Interfaces and Interphases in All-Solid-State Batteries v

Chemical Reviews 120, 6878-6933 DOI: 10.1021/acs.chemrev.0c00101

Citation Report

#	Article	IF	CITATIONS
1	Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Letters, 2020, 5, 3221-3223.	8.8	151
2	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	1.7	7
3	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20
4	A Perspective on interfacial engineering of lithium metal anodes and beyond. Applied Physics Letters, 2020, 117, .	1.5	18
5	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	15.6	96
6	Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials, 2020, 10, 1606.	1.9	179
7	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	10.2	64
8	Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Materials Research Bulletin, 2021, 135, 111134.	2.7	60
9	Atomistic analysis of Li migration in Li1+AlTi2â^'(PO4)3 (LATP) solid electrolytes. Solid State Ionics, 2021, 359, 115521.	1.3	23
10	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
11	Metal Halide Superionic Conductors for All-Solid-State Batteries. Accounts of Chemical Research, 2021, 54, 1023-1033.	7.6	105
12	New Costâ€Effective Halide Solid Electrolytes for Allâ€Solidâ€State Batteries: Mechanochemically Prepared Fe ³⁺ â€Substituted Li ₂ ZrCl ₆ . Advanced Energy Materials, 2021, 11, 2003190.	10.2	132
13	Application of <i>in</i> - <i>situ</i> characterization techniques in all-solid-state lithium batteries. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 198102.	0.2	15
14	Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy and Environmental Science, 2021, 14, 643-671.	15.6	200
15	New insights into Li distribution in the superionic argyrodite Li ₆ PS ₅ Cl. Chemical Communications, 2021, 57, 10787-10790.	2.2	11
16	Compatibility assessment of solid ceramic electrolytes and active materials based on thermal dilatation for the development of solid-state batteries. Materials Advances, 2021, 2, 2989-2999.	2.6	12
17	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	15.6	140
18	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	5.2	43

TATION PEDO

#	ARTICLE	IF	CITATIONS
19	Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Science China Chemistry, 2021, 64, 673-680.	4.2	16
20	Recent developments in materials design for all-solid-state Li–S batteries. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 283-308.	6.8	15
21	Interface Aspects in All‧olid‧tate Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2003939.	10.2	66
22	Progress and perspective of interface design in garnet electrolyteâ€based allâ€solidâ€state batteries. , 2021, 3, 385-409.		28
23	Critical Current Density in Solid‣tate Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	7.8	239
24	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science China Chemistry, 2021, 64, 879-898.	4.2	28
25	Operando Characterization Techniques for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100004.	2.8	38
26	The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solidâ€State Batteries: A Case Study with Li ₆ PS ₅ Cl Solid Electrolyte. Advanced Materials Interfaces, 2021, 8, 2100206.	1.9	42
27	Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries. Materials Today, 2021, 49, 145-183.	8.3	51
28	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	9.5	82
29	Single―or Polyâ€Crystalline Niâ€Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for Allâ€Solidâ€State Batteries?. Advanced Energy Materials, 2021, 11, 2100126.	10.2	148
30	Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning. ACS Energy Letters, 0, , 1639-1648.	8.8	53
31	New Hybrid Organic-Inorganic Thin Films by Molecular Layer Deposition for Rechargeable Batteries. Frontiers in Energy Research, 2021, 9, .	1.2	4
32	Phonons and lithium diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiAlO</mml:mi><mml:mn>2Physical Review B, 2021, 103, .</mml:mn></mml:msub></mml:math 	l:m∎na⊳ <td>ml:msub></td>	ml:msub>
33	Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22708-22716.	4.0	38
34	Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 11301-11309.	1.5	22
35	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
36	Challenges, fabrications and horizons of oxide solid electrolytes for solidâ€state lithium batteries. Nano Select, 2021, 2, 2256-2274.	1.9	26

#	Article	IF	CITATIONS
37	Powder Aerosol Deposition as a Method to Produce Garnet‶ype Solid Ceramic Electrolytes: A Study on Electrochemical Film Properties and Industrial Applications. Energy Technology, 2021, 9, 2100211.	1.8	14
38	Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022, 60, 14-36.	2.0	57
39	Bidirectionally Compatible Buffering Layer Enables Highly Stable and Conductive Interface for 4.5ÂV Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2021, 11, 2100881.	10.2	50
40	Effects of Substituting S with Cl on the Structural and Electrochemical Characteristics of Na ₃ SbS ₄ Solid Electrolytes. ACS Applied Energy Materials, 2021, 4, 6125-6134.	2.5	28
41	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	10.2	129
42	Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30703-30711.	4.0	51
43	High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 7338-7345.	2.5	48
44	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
45	Solidâ€State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021, 11, .	10.2	49
46	Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries. Tungsten, 2021, 3, 260-278.	2.0	17
47	Double-network composite solid electrolyte with stable interface for dendrite-free Li metal anode. Energy Storage Materials, 2021, 38, 447-453.	9.5	34
48	Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning. Frontiers in Energy Research, 2021, 9, .	1.2	25
49	In situ characterizations of solid–solid interfaces in solidâ€state batteries using synchrotron Xâ€ray techniques. , 2021, 3, 762-783.		27
50	A Critical Review for an Accurate Electrochemical Stability Window Measurement of Solid Polymer and Composite Electrolytes. Materials, 2021, 14, 3840.	1.3	39
51	Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials, 2021, 33, 6029-6040.	3.2	28
52	Developments in controlled environmental transfer for Li-based battery materials: From sample preparation to SEM investigation. Microscopy and Microanalysis, 2021, 27, 1844-1845.	0.2	0
53	High Sodium-Ion Conductivity in Interlocked Quaternary Chalcogenides Built with Supertetrahedral Building Units. ACS Applied Energy Materials, 2021, 4, 7942-7951.	2.5	8
54	Current Status and Prospects of Solid-State Batteries as the Future of Energy Storage. , 0, , .		1

