resonance between corner states in distinct higher-order topological phases. Journal of Physics Condensed Matter, 2023, 35, 385401.	1.8	0
50	Topological phases of photonic crystals under crystalline symmetries. Physical Review B, 2023, 108, .	3.2	10
51	Doubleâ€Sided Indium Tin Oxide Photonic Crystal Glazing for Allâ€Inâ€One Multifunctional Rigid and Flexible Windows. Advanced Materials Technologies, 2023, 8, .	5.8	0
52	Topological photonic crystal nanowire array laser with edge states. Optics Express, 2023, 31, 29096.	3.4	0
53	Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. Light: Science and Applications, 2023, 12, .	16.6	2
54	Topological Corner State-Based Fano Resonances for Ultrasensitive Sensing. IEEE Sensors Journal, 2024, 24, 6014-6025.	4.7	0

ARTICLE IF CITATIONS

55 Deep ultraviolet AlGaN-multiple quantum wells with photoluminescence enhanced by topological corner state. Optics Express, 2024, 32, 7873.