Human iPSC-Derived Cardiomyocytes Are Susceptible

Cell Reports Medicine 1, 100052 DOI: 10.1016/j.xcrm.2020.100052

Citation Report

#	Article	IF	Citations
1	Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sciences, 2020, 260, 118482.	2.0	72
2	Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Research, 2020, 184, 104955.	1.9	62
3	Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1059-H1068.	1.5	39
4	COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 2020, 17, 543-558.	6.1	999
5	Modeling Multi-organ Infection by SARS-CoV-2ÂUsing Stem Cell Technology. Cell Stem Cell, 2020, 27, 859-868.	5.2	27
6	Cardiovascular Manifestations of COVID-19 Infection. Cells, 2020, 9, 2508.	1.8	142
7	ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors. Journal of Clinical Medicine, 2020, 9, 3743.	1.0	74
8	Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32105-32113.	3.3	192
9	Safety of Hydroxychloroquine Among Outpatient Clinical Trial Participants for COVID-19. Open Forum Infectious Diseases, 2020, 7, ofaa500.	0.4	38
10	Acute portal vein thrombosis secondary to COVID-19: a case report. BMC Gastroenterology, 2020, 20, 386.	0.8	19
11	COVID-19: A Review on Diagnosis, Treatment, and Prophylaxis. International Journal of Molecular Sciences, 2020, 21, 5145.	1.8	18
12	Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. Journal of Translational Medicine, 2020, 18, 408.	1.8	16
13	Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. International Immunopharmacology, 2020, 88, 106980.	1.7	31
14	Anticipating the long-term cardiovascular effects of COVID-19. Journal of Thrombosis and Thrombolysis, 2020, 50, 512-524.	1.0	85
15	Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic Strategies. International Journal of Molecular Sciences, 2020, 21, 6790.	1.8	52
16	Sex differences underlying preexisting cardiovascular disease and cardiovascular injury in COVID-19. Journal of Molecular and Cellular Cardiology, 2020, 148, 25-33.	0.9	26
17	Targeting the sAC-Dependent cAMP Pool to Prevent SARS-Cov-2 Infection. Cells, 2020, 9, 1962.	1.8	12
18	Infection of Brain Organoids and 2D Cortical Neurons with SARS-CoV-2 Pseudovirus. Viruses, 2020, 12, 1004.	1.5	53

ATION REDO

#	Article	IF	CITATIONS
19	MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 148, 46-49.	0.9	85
20	Clinical characteristics of 41 patients with pneumonia due to 2019 novel coronavirus disease (COVID-19) in Jilin, China. BMC Infectious Diseases, 2020, 20, 961.	1.3	9
21	Pandemic Perspective: Commonalities Between COVID-19 and Cardio-Oncology. Frontiers in Cardiovascular Medicine, 2020, 7, 568720.	1.1	5
22	Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Frontiers in Immunology, 2020, 11, 570681.	2.2	29
23	COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis, 2020, 50, 54-67.	1.0	529
24	Novel insights on the pulmonary vascular consequences of COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L277-L288.	1.3	125
25	Direct SARS-CoV-2 infection of the heart potentiates the cardiovascular sequelae of COVID-19. Drug Discovery Today, 2020, 25, 1559-1560.	3.2	15
26	Proof of SARS-CoV-2 genomes in endomyocardial biopsy with latency after acute infection. International Journal of Infectious Diseases, 2021, 102, 70-72.	1.5	23
27	A review of COVID-19 biomarkers and drug targets: resources and tools. Briefings in Bioinformatics, 2021, 22, 701-713.	3.2	20
28	Coronavirus Disease 2019–Associated Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for Antithrombotic Management. Journal of the American Heart Association, 2021, 10, e019650.	1.6	122
29	Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports, 2021, 16, 385-397.	2.3	25
30	ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell, 2021, 28, 331-342.e5.	5.2	156
31	Cardiac Troponin I association with critical illness and death risk in 726 seriously ill COVID-19 patients: A retrospective cohort study. International Journal of Medical Sciences, 2021, 18, 1474-1483.	1.1	16
32	Cardiovascular disease in SARSâ€CoVâ€2 infection. Clinical and Translational Immunology, 2021, 10, e1343.	1.7	28
33	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical Microbiology Reviews, 2021, 34, .	5.7	136
34	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	10.6	35
35	Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovascular Research, 2022, 118, 2652-2664.	1.8	20
36	Human induced pluripotent stem cells as a tool for disease modeling and drug screening for COVID-19. Genetics and Molecular Biology, 2021, 44, e20200198.	0.6	3