#	Article	IF	CITATIONS
55	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	8.8	31
56	Comparison of LiTaO ₃ and LiNbO ₃ Surface Layers Prepared by Post- and Precursor-Based Coating Methods for Ni-Rich Cathodes of All-Solid-State Batteries. ACS Applied Materials & Materials & Surfaces, 2021, 13, 38333-38345.	4.0	51
57	Nanofiber Composite for Improved Water Retention and Dendrites Suppression in Flexible Zincâ€Air Batteries. Small, 2021, 17, e2103048.	5.2	18
58	Breaking the periodic arrangement of atoms for the enhanced electrochemical reduction of nitrogen and water oxidation. Science China Materials, 2022, 65, 147-154.	3.5	6
59	Singleâ€Ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	10.2	26
60	In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39, 186-193.	9.5	98
61	The new sandwich cart on solid-state battery street. Matter, 2021, 4, 2620-2622.	5.0	1
62	A novel coral-like garnet for high-performance PEO-based all solid-state batteries. Science China Materials, 2022, 65, 364-372.	3.5	20
63	Cycling Performance and Limitations of LiNiO ₂ in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3020-3028.	8.8	39
64	Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Metals, 2022, 41, 106-114.	3.6	38
65	Enabling Argyrodite Sulfides as Superb Solid‣tate Electrolyte with Remarkable Interfacial Stability Against Electrodes. Energy and Environmental Materials, 2022, 5, 852-864.	7.3	43
66	Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nature Communications, 2021, 12, 5561.	5.8	32
67	Ionâ€Conducting Channel Implanted Anode Matrix for Allâ€Solidâ€State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface. Advanced Energy Materials, 2021, 11, 2102045.	10.2	19
68	Synthetic optimization and application of Li-argyrodite Li6PS5I in solid-state battery at different temperatures. Rare Metals, 2022, 41, 798-805.	3.6	18
69	High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries. Electrochimica Acta, 2021, 391, 138917.	2.6	12
70	Functional Cathode Coatings of LiH2PO4 and LiTi2(PO4)3 for Solid-state Batteries. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-9.	1.1	0
71	Characterizations of dynamic interfaces in all-solid lithium batteries. Journal of Power Sources, 2021, 506, 229871.	4.0	7
72	Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Science Bulletin, 2021, 66, 1746-1753.	4.3	27

#	Article	IF	CITATIONS
73	Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373, 1494-1499.	6.0	393
74	Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte Interface in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3669-3675.	8.8	40
75	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie, 2021, 133, 26362-26370.	1.6	2
76	Poly(2-aminoazulene) Filler–Improved PEO-Based Electrolyte for Highly Stable Solid-State Li-Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 090545.	1.3	3
77	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie - International Edition, 2021, 60, 26158-26166.	7.2	18
78	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	7.1	64
79	Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries. ACS Energy Letters, 2021, 6, 3734-3749.	8.8	76
80	Effect of mold pressure on compaction and ion conductivity of all-solid-state batteries revealed by the discrete element method. Journal of Power Sources, 2021, 508, 230344.	4.0	19
81	Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Materials, 2021, 41, 571-580.	9.5	31
82	New synthesis route for glasses and glass-ceramics in the Ga2S3Na2S binary system. Materials Research Bulletin, 2021, 142, 111423.	2.7	8
83	Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries. Nano Energy, 2021, 88, 106293.	8.2	60
84	Li2ZrO3 based Li-ion conductors doped with halide ions & sintered in oxygen-deficient atmosphere. Ceramics International, 2021, 47, 31907-31914.	2.3	12
85	Harnessing artificial intelligence to holistic design and identification for solid electrolytes. Nano Energy, 2021, 89, 106337.	8.2	16
86	A Machine Learning Shortcut for Screening the Spinel Structures of Mg/Zn Ion Battery Cathodes with a High Conductivity and Rapid Ion Kinetics. Energy Storage Materials, 2021, 42, 277-285.	9.5	18
87	A consistent framework for chemo-mechanical cohesive fracture and its application in solid-state batteries. Journal of the Mechanics and Physics of Solids, 2021, 157, 104612.	2.3	29
88	In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment. Journal of Energy Chemistry, 2022, 66, 295-305.	7.1	21
89	Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries. Journal of Energy Chemistry, 2022, 66, 226-236.	7.1	19
90	Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery. Chemical Engineering Journal, 2022, 427, 131948.	6.6	29

#	Article	IF	CITATIONS
91	Interface reactivity of in-situ formed LiCoO2 - PEO solid-state interfaces investigated by X-ray photoelectron spectroscopy: Reaction products, energy level offsets and double layer formation. Applied Surface Science, 2022, 571, 151218.	3.1	6
92	Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 4892-4911.	3.2	31
93	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
94	A kinetically stable anode interface for Li ₃ YCl ₆ -based all-solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 15012-15018.	5.2	39
95	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	15.6	42
96	High-Voltage "Single-Crystal―Cathode Materials for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 1918-1932.	2.5	93
97	Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 16787-16797.	5.2	22
98	Review—Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160514.	1.3	45
99	Advance in interface and characterizations of sulfide solid electrolyte materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228803.	0.2	24
100	Electro-chemo-mechanical charge carrier equilibrium at interfaces. Physical Chemistry Chemical Physics, 2021, 23, 23730-23740.	1.3	2
101	A novel polymer electrolyte with high elasticity and high performance for lithium metal batteries. Chemical Communications, 2021, 57, 11493-11496.	2.2	3
102	A critical discussion on the analysis of buried interfaces in Li solid-state batteries. <i>Ex situ</i> and <i>in situ</i> / <i>operando</i> studies. Journal of Materials Chemistry A, 2021, 9, 25341-25368.	5.2	14
103	Configuring solid-state batteries to power electric vehicles: a deliberation on technology, chemistry and energy. Chemical Communications, 2021, 57, 12587-12594.	2.2	18
104	Structural and Chemical Compatibilities of Li _{1â[^]} <i>_x</i> Ni _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material with Garnetâ€Type Solid Electrolyte for Allâ€Solidâ€State Batteries. Small, 2021, 17, e2103306.	5.2	9
105	Perspectives for next generation lithium-ion battery cathode materials. APL Materials, 2021, 9, .	2.2	44
106	Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte. Applied Surface Science, 2022, 575, 151638.	3.1	15
107	Stable Cycling of Allâ€Solidâ€State Batteries with Sacrificial Cathode and Lithiumâ€Free Indium Layer. Advanced Functional Materials, 2022, 32, 2108203.	7.8	21
108	Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1584-1602.	2.4	13

