Of Drugs and Trypanosomatids: New Tools and Knowle Discovery

Genes 11, 722

DOI: 10.3390/genes11070722

Citation Report

#	Article	IF	CITATIONS
1	Synthesis and Structure–Activity Relationship of Dehydrodieugenol B Neolignans against <i>Trypanosoma cruzi</i> . ACS Infectious Diseases, 2020, 6, 2872-2878.	1.8	8
2	In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Frontiers in Pharmacology, 2020, 11, 590544.	1.6	6
3	Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Molecular and Cellular Biochemistry, 2021, 476, 1037-1049.	1.4	2
4	Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1952-1967.	2.5	5
5	Antiprotozoal Compounds from Urolepis hecatantha (Asteraceae). Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-7.	0.5	7
6	Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases. Molecules, 2021, 26, 1388.	1.7	5
7	Bioluminescent Imaging Identifies Thymus, As Overlooked Colonized Organ, in a Chronic Model of <i>Leishmania donovani</i> Mouse Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 871-883.	1.8	8
8	Trypanothione Metabolism as Drug Target for Trypanosomatids. Current Pharmaceutical Design, 2021, 27, 1834-1846.	0.9	13
9	Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 2472-2482.	1.8	3
10	Unpicking the Roles of DNA Damage Protein Kinases in Trypanosomatids. Frontiers in Cell and Developmental Biology, 2021, 9, 636615.	1.8	2
11	Three different mutations in the DNA topoisomerase 1B in Leishmania infantum contribute to resistance to antitumor drug topotecan. Parasites and Vectors, 2021, 14, 438.	1.0	8
12	Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opinion on Drug Discovery, 2022, 17, 151-166.	2.5	7
13	Antileishmanial Drug Discovery and Development: Time to Reset the Model?. Microorganisms, 2021, 9, 2500.	1.6	32
14	Plant Terpenoids as Hit Compounds against Trypanosomiasis. Pharmaceuticals, 2022, 15, 340.	1.7	5
15	Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines, 2022, 10, 831.	1.4	7
16	Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens, 2021, 10, 1608.	1.2	7
18	Functional characterization of the first lipoylâ€relay pathway from a parasitic protozoan. Molecular Microbiology, 2022, , .	1.2	0
19	Analysis of domain organization and functional signatures of trypanosomatid kelF4Gs. Molecular and Cellular Biochemistry, 2022, , .	1.4	1

CITATION REPORT

#	Article	IF	CITATIONS
20	Editorial: Signaling in stress sensing and resistance in parasitic protozoa. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
21	Nitro compounds against trypanosomatidae parasites: Heroes or villains?. Bioorganic and Medicinal Chemistry Letters, 2022, 75, 128930.	1.0	7
22	Exploring direct and indirect targets of current antileishmanial drugs using a novel thermal proteomics profiling approach. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
23	Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs?. Expert Opinion on Drug Discovery, 2022, 17, 1147-1158.	2.5	2
24	Synthesis, molecular docking analysis and in-vitro evaluation of 1,4-dihydroxyanthraquinone derivatives as anti-trypanosomal agents. Letters in Organic Chemistry, 2022, 20, .	0.2	0
25	Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules, 2023, 13, 637.	1.8	4
26	Computational modeling of drugs for neglected diseases. , 2023, , 559-571.		0