#	Article	IF	CITATIONS
37	Expression of Endogenous Angiotensin-Converting Enzyme 2 in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. International Journal of Molecular Sciences, 2021, 22, 1320.	1.8	28
38	Is COVID-19 Gender-sensitive?. Journal of NeuroImmune Pharmacology, 2021, 16, 38-47.	2.1	123
39	Ex uno, plures–From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. International Journal of Molecular Sciences, 2021, 22, 2071.	1.8	2
41	Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annual Review of Pharmacology and Toxicology, 2022, 62, 25-53.	4.2	20
42	The Epidemiological and Mechanistic Understanding of the Neurological Manifestations of COVID-19: A Comprehensive Meta-Analysis and a Network Medicine Observation. Frontiers in Neuroscience, 2021, 15, 606926.	1.4	6
43	SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. International Journal of Molecular Sciences, 2021, 22, 2356.	1.8	13
44	In vitro and In silico Models to Study SARS-CoV-2 Infection: Integrating Experimental and Computational Tools to Mimic "COVID-19 Cardiomyocyteâ€: Frontiers in Physiology, 2021, 12, 624185.	1.3	7
46	COVID-19: The Heart of the Matter—Pathological Changes and a Proposed Mechanism. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 217-224.	1.0	9
47	SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nature Communications, 2021, 12, 1876.	5.8	88
48	Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 2021, 593, 418-423.	13.7	151
49	Impact of Cardiovascular Diseases on COVID-19: A Systematic Review. Medical Science Monitor, 2021, 27, e930032.	0.5	4
50	A Perspective on Personalized Therapies in Hypertrophic Cardiomyopathy. Journal of Cardiovascular Pharmacology, 2021, 77, 317-322.	0.8	7
51	Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19. Modern Pathology, 2021, 34, 1345-1357.	2.9	90
52	Integrated Bioinformatic Analysis of SARS-CoV-2 Infection Related Genes ACE2, BSG and TMPRSS2 in Aerodigestive Cancers. Journal of Inflammation Research, 2021, Volume 14, 791-802.	1.6	15
53	Cardiovascular Injury Due to SARS-CoV-2. Current Clinical Microbiology Reports, 2021, 8, 167-177.	1.8	18
54	SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports, 2021, 16, 478-492.	2.3	75
55	Right Ventricular Strain Is Common in Intubated COVID-19 Patients and Does Not Reflect Severity of Respiratory Illness. Journal of Intensive Care Medicine, 2021, 36, 900-909.	1.3	27
56	Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Frontiers in Cardiovascular Medicine, 2020, 7, 591583.	1.1	3