#	Article	IF	CITATIONS
109	Zeolitic imidazolate framework enables practical room-temperature operation of solid-state lithium batteries. Materials Today Physics, 2021, 21, 100554.	2.9	6
110	LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries. Ionics, 2022, 28, 73-83.	1.2	8
111	On the Origin of Zero Interface Resistance in the Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ Li ⁰ System: An Atomistic Investigation. ACS Applied Materials & Interfaces, 2021, 13, 52629-52635.	4.0	4
112	Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5†V all-solid-state lithium batteries with superior performance. Energy Storage Materials, 2022, 45, 1062-1073.	9.5	21
113	Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5, 2845-2903.	11.7	201
114	Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives. IScience, 2021, 24, 103402.	1.9	16
115	Thermally Chargeable Proton Capacitor Based on Redoxâ€Active Effect for Energy Storage and Lowâ€Grade Heat Conversion. Energy and Environmental Materials, 2023, 6, .	7.3	4
116	All-solid-state hybrid electrode configuration for high-performance all-solid-state batteries: Comparative study with composite electrode and diffusion-dependent electrode. Journal of Power Sources, 2022, 518, 230736.	4.0	17
117	The ionic interphases of the lithium anode in solid state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100973.	5.6	7
118	Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6-xPS5-xCl1.0Brx) for all-solid-state lithium batteries. Journal of Power Sources, 2022, 520, 230849.	4.0	25
119	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	7.1	47
120	Impact of Li3BO3 Addition on Solid Electrode-Solid Electrolyte Interface in All-Solid-State Batteries. Materials, 2021, 14, 7099.	1.3	8
121	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, .	1.6	6
122	A Dryâ€Processed Al ₂ O ₃ /LiAlO ₂ Coating for Stabilizing the Cathode/Electrolyte Interface in Highâ€Ni NCMâ€Based Allâ€6olidâ€6tate Batteries. Advanced Materials Interfaces, 2022, 9, 2101428.	1.9	24
123	In Search of the Best Solid Electrolyte-Layered Oxide Pairing for Assembling Practical All-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 13575-13585.	2.5	26
124	Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Materials Today Energy, 2022, 23, 100893.	2.5	24
125	Implications of the BATTERY 2030+ Alâ€Assisted Toolkit on Future Lowâ€TRL Battery Discoveries and Chemistries. Advanced Energy Materials, 2022, 12, 2102698.	10.2	20
126	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42

#	Article	IF	CITATIONS
127	In Situ Formed Ag‣i Intermetallic Layer for Stable Cycling of Allâ€Solidâ€State Lithium Batteries. Advanced Science, 2022, 9, e2103826.	5.6	27
128	Where are those promising solid-state batteries?. Europhysics News, 2021, 52, 28-31.	0.1	0
129	Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries. Energy Storage Materials, 2022, 46, 155-164.	9.5	9
130	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 2022, 7, 83-93.	19.8	249
131	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100977.	5.6	32
132	Iodine-rich lithium argyrodite with enhanced ionic conductivity for solid-state batteries. Scripta Materialia, 2022, 210, 114475.	2.6	11
133	In situ and operando characterisation of Li metal – Solid electrolyte interfaces. Current Opinion in Solid State and Materials Science, 2022, 26, 100978.	5.6	18
134	Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134468.	6.6	18
135	Understanding the Solid-State Electrode–Electrolyte Interface of a Model System Using First-Principles Statistical Mechanics and Thin-Film X-ray Characterization. ACS Applied Materials & Interfaces, 2022, 14, 7428-7439.	4.0	1
136	Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Metals, 2022, 41, 1870-1879.	3.6	48
137	All-solid-state batteries. , 2022, , 343-361.		1
138	Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters, 2022, 7, 650-658.	8.8	32
139	Optimizing the Na metal/solid electrolyte interface through a grain boundary design. Journal of Materials Chemistry A, 2022, 10, 5280-5286.	5.2	18
140	Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale. Materials Futures, 2022, 1, 012101.	3.1	34
141	A Direct View on Li-Ion Transport and Li-Metal Plating in Inorganic and Hybrid Solid-State Electrolytes. Accounts of Chemical Research, 2022, 55, 333-344.	7.6	25
142	Double-Protected Layers with Solid–Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4170-4178.	4.0	14
143	SolidPAC is an interactive battery-on-demand energy density estimator for solid-state batteries. Cell Reports Physical Science, 2022, 3, 100756.	2.8	18
144	Modeling of solid-state lithium-oxygen battery with porous Li1.3Al0.3Ti1.7(PO4)3-based cathode. Journal of Energy Storage, 2022, 45, 103747.	3.9	12

			0
#	ARTICLE Lithium-ion spontaneous exchange and synergistic transport in ceramic-liquid hybrid electrolytes for	IF	CITATIONS
145	highly efficient lithium-ion transfer. Science Bulletin, 2022, 67, 946-954.	4.3	7
146	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
147	Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy and Environmental Science, 2022, 15, 991-1033.	15.6	100
148	Towards autonomous high-throughput multiscale modelling of battery interfaces. Energy and Environmental Science, 2022, 15, 579-594.	15.6	17
149	Interfacial challenges in all-solid-state lithium batteries. Current Opinion in Electrochemistry, 2022, 33, 100933.	2.5	14
150	Anion Substitution at Apical Sites of Ruddlesden–Popper-type Cathodes toward High Power Density for All-Solid-State Fluoride-Ion Batteries. Chemistry of Materials, 2022, 34, 609-616.	3.2	13
151	Challenges, Strategies, and Prospects of the Anodeâ€Free Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
152	Thermally-driven reactivity of Li _{0.35} La _{0.55} TiO ₃ solid electrolyte with LiCoO ₂ cathode. Journal of Materials Chemistry A, 2022, 10, 3485-3494.	5.2	6
153	Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries. Journal of the Electrochemical Society, 2022, 169, 020539.	1.3	21
154	Enhanced critical current density of Garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr. Electrochimica Acta, 2022, 409, 139986.	2.6	8
155	Computational screening of spinel structure cathodes for Li-ion battery with low expansion and rapid ion kinetics. Computational Materials Science, 2022, 204, 111187.	1.4	5
156	Small polaron transport in cathode materials of rechargeable ion batteries. Journal of Science: Advanced Materials and Devices, 2022, 7, 100410.	1.5	3
157	Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Materials, 2022, 46, 374-383.	9.5	45
158	Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials, 2022, 46, 482-502.	9.5	206
159	Fastâ€Charging Solidâ€State Lithium Metal Batteries: A Review. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	9
160	Interfaces and Interphases in Batteries: How to Identify and Monitor Them Properly Using Surface Sensitive Characterization Techniques. Advanced Materials Interfaces, 2022, 9, .	1.9	9
161	New Insights into the Effects of Zr Substitution and Carbon Additive on Li _{3–<i>x</i>} Er _{1–<i>x</i>} Zr _{<i>x</i>} Cl ₆ Halide Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 8095-8105.	4.0	36
162	Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 23033-23055.	4.0	12

#	Article	IF	CITATIONS
163	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	1.3	10
164	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
165	Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. Energy Storage Materials, 2022, 47, 70-78.	9.5	2
166	Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multiâ€Modal and Multiâ€Scale Standardized Experimental Workflow. Advanced Energy Materials, 2022, 12, .	10.2	17
167	An Ultralow-Charge-Overpotential and Long-Cycle-Life Solid-State Li-Co2 Battery Enabled by Plasmon-Enhanced Solar Photothermal Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
168	CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Metals, 2022, 41, 1477-1489.	3.6	42
169	Study of LiCoO ₂ /Li ₇ La ₃ Zr ₂ O ₁₂ :Ta Interface Degradation in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11288-11299.	4.0	36
170	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solidâ€&tate Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
171	In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid‣tate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104277.	5.6	78
172	Avoiding CO ₂ Improves Thermal Stability at the Interface of Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte with Layered Oxide Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	17
173	Review on Modeling for Chemo-mechanical Behavior at Interfaces of All-Solid-State Lithium-Ion Batteries and Beyond. ACS Omega, 2022, 7, 6455-6462.	1.6	12
174	High-temperature vibrational spectroscopy of molten electrolytes. Applied Spectroscopy Reviews, 2023, 58, 489-508.	3.4	4
175	Operating Highâ€Energy Lithiumâ€Metal Pouch Cells with Reduced Stack Pressure Through a Rational Lithiumâ€Host Design. Advanced Energy Materials, 2022, 12, .	10.2	10
176	A Highly Durable Rubberâ€Derived Lithiumâ€Conducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022, 9, e2200553.	5.6	22
177			
	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.	23.0	132
178		23.0 0.0	132 0
178 179	Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.		

#	Article	IF	CITATIONS
181	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes. Nano Letters, 2022, 22, 2461-2469.	4.5	32
182	In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToFâ€&IMS. Advanced Materials Interfaces, 2022, 9, .	1.9	39
183	Simulation of All-Solid-State Lithium-Ion Batteries With Fastening Stress and Volume Expansion. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2
184	A Quasiâ€Multinary Composite Coating on a Nickelâ€Rich NCM Cathode Material for Allâ€Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	2.4	9
185	Unraveling the Conversion Evolution on Solid‣tate Na–SeS ₂ Battery via In Situ TEM. Advanced Science, 2022, 9, e2200744.	5.6	25
186	Comprehensive review on <scp>zincâ€ion</scp> battery anode: Challenges and strategies. InformaÄnÃ- Materiály, 2022, 4, .	8.5	121
187	Dry electrode technology, the rising star in solid-state battery industrialization. Matter, 2022, 5, 876-898.	5.0	108
188	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6, 543-587.	11.7	90
189	Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Applied Materials & Interfaces, 2022, 14, 13158-13168.	4.0	12
190	Influence of Porosity of Sulfide-Based Artificial Solid Electrolyte Interphases on Their Performance with Liquid and Solid Electrolytes in Li and Na Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16147-16156.	4.0	11
191	Lithium Nafion–Modified Li _{6.05} Ga _{0.25} La ₃ Zr ₂ O _{11.8} F _{0.2} Trilayer Hybrid Solid Electrolyte for High-Voltage Cathodes in All-Solid-State Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 15259-15274.	4.0	11
192	Metal Halide Double Perovskite Fast Lithium Ion Conductors with a Unique Octahedral B-Site Vacancy Migration Mechanism. ACS Applied Energy Materials, 2022, 5, 4926-4933.	2.5	1
193	Coupling between Voltage Profiles and Mechanical Deformations in LAGP Solid Electrolyte During Li Plating and Stripping. ACS Applied Energy Materials, 2022, 5, 2655-2662.	2.5	5
194	Solid-state lithium battery cathodes operating at low pressures. Joule, 2022, 6, 636-646.	11.7	42
195	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	14.4	79
196	Transport and mechanical aspects of all-solid-state lithium batteries. Materials Today Physics, 2022, 24, 100679.	2.9	16
197	Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. Journal of Colloid and Interface Science, 2022, 620, 199-208.	5.0	20
198	Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nature Communications, 2022, 13, 1909.	5.8	82

#	Article	IF	CITATIONS
199	Systematic study and effective improvement of voltammetry for accurate electrochemical window measurement of solid electrolytes. Electrochimica Acta, 2022, 414, 140210.	2.6	1
200	Simulation of the compaction of an all-solid-state battery cathode with coated particles using the discrete element method. Journal of Power Sources, 2022, 530, 231279.	4.0	6
201	Uniform lithiophilic layers in 3D current collectors enable ultrastable solid electrolyte interphase for high-performance lithium metal batteries. Nano Energy, 2022, 96, 107121.	8.2	54
202	Predicting low-impedance interfaces for solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100990.	5.6	9
203	Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 49, 19-57.	9.5	15
204	Hollow spherical organic polymer artificial layer enabled stable Li metal anode. Chemical Engineering Journal, 2022, 442, 136155.	6.6	9
205	Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high columbic efficiency and stable Zn metal anode. Chemical Engineering Journal, 2022, 442, 136081.	6.6	29
206	Designing safer lithium-based batteries with nonflammable electrolytes: A review. EScience, 2021, 1, 163-177.	25.0	147
207	Multiscale computations and artificial intelligent models of electrochemical performance in Liâ€ion battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	6
208	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
209	Fiberâ€Reinforced Composite Polymer Electrolytes for Solidâ€State Lithium Batteries. Advanced Sustainable Systems, 2022, 6, .	2.7	16
210	Graphite–Silicon Diffusionâ€Dependent Electrode with Short Effective Diffusion Length for Highâ€Performance Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .	10.2	34
211	A review of the rational interfacial designs and characterizations for solidâ€state lithium/sulfur cells. Electrochemical Science Advances, 2022, 2, .	1.2	1
212	Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries. Chemical Communications, 2022, , .	2.2	8
213	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie, 2022, 134, .	1.6	6
214	Design Unique Airâ€Stable and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for Allâ€Solidâ€State Lithium–Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	33
215	Silyl-Functionalized Electrolyte Additives and Their Reactivity toward Lewis Bases in Li-Ion Cells. Chemistry of Materials, 2022, 34, 3831-3838.	3.2	6
216	Efficient Prediction of Grain Boundary Energies from Atomistic Simulations via Sequential Design. Advanced Theory and Simulations, 2022, 5, .	1.3	1