#	Article	IF	Citations
57	Network pharmacology and RNA-sequencing reveal the molecular mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction. Computers in Biology and Medicine, 2021, 131, 104293.	3.9	14
58	Repositioned Drugs for COVID-19—the Impact on Multiple Organs. SN Comprehensive Clinical Medicine, 2021, 3, 1484-1501.	0.3	3
59	Aspirin Resistance in Obese and Elderly Patients with COVID-19?. American Journal of Medicine, 2021, 134, e297.	0.6	1
60	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
61	Management of COVID-19-associated multisystem inflammatory syndrome in children: A comprehensive literature review. Progress in Pediatric Cardiology, 2021, 63, 101381.	0.2	11
62	The Essential Vulnerability of Human Cardiac Myocytes to SARS-CoV-2. JACC Basic To Translational Science, 2021, 6, 346-349.	1.9	4
63	Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight, 2021, 6, .	2.3	86
64	Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Reports, 2021, 35, 108940.	2.9	76
66	Portal Vein Thrombosis—a Rare Complication of SARS-CoV-2 Infection. SN Comprehensive Clinical Medicine, 2021, 3, 1416-1419.	0.3	5
67	An Immuno-Cardiac Model for Macrophage-Mediated Inflammation in COVID-19 Hearts. Circulation Research, 2021, 129, 33-46.	2.0	40
68	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	159
69	SARS-CoV-2 infection of human iPSC–derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Science Translational Medicine, 2021, 13, .	5.8	143
70	COVID-19 and Cardiovascular Disease. Circulation Research, 2021, 128, 1214-1236.	2.0	232
71	In vitro safety "clinical trial―of the cardiac liability of drug polytherapy. Clinical and Translational Science, 2021, 14, 1155-1165.	1.5	11
72	Human stem cellâ€based models for studying hostâ€pathogen interactions. Cellular Microbiology, 2021, 23, e13335.	1.1	13
73	Coronary Vasculitis. Biomedicines, 2021, 9, 622.	1.4	17
74	Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Current Oncology Reports, 2021, 23, 77.	1.8	2
75	Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Frontiers in Pharmacology, 2021, 12, 664349.	1.6	44

ARTICLE IF CITATIONS # COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of 1.8 26 76 the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160. Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the 1.8 23 heart. Cardiovascular Research, 2021, 117, 2161-2174. Macrophages: Potential Therapeutic Target of Myocardial Injury in COVID-19. Circulation Research, 79 2.0 2 2021, 129, 47-49. Deleterious Effects of SARS-CoV-2 Infection on Human Pancreatic Cells. Frontiers in Cellular and 1.8 Infection Microbiology, 2021, 11, 678482. Human Kidney Spheroids and Monolayers Provide Insights into SARS-CoV-2 Renal Interactions. Journal 81 3.0 24 of the American Society of Nephrology: JASN, 2021, 32, 2242-2254. Human embryonic stem cell-derived cardiomyocyte platform screens inhibitors of SARS-CoV-2 infection. Communications Biology, 2021, 4, 926. Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Computers in 83 3.9 18 Biology and Medicine, 2021, 134, 104459. Identifying COVID-19-Specific Transcriptomic Biomarkers with Machine Learning Methods. BioMed 84 Research International, 2021, 2021, 1-11. Imaging Evaluation of Pulmonary and Non-Ischaemic Cardiovascular Manifestations of COVID-19. 86 1.3 8 Diagnostics, 2021, 11, 1271. Heart injury in COVID-19: immediate and long-term follow-up. Perm Medical Journal, 2021, 38, 48-60. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with 90 1.5 11 Cardiovascular Complications. Viruses, 2021, 13, 1346. Cardiovascular Disease Complicating COVID-19 in the Elderly. Medicina (Lithuania), 2021, 57, 833. 0.8 SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from 92 1.6 43 multiple organs. Scientific Reports, 2021, 11, 16814. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS ONE, 1.1 2021, 16, e0255335 Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Reviews and 95 0 1.7 Reports, 2021, 17, 2107-2119. Comparative transcriptomic analysis of SARS-CoV-2 infected cell model systems reveals differential innate immune responses. Scientific Reports, 2021, 11, 17146. Stem Cells as a Model of Study of SARS-CoV-2 and COVID-19: A Systematic Review of the Literature. 97 0.9 3 BioMed Research International, 2021, 2021, 1-7. Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice With Coxsackie B3 Virus-Induced Myocarditis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 98 1.8 704919.