#	Article	IF	CITATIONS
217	Atomically Intimate Solid Electrolyte/Electrode Contact Capable of Surviving Long-Term Cycling with Repeated Phase Transitions. Nano Letters, 2022, 22, 3457-3464.	4.5	5
218	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	10.2	72
219	Ionic Conductivity versus Particle Size of Ballâ€Milled Sulfideâ€Based Solid Electrolytes: Strategy Towards Optimized Composite Cathode Performance in Allâ€Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	2.4	15
220	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
221	Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries. Energy Storage Materials, 2022, 49, 481-492.	9.5	10
222	Scalable fabrication of sheet-type electrodes for practical all-solid-state batteries employing sulfide solid electrolytes. Current Opinion in Electrochemistry, 2022, 34, 101026.	2.5	7
223	Biphasic solid electrolytes with homogeneous Li-ion transport pathway enabled by metal–organic frameworks. Electrochimica Acta, 2022, 418, 140374.	2.6	10
224	Resolving anodic and cathodic interface-incompatibility in solid-state lithium metal battery via interface infiltration of designed liquid electrolytes. Journal of Power Sources, 2022, 535, 231425.	4.0	9
225	Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. Energy Storage Materials, 2022, 49, 219-226.	9.5	31
226	Nano-Structured Li1.3al0.3ti1.7(Po4)3 Coated Licoo2 Enabling Compatible Interface with Ultrathin Garnet-Based Solid Electrolyte for Stable Li Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
227	Thermal Behavior of Li Electrode in All-Solid-State Batteries and Improved Performance by Temperature Modulation. SSRN Electronic Journal, 0, , .	0.4	0
228	Active Interphase Enables Stable Performance for an Allâ€Phosphateâ€Based Composite Cathode in an Allâ€Solidâ€State Battery. Small, 2022, 18, e2200266.	5.2	7
229	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	32
230	Improving the stability of NASICON-type electrolyte with Li metal anode by interfacial modification. Journal of Power Sources, 2022, 536, 231491.	4.0	14
231	Chemomechanics: Friend or foe of the "AND problem―of solid-state batteries?. Current Opinion in Solid State and Materials Science, 2022, 26, 101002.	5.6	5
232	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	7.8	21
233	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
234	Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. Journal of Chemical Physics, 2022, 156, .	1.2	8

#	Article	IF	CITATIONS
235	Enabling high-performance all-solid-state hybrid-ion batteries with a PEO-based electrolyte. Chemical Communications, 2022, 58, 6813-6816.	2.2	14
236	Review on the lithium transport mechanism in solidâ€ s tate battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	11
237	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
238	3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Metals, 2022, 41, 2834-2843.	3.6	20
239	A high power density solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries. Electrochimica Acta, 2022, 424, 140624.	2.6	9
240	Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Materials, 2022, 50, 543-553.	9.5	16
241	Introducing Low-Tortuosity Channels in Thick Electrode for High-Areal-Capacity Solid Polymer Battery. SSRN Electronic Journal, 0, , .	0.4	0
242	Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries. Energy Advances, 2022, 1, 457-510.	1.4	36
243	Reactivity at the Electrode–Electrolyte Interfaces in Li-Ion and Gel Electrolyte Lithium Batteries for LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ with Different Particle Sizes. ACS Applied Materials & Interfaces, 0, , .	4.0	6
244	Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1
245	Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?. ACS Applied Materials & Interfaces, 2022, 14, 29754-29765.	4.0	14
246	Composite Solid Electrolyte for High Voltage Solidâ€State Liâ€Metal Battery. ChemElectroChem, 2022, 9, .	1.7	6
247	Toward High Rate Performance Solidâ \in State Batteries. Advanced Energy Materials, 2022, 12, .	10.2	24
248	Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nature Energy, 2022, 7, 548-559.	19.8	60
249	All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. ACS Energy Letters, 2022, 7, 2244-2246.	8.8	20
250	Less Is More: High-Performance All-Solid-State Electrode Enabled by Multifunctional MXene. ACS Applied Energy Materials, 2022, 5, 7210-7219.	2.5	4
251	Tailoring the LiNbO ₃ coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. , 2022, 1, e9120016.		63
252	Nano-structured Li1.3Al0.3Ti1.7(PO4)3 coated LiCoO2 enabling compatible interface with ultrathin garnet-based solid electrolyte for stable Li metal battery. Materials Today Nano, 2022, 19, 100235.	2.3	3

		CITATION REPORT		
#	Article		IF	CITATIONS
253	Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries. ACS Symposium Series,	0, , 353-393.	0.5	4
254	Tailoring the surface energy and area surface resistance of solid-electrolyte polymer memb dendrite free, high-performance, and safe solid-state Li-batteries. Journal of Power Sources 231690.	rane for , 2022, 541,	4.0	1
255	An ultralow-charge-overpotential and long-cycle-life solid-state Li-CO2 battery enabled by plasmon-enhanced solar photothermal catalysis. Nano Energy, 2022, 100, 107521.		8.2	14
256	LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Engineering Journal, 2022, 448, 137743.	Chemical	6.6	12
257	Regulating Na/Nascion Electrolyte Interface Chemistry for Stable Solid-State Na Metal Bat Room Temperature. SSRN Electronic Journal, 0, , .	teries at	0.4	0
258	The Preliminary Exploration of Composition Origin of Garnet Type Solid Inorganic Electroly Cluster-Plus-Glue-Atom Model. SSRN Electronic Journal, 0, , .	tes by	0.4	0
259	Thioâ€∤LISICON and LGPSâ€Type Solid Electrolytes for Allâ€Solidâ€State Lithiumâ€lon Bat Functional Materials, 2022, 32, .	teries. Advanced	7.8	35
260	Spontaneous Lithiation of Binary Oxides during Epitaxial Growth on LiCoO ₂ . Letters, 2022, 22, 5530-5537.	Nano	4.5	4
261	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical 122, 13043-13107.	Reviews, 2022,	23.0	59
262	Graphene in Solid-State Batteries: An Overview. Nanomaterials, 2022, 12, 2310.		1.9	2
263	Enabling a Co-Free, High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ All-Solid-State Batteries with a Halide Electrolyte. ACS Energy Letters, 2022, 7, 2531-2539		8.8	33
264	Li <bold>3</bold> PO <bold>4Li[Ni<bold>0.75</bold>Co<bold>0.1&l Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte. Journal of Electrochemic Science and Technology, 2022, 13, 407-415.</bold></bold>	t;/bold>Mn&ar	np;lt;bold8	>0.1
265	Immense Reduction in Interfacial Resistance between Sulfide Electrolyte and Positive Elect Applied Materials & amp; Interfaces, 2022, 14, 34620-34626.	rode. ACS	4.0	7
266	Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state by Energy Storage Materials, 2022, 52, 1-9.	attery.	9.5	12
267	Seamless Stitching of Redox Windows to Enable Highâ€Voltage Resilient Solid Sodium Ior Energy and Environmental Materials, 2023, 6, .	1 Batteries.	7.3	2
268	Artificial Intelligence-Aided Mapping of the Structure–Composition–Conductivity Rela Glass–Ceramic Lithium Thiophosphate Electrolytes. Chemistry of Materials, 2022, 34, 63	tionships of 702-6712.	3.2	12
269	Designing Cathodes and Cathode Active Materials for Solidâ $\in\!$	hergy Materials,	10.2	72
270	A High-Filled Li ₇ La ₃ Zr ₂ O ₁₂ /Polyprop Composite Solid Electrolyte with Improved Lithium-Ion Transport and Safety Performances High-Voltage Li Batteries. ACS Applied Energy Materials, 2022, 5, 10786-10793.		2.5	7

#	Article	IF	CITATIONS
271	Roomâ€Temperature Anode‣ess Allâ€Solidâ€State Batteries via the Conversion Reaction of Metal Fluorides. Advanced Materials, 2022, 34, .	11.1	24
272	A Highâ€Energy Long ycling Solidâ€State Lithiumâ€Metal Battery Operating at High Temperatures. Advanced Energy Materials, 2022, 12, .	10.2	12
273	Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries. ACS Energy Letters, 2022, 7, 2979-2987.	8.8	26
274	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	11.1	15
275	Dual Protection of a Li–Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li ₆ PS ₅ Cl Solid Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 37738-37746.	4.0	17
276	Nanostructure of the Interphase Layer between a Single Li Dendrite and Sulfide Electrolyte in All-Solid-State Li Batteries. ACS Energy Letters, 2022, 7, 3064-3071.	8.8	21
277	Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41, 3762-3773.	3.6	23
278	Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries. Materials Futures, 2022, 1, 031001.	3.1	8
279	Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective. Joule, 2022, 6, 1755-1769.	11.7	53
280	Opportunities for halide solid electrolytes in solid-state batteries. Matter, 2022, 5, 2533-2535.	5.0	3
281	Atomic-Scale Observations of Oxygen Release Degradation in Sulfide-Based All-Solid-State Batteries with Layered Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 39459-39466.	4.0	18
282	Mechanism of silicon fragmentation in all-solid-state battery evaluated by discrete element method. Journal of Power Sources, 2022, 546, 231956.	4.0	3
283	In situ characterization of the electrolyte electrode interface evolution in solid-state lithium batteries. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100658.	3.2	3
284	Effect of cobalt addition to NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) on its sintering behavior and electrical properties. Journal of Power Sources, 2022, 546, 231954.	4.0	4
285	Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Materials, 2022, 52, 130-160.	9.5	26
286	Enhancement of lithium argyrodite interface stability through MoO2 substitution and its application in lithium solid state batteries. Journal of Alloys and Compounds, 2022, 925, 166596.	2.8	9
287	Introducing low-tortuosity channels in thick electrode for high-areal-capacity solid polymer battery. Chemical Engineering Journal, 2023, 451, 138651.	6.6	4
288	Differences in the Interfacial Mechanical Properties of Thiophosphate and Argyrodite Solid Electrolytes and Their Composites. ACS Applied Materials & Interfaces, 2022, 14, 44292-44302.	4.0	2

#	Article	IF	Citations
289	In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. ETransportation, 2022, 14, 100203.	6.8	38
290	Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries. Applied Energy, 2022, 326, 119991.	5.1	11
291	Thermal behavior of Li electrode in all-solid-state batteries and improved performance by temperature modulation. International Journal of Heat and Mass Transfer, 2022, 199, 123450.	2.5	3
292	Three-dimensional SnCu scaffold with layered porous structure enable dendrite-free anode of lithium metal batteries. Journal of Alloys and Compounds, 2022, 928, 166976.	2.8	2
293	Control of side reactions using LiNbO3 mixed/doped solid electrolyte for enhanced sulfide-based all-solid-state batteries. Chemical Engineering Journal, 2023, 452, 138955.	6.6	12
294	Solid electrolytes for solid-state Li/Na–metal batteries: inorganic, composite and polymeric materials. Chemical Communications, 2022, 58, 12035-12045.	2.2	10
295	Differentiating chemical and electrochemical degradation of lithium germanium thiophosphate and the role of atomic layer deposited protection layers. Materials Advances, 2022, 3, 8332-8340.	2.6	3
296	Recent advances in dendrite-free lithium metal anodes for high-performance batteries. Physical Chemistry Chemical Physics, 2022, 24, 19996-20011.	1.3	34
297	The crucial role of oxygen substitution in argyrodite solid electrolytes from the bulk to the surface under atmospheric conditions. Journal of Materials Chemistry A, 2022, 10, 16908-16919.	5.2	5
298	Failure analysis of the Ge-substituted Li ₆ PS ₅ I with bare LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ and performance improvement <i>via</i> Li ₂ ZrO ₃ coating. Journal of Materials Chemistry A, 2022, 10, 22155-22165.	5.2	5
299	Ab initio Interfacial Chemical Stability of Argyrodite Sulfide Electrolytes and Layered-Structure Cathodes in Solid-State Lithium Batteries. Jom, 2022, 74, 4664-4671.	0.9	3
300	Advances in electrolyte safety and stability of ion batteries under extreme conditions. Nano Research, 2023, 16, 2311-2324.	5.8	10
301	Dipole–Dipole Interaction Induced Electrolyte Interfacial Model To Stabilize Antimony Anode for High-Safety Lithium-Ion Batteries. ACS Energy Letters, 2022, 7, 3545-3556.	8.8	54
302	Material Search for a Li ₁₀ GeP ₂ S ₁₂ -Type Solid Electrolyte in the Li–P–S–X (X = Br, I) System via Clarification of the Composition–Structure–Property Relationships. Chemistry of Materials, 2022, 34, 8237-8247.	3.2	7
303	Buffering Volume Change in Solid-State Battery Composite Cathodes with CO ₂ -Derived Block Polycarbonate Ethers. Journal of the American Chemical Society, 2022, 144, 17477-17486.	6.6	32
304	Role of Interfaces in Solidâ€&tate Batteries. Advanced Materials, 2023, 35, .	11.1	29
305	Long ycling All‣olid‣tate Batteries Achieved by 2D Interface between Prelithiated Aluminum Foil Anode and Sulfide Electrolyte. Small, 2022, 18, .	5.2	14
306	All-solid-state Li battery with atomically intimate electrode–electrolyte contact. Applied Physics Letters, 2022, 121, 143904.	1.5	2