#	Article	IF	CITATIONS
99	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
100	Viruses in the Heart: Direct and Indirect Routes to Myocarditis and Heart Failure. Viruses, 2021, 13, 1924.	1.5	12
101	Coronavirus Disease-2019 and Heart Failure: A Scientific Statement From the Heart Failure Society of America. Journal of Cardiac Failure, 2022, 28, 93-112.	0.7	15
102	Cardiovascular implications of the COVID-19 pandemic. Journal of Cardiology, 2022, 79, 460-467.	0.8	7
104	A bioinformatics approach for identifying potential molecular mechanisms and key genes involved in COVID-19 associated cardiac remodeling. Gene Reports, 2021, 24, 101246.	0.4	8
105	Decrypting the role of predicted SARS-CoV-2 miRNAs in COVID-19 pathogenesis: A bioinformatics approach. Computers in Biology and Medicine, 2021, 136, 104669.	3.9	16
106	Tumor Necrosis Factor-Alpha Exacerbates Viral Entry in SARS-CoV2-Infected iPSC-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9869.	1.8	11
107	Antihypertensive drug treatment and susceptibility to SARS-CoV-2 infection in human PSC-derived cardiomyocytes and primary endothelial cells. Stem Cell Reports, 2021, 16, 2459-2472.	2.3	11
108	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	2.3	37
109	SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.	1.5	58
110	B0AT1 Amino Acid Transporter Complexed With SARS-CoV-2 Receptor ACE2 Forms a Heterodimer Functional Unit: <i>In Situ</i> Conformation Using Radiation Inactivation Analysis. Function, 2021, 2, zqab027.	1.1	13
111	Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Frontiers in Cardiovascular Medicine, 2020, 7, 618651.	1.1	60
112	Dysregulation of the mevalonate pathway during SARSâ€CoVâ€⊋ infection: An in silico study. Journal of Medical Virology, 2021, 93, 2396-2405.	2.5	12
125	Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 2021, 10, 51.	1.8	159
126	Extrapulmonary Clinical Manifestations in COVID-19 Patients. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1783-1796.	0.6	59
127	Acute and Chronic Effects of COVID-19 on the Cardiovascular System. Journal of Cardiovascular Development and Disease, 2021, 8, 128.	0.8	16
128	SARS-CoV-2 exploits host DGAT and ADRP for efficient replication. Cell Discovery, 2021, 7, 100.	3.1	29
130	Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 683619.	1.8	8

#	Article	IF	CITATIONS
131	Cardiotoxicity of Antineoplastic Therapies and Applications of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells, 2021, 10, 2823.	1.8	7
132	Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. Journal of Virology, 2021, 95, e0136821.	1.5	29
133	The Role of the Immune System on the Cardiac Complications Observed in SARS-CoV-2. International Journal of Cardiovascular Sciences, 2021, , .	0.0	0
134	WIN 55,212-2 shows anti-inflammatory and survival properties in human iPSC-derived cardiomyocytes infected with SARS-CoV-2. PeerJ, 2021, 9, e12262.	0.9	5
135	COVID-19: The Cause of the Manifested Cardiovascular Complications During the Pandemic. Frontiers in Cardiovascular Medicine, 2021, 8, 744482.	1.1	3
136	Inter-kingdom regulation of human transcriptome by dietary microRNAs: Emerging bioactives from edible plants to treat human diseases?. Trends in Food Science and Technology, 2021, 118, 723-723.	7.8	2
137	Are Aspirin and Apixaban Sufficient to Prevent Immunothrombosis in COVID-19?. SSRN Electronic Journal, 0, , .	0.4	1
138	Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Current Opinion in Nephrology and Hypertension, 2022, 31, 36-46.	1.0	11
139	Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 2022, 96, JVI0106321.	1.5	17
140	COVID-19, the Pandemic of the Century and Its Impact on Cardiovascular Diseases. Cardiology Discovery, 2021, 1, 233-258.	0.6	6
141	Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research—What We Have Learnt and Not Learnt until Now. Cells, 2021, 10, 3112.	1.8	4
142	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	1.1	22
144	Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Non-coding RNA, 2021, 7, 74.	1.3	5
145	When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Research and Therapy, 2022, 13, 9.	2.4	9
146	Inflammatory activation and immune cell infiltration are main biological characteristics of SARS-CoV-2 infected myocardium. Bioengineered, 2022, 13, 2486-2497.	1.4	5
147	Induced pluripotent stem cells. , 2022, , 1-58.		0
148	Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opinion on Therapeutic Targets, 2022, 26, 13-28.	1.5	5
149	Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases. In Silico Biology, 2022, 14, 115-133.	0.4	1