#	Article	IF	CITATIONS
307	Modifying Ionogel Solid-Electrolytes for Complex Electrochemical Systems. ACS Applied Energy Materials, 2022, 5, 12467-12474.	2.5	1
308	The Impact of Residual Solvent on Catholyte Performance in Solid-State Batteries. Journal of Materials Chemistry A, 0, , .	5.2	1
309	An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. CheM, 2023, 9, 394-410.	5.8	29
310	Reclaiming Neglected Compounds as Promising Solid State Electrolytes by Predicting Electrochemical Stability Window with Dynamically Determined Decomposition Pathway. Advanced Energy Materials, 2022, 12, .	10.2	5
311	NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries. Tungsten, 2022, 4, 316-322.	2.0	15
312	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
313	Evaluating Electrolyte–Anode Interface Stability in Sodium All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47706-47715.	4.0	20
314	Single- to Few-Layer Nanoparticle Cathode Coating for Thiophosphate-Based All-Solid-State Batteries. ACS Nano, 2022, 16, 18682-18694.	7.3	9
315	Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors. Chemistry of Materials, 2022, 34, 9634-9643.	3.2	8
316	Tailored Li ₇ P ₃ S ₁₁ Electrolyte by In ₂ S ₃ Doping Suppresses Electrochemical Decomposition for High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 13429-13438.	2.5	11
317	Sodium-ion conducting polymer electrolytes. Rare Metals, 2023, 42, 1-16.	3.6	20
318	Enhanced Thermal Stability of Mesoporous Carbon Microbeads-Based Lithium-Ion Batteries by Propargyl Methacrylate as Electrolyte Additive. Polymers, 2022, 14, 4491.	2.0	1
319	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal batteryÂwith commercial mass loading highâ€nickel NMC and thin anodes. , 2023, 5, .		9
320	Durable Lithium Metal Anodes Enabled by Interfacial Layers Based on Mechanically Interlocked Networks Capable of Energy Dissipation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
321	Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Materials, 2023, 54, 732-775.	9.5	22
322	Durable Lithium Metal Anodes Enabled by Interfacial Layers Based on Mechanically Interlocked Networks Capable of Energy Dissipation. Angewandte Chemie, 2022, 134, .	1.6	2
323	Concerted ionic-electronic conductivity enables high-rate capability Li-metal solid-state batteries. Energy Storage Materials, 2023, 54, 524-532.	9.5	4
324	Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature. Energy Storage Materials, 2023, 54, 403-409.	9.5	12

#	Article	IF	Citations
325	Lithium-enhanced functionalized carbon nanofibers as a mixed electronic/ionic conductor for sulfide all solid-state batteries. Applied Surface Science, 2023, 610, 155490.	3.1	2
326	Unconventional solid-state electrolytes for lithium-based batteries: Recent advances and challenges. Journal of Power Sources, 2023, 553, 232257.	4.0	6
327	Negating Na‖Na ₃ Zr ₂ Si ₂ PO ₁₂ interfacial resistance for dendrite-free and "Na-less―solid-state batteries. Chemical Science, 2022, 13, 14132-14140.	3.7	18
328	Solid-state NMR of energy storage materials. , 2022, , .		0
329	Interfacial Behavior of a Thio-LISICON Solid-State Electrolyte under External Pressure. ACS Applied Energy Materials, 2022, 5, 13571-13579.	2.5	4
330	Lithium phosphosulfide electrolytes for solid-state batteries: Part II. Functional Materials Letters, 2022, 15, .	0.7	5
331	Effect of the Solvate Environment of Lithium Cations on the Resistance of the Polymer Electrolyte/Electrode Interface in a Solid-State Lithium Battery. Membranes, 2022, 12, 1111.	1.4	3
332	The preliminary exploration of composition origin of garnet-type solid inorganic electrolytes by cluster-plus-glue-atom model. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
333	Prospects of LLZO type solid electrolyte: From material design to battery application. Chemical Engineering Journal, 2023, 454, 140375.	6.6	20
334	Surface-modified and sulfide electrolyte-infiltrated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries. Journal of Colloid and Interface Science, 2023, 632, 11-18.	5.0	4
335	The void formation behaviors in working solid-state Li metal batteries. Science Advances, 2022, 8, .	4.7	54
336	Progress and Prospects of Inorganic Solidâ€State Electrolyteâ€Based Allâ€Solidâ€State Pouch Cells. Advanced Materials, 2023, 35, .	11.1	30
337	Oxideâ€Based Solidâ€6tate Batteries: A Perspective on Composite Cathode Architecture. Advanced Energy Materials, 2023, 13, .	10.2	34
338	Theoretical insights into interfacial stability and ionic transport of Li ₂ OHBr solid electrolyte for all-solid-state batteries. RSC Advances, 2022, 12, 34627-34633.	1.7	0
339	Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries. Energy Storage Materials, 2023, 55, 193-204.	9.5	16
340	Hybrid solid electrolyte-liquid electrolyte systems for (almost) solid-state batteries: Why, how, and where to?. Journal of Materials Chemistry A, 2023, 11, 1083-1097.	5.2	13
341	Assessing the critical current density of all-solid-state Li metal symmetric and full cells. Energy Storage Materials, 2023, 55, 455-462.	9.5	20
342	Solid electrolyte membrane-containing rechargeable high-temperature molten salt electrolyte-based batteries. Sustainable Energy and Fuels, 2023, 7, 330-354.	2.5	2

#	Article	IF	Citations
343	Modeling assisted synthesis of Zr-doped Li3-xIn1-xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries. Journal of Power Sources, 2023, 556, 232465.	4.0	4
344	Solvent-free design of argyrodite sulfide composite solid electrolyte with superb interface and moisture stability in anode-free lithium metal batteries. Journal of Power Sources, 2023, 556, 232462.	4.0	6
345	Methodological developments to expose and analyse buried interfaces in lithium solid-state batteries using <i>ex situ, in situ</i> and <i>operando</i> cycling. EPJ Web of Conferences, 2022, 273, 01007.	0.1	0
346	Investigating the Cyclability and Stability at the Interfaces of Composite Solid Electrolytes in Li Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 53736-53743.	4.0	3
347	Phase Transformation and Microstructural Evolution of CuS Electrodes in Solid‣tate Batteries Probed by In Situ 3D Xâ€Ray Tomography. Advanced Energy Materials, 2023, 13, .	10.2	3
348	High-Speed and One-Step Deposition of a LiCoO ₂ Thin-Film Electrode by a High-Repetition 1064 nm Nd:YAG Fiber Laser. ACS Applied Energy Materials, 2022, 5, 15483-15490.	2.5	3
349	Application of P2-Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Electrode to All-Solid-State 3 V Sodium(-Ion) Polymer Batteries. Journal of Physical Chemistry C, 2022, 126, 20226-20234.	1.5	5
350	Halide Solidâ€State Electrolytes: Stability and Application for High Voltage Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2023, 13, .	10.2	29
351	Control of Ionic Conductivity by Lithium Distribution in Cubic Oxide Argyrodites Li _{6+<i>x</i>} P _{1–<i>x</i>} Si _{<i>x</i>} O ₅ Cl. Journal of the American Chemical Society, 2022, 144, 22178-22192.	6.6	6
352	Effect of current density on the solid electrolyte interphase formation at the lithiumâ^£Li6PS5Cl interface. Nature Communications, 2022, 13, .	5.8	24
353	Importance of Thermal Transport for the Design of Solid-State Battery Materials. , 2022, 1, .		8
354	Stable Anodeâ€Free Allâ€Solidâ€State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. Advanced Materials, 2023, 35, .	11.1	23
355	Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Metals, 2023, 42, 875-884.	3.6	14
356	Atomic Layer Deposition Derived Zirconia Coatings on Niâ€Rich Cathodes in Solidâ€State Batteries: Correlation Between Surface Constitution and Cycling Performance. Small Science, 2023, 3, .	5.8	5
357	Annealingâ€Free Thioantimonate Argyrodites with High Liâ€ŀon Conductivity and Low Elastic Modulus. Advanced Functional Materials, 2023, 33, .	7.8	4
358	Fast Ion Transport in Liâ€Rich Alloy Anode for Highâ€Energyâ€Density All Solidâ€&tate Lithium Metal Batteries. Advanced Functional Materials, 0, , 2209715.	7.8	7
359	Designing better electrolytes. Science, 2022, 378, .	6.0	146
360	Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries. ACS Energy Letters, 2023, 8, 398-407.	8.8	20