#	Article	IF	CITATIONS
150	Molecular Mechanisms of Cardiac Injury Associated With Myocardial SARS-CoV-2 Infection. Frontiers in Cardiovascular Medicine, 2021, 8, 643958.	1.1	10
152	Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. International Immunopharmacology, 2022, 104, 108502.	1.7	30
155	Treating COVID-19: Evolving approaches to evidence in a pandemic. Cell Reports Medicine, 2022, 3, 100533.	3.3	7
156	The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. JACC Basic To Translational Science, 2022, 7, 294-308.	1.9	58
157	Manifestations and Mechanism of SARS-CoV2 Mediated Cardiac Injury. International Journal of Biological Sciences, 2022, 18, 2703-2713.	2.6	13
158	COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Frontiers in Cell and Developmental Biology, 2022, 10, 824851.	1.8	51
159	Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports, 2022, 17, 522-537.	2.3	2
160	Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Frontiers in Immunology, 2022, 13, 868679.	2.2	7
161	Organoid Models of SARS-CoV-2 Infection: What Have We Learned about COVID-19?. Organoids, 2022, 1, 2-27.	1.8	12
162	Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Research and Therapy, 2022, 13, 112.	2.4	14
163	A REVIEW ON THE DEVELOPMENT OF FAVIPRAVIR AGAINST SARS COV 2 INFECTION. International Journal of Current Pharmaceutical Research, 0, , 11-14.	0.2	0
164	The pathological maelstrom of COVID-19 and cardiovascular disease. , 2022, 1, 200-210.		14
165	Targeting papain-like protease for broad-spectrum coronavirus inhibition. Protein and Cell, 2022, 13, 940-953.	4.8	23
167	Ferroptosis of Pacemaker Cells in COVID-19. Circulation Research, 2022, 130, 978-980.	2.0	4
168	Understanding on the possible routes for SARS CoV-2 invasion via ACE2 in the host linked with multiple organs damage. Infection, Genetics and Evolution, 2022, 99, 105254.	1.0	21
169	Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ, 2021, 9, e12595.	0.9	5
170	Myocardial damage in new coronavirus infection (review). Bulletin Physiology and Pathology of Respiration, 2021, , 129-145.	0.0	1
171	Use of the Genus <i>Satureja</i> as Food Supplement: Possible Modulation of the Immune System <i>via</i> Intestinal Microbiota During SARS-CoV-2 Infection. Anti-Infective Agents, 2022, 20, .	0.1	Ο

#	Article	IF	CITATIONS
172	ER Stress in COVID-19 and Parkinson's Disease: In Vitro and In Silico Evidences. Brain Sciences, 2022, 12, 507.	1.1	4
173	SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Frontiers in Cell and Developmental Biology, 2022, 10, 855340.	1.8	23
175	The S Protein of SARS-CoV-2 Injures Cardiomyocytes Indirectly through the Release of Cytokines Instead of Direct Action. Acta Cardiologica Sinica, 2021, 37, 643-647.	0.1	0
176	Sarsâ€Covâ€2 Spike Proteinâ€Induced Damage of hiPSCâ€Derived Cardiomyocytes. Advanced Biology, 2022, 6, e2101327.	1.4	8
177	Multiple Sclerosis Biomarker Candidates Revealed by Cell-Type-Specific Interactome Analysis. OMICS A Journal of Integrative Biology, 2022, 26, 305-317.	1.0	2
178	SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. International Journal of Cardiology, 2022, 362, 196-205.	0.8	9
179	Myocardial Injury in COVID-19 and Its Implications in Short- and Long-Term Outcomes. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	9
180	Spatial region-resolved proteome map reveals mechanism of COVID-19-associated heart injury. Cell Reports, 2022, 39, 110955.	2.9	16
181	Modeling Nonischemic Genetic Cardiomyopathies Using Induced Pluripotent Stem Cells. Current Cardiology Reports, 2022, 24, 631-644.	1.3	2
182	Identification of critical genes and molecular pathways in COVID-19 myocarditis and constructing gene regulatory networks by bioinformatic analysis. PLoS ONE, 2022, 17, e0269386.	1.1	6
183	Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacological Research, 2022, 182, 106334.	3.1	2
184	Accelerating cardiovascular research: recent advances in translational <scp>2D</scp> and <scp>3D</scp> heart models. European Journal of Heart Failure, 2022, 24, 1778-1791.	2.9	11
185	Thrombosis-related circulating miR-16-5p is associated with disease severity in patients hospitalised for COVID-19. RNA Biology, 2022, 19, 963-979.	1.5	11
186	Peroxisomal very long-chain fatty acid transport is targeted by herpesviruses and the antiviral host response. Communications Biology, 2022, 5, .	2.0	6
188	Macrophage, a potential targeted therapeutic immune cell for cardiomyopathy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
189	Modeling Cardiac SARS-CoV-2 Infection with Human Pluripotent Stem Cells. Current Cardiology Reports, 2022, 24, 2121-2129.	1.3	1
190	SARSâ€CoVâ€2 cellular tropism and direct multiorgan failure in COVIDâ€19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biology International, 2023, 47, 308-326.	1.4	7
191	Viral and Host Small RNA Response to SARS-CoV-2 Infection. Microbiology Research, 2022, 13, 788-808.	0.8	1

#	Article	IF	CITATIONS
192	Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life, 2022, 12, 1605.	1.1	12
193	Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nature Communications, 2022, 13, .	5.8	27
194	Hippo signaling pathway activation during SARS-CoV-2 infection contributes to host antiviral response. PLoS Biology, 2022, 20, e3001851.	2.6	12
195	Opportunities and Challenges of Human IPSC Technology in Kidney Disease Research. Biomedicines, 2022, 10, 3232.	1.4	0
196	Influenza A virus modulates ACE2 expression and SARS-CoV-2 infectivity in human cardiomyocytes. IScience, 2022, 25, 105701.	1.9	1
197	Cardiac magnetic resonance T2* mapping in patients with COVID-19 pneumonia is associated with serum ferritin level?. International Journal of Cardiovascular Imaging, 0, , .	0.7	0
198	The Role of Advanced Technologies against COVID-19: Prevention, Detection, and Treatments. Current Stem Cell Research and Therapy, 2023, 18, 800-828.	0.6	0
199	TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation. International Journal of Molecular Sciences, 2023, 24, 102.	1.8	3
200	Heart rate variability as an indicator of COVID-19 induced myocardial injury: a retrospective cohort study. BMC Anesthesiology, 2023, 23, .	0.7	1
201	Cardiovascular complications of respiratory viral infections. Sibirskij žurnal KliniÄeskoj I èksperimentalʹnoj Mediciny, 2023, 37, 31-37.	0.1	0
202	Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines, 2023, 11, 338.	1.4	3
203	SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers, 2023, 15, 632.	1.7	3
205	Ectopic expression of SARS-CoV-2 S and ORF-9B proteins alters metabolic profiles and impairs contractile function in cardiomyocytes. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
206	SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to increased arrhythmic risk in COVID-19. PLoS ONE, 2023, 18, e0282151.	1.1	6
207	How Does COVID-19 Affect the Heart?. Current Cardiology Reports, 2023, 25, 171-184.	1.3	7
208	Rhinoorbital mucormycosis in patients with the post-COVID syndrome. Clinical and morphological features. Rossiiskaya Rinologiya, 2023, 31, 66.	0.1	1
209	COVID-19 and Cardiovascular Diseases: From Cellular Mechanisms to Clinical Manifestations. , 2023, 14, 2071.		4
210	A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nature Cell Biology, 2023, 25, 381-389.	4.6	9

#	Article	IF	CITATIONS
229	Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. Journal of Cardiovascular Translational Research, 0, , .	1.1	1