#	Article	IF	CITATIONS
361	Solidâ \in State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective. Energy Technology, 2023, 11, .	1.8	14
362	Structural batteries: Advances, challenges and perspectives. Materials Today, 2023, 62, 151-167.	8.3	19
363	Vertical aligned solidâ€state electrolyte templated by nanostructured "upright―cellulose film layers for advanced cell performance. EcoMat, 2023, 5, .	6.8	6
364	Understanding Decomposition of Electrolytes in All-Solid-State Lithium–Sulfur Batteries. Chemistry of Materials, 2022, 34, 10952-10963.	3.2	6
365	Synergistic Approach toward Developing Highly Compatible Garnetâ€Liquid Electrolyte Interphase in Hybrid Solidâ€State Lithiumâ€Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	8
366	Spontaneous gas–solid reaction on sulfide electrolytes for high-performance all-solid-state batteries. Energy and Environmental Science, 2023, 16, 1091-1099.	15.6	12
367	Overcoming the Interfacial Challenges of LiFePO ₄ in Inorganic All-Solid-State Batteries. ACS Energy Letters, 2023, 8, 827-835.	8.8	18
368	Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries. Energy Storage Materials, 2023, 56, 300-309.	9.5	10
369	Review on composite solid electrolytes for solid-state lithium-ion batteries. Materials Today Sustainability, 2023, 21, 100316.	1.9	17
370	Non-equilibrium kinetics for improving ionic conductivity in garnet solid electrolyte. Materials Horizons, 2023, 10, 1324-1331.	6.4	1
371	Microstructure- and Interface-Modified Ni-Rich Cathode for High-Energy-Density All-Solid-State Lithium Batteries. ACS Energy Letters, 2023, 8, 809-817.	8.8	17
372	A Stable Polymerâ€based Solidâ€State Lithium Metal Battery and its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy. Advanced Functional Materials, 2023, 33, .	7.8	10
373	PEO composite solid polymer electrolytes with the synergistic effect of cryogenic engineering and trace BP nanosheets for nearly room temperature and 4 V class all-solid-state lithium batteries. Sustainable Energy and Fuels, 0, , .	2.5	1
374	A stable solid-state lithium–oxygen battery enabled by heterogeneous silicon-based interface. Nanotechnology, 2023, 34, 165402.	1.3	2
375	Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO ₂ adsorption. Journal of Materials Chemistry A, 2023, 11, 2910-2919.	5.2	3
376	Blending a Li3N/Li3YCl6 solid electrolyte with Li6PS5Cl argyrodite structure to improve interface stability and electrochemical performance in Lithium solid-state batteries. Journal of Alloys and Compounds, 2023, 940, 168867.	2.8	4
377	Revealing crack-healing mechanism of NCM composite cathode for sustainable cyclability of sulfide-based solid-state batteries. Energy Storage Materials, 2023, 57, 326-333.	9.5	8
378	Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of Allâ€Solidâ€State Lithium Batteries. Energy Technology, 2023, 11, .	1.8	2

#	Article	IF	CITATIONS
379	A review of the effect of external pressure on all-solid-state batteries. ETransportation, 2023, 15, 100220.	6.8	18
380	Anode-less all-solid-state batteries: recent advances and future outlook. Materials Futures, 2023, 2, 013502.	3.1	4
381	Thermal Recovery of the Electrochemically Degraded LiCoO ₂ /Li ₇ La ₃ Zr ₂ O ₁₂ :Al,Ta Interface in an All-Solid-State Lithium Battery. ACS Applied Materials & Interfaces, 2023, 15, 4101-4112.	4.0	12
382	Lithium–sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. Journal of Materials Chemistry A, 2023, 11, 4519-4526.	5.2	17
383	Inhibiting Formation and Reduction of Li ₂ CO ₃ to LiC _x at Grain Boundaries in Garnet Electrolytes to Prevent Li Penetration. Advanced Materials, 2023, 35, .	11.1	25
384	Highly-concentrated bis(fluorosulfonyl)imide-based ternary gel polymer electrolytes for high-voltage lithium metal batteries. Journal of Power Sources, 2023, 557, 232554.	4.0	8
385	Mechanochemical reactions between polyanionic borate and residue Li2CO3 on LiCoO2 to stabilize cathode/electrolyte interface in sulfide-based all-solid-state batteries. Nano Energy, 2023, 108, 108192.	8.2	11
386	Asymmetric Contact Loss Dynamics during Plating and Stripping in Solid‣tate Batteries. Advanced Energy Materials, 2023, 13, .	10.2	9
387	Halide Layer Cathodes for Compatible and Fastâ€Charged Halidesâ€Based Allâ€Solidâ€State Li Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
388	Halide Layer Cathodes for Compatible and Fastâ€Charged Halidesâ€Based Allâ€Solidâ€State Li Metal Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
389	Surface Defects Reinforced Polymerâ€Ceramic Interfacial Anchoring for Highâ€Rate Flexible Solidâ€State Batteries. Advanced Functional Materials, 2023, 33, .	7.8	19
390	Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasiâ€solidâ€state lithium metal batteries. EcoMat, 2023, 5, .	6.8	15
391	Fundamentals of the Cathodeâ€Electrolyte Interface in Allâ€solidâ€state Lithium Batteries. ChemSusChem, 2023, 16, .	3.6	1
392	Interface Engineering of Allâ€Solidâ€State Batteries Based on Inorganic Solid Electrolytes. ChemSusChem, 2023, 16, .	3.6	6
393	Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries. Energy and Environmental Science, 2023, 16, 1049-1061.	15.6	18
394	Insights into the Enhanced Interfacial Stability Enabled by Electronic Conductor Layers in Solid tate Li Batteries. Advanced Energy Materials, 2023, 13, .	10.2	10
395	Accelerated Discovery of Novel Garnet-Type Solid-State Electrolyte Candidates via Machine Learning. ACS Applied Materials & Interfaces, 2023, 15, 5049-5057.	4.0	7
396	Working at room temperature. Science, 2023, 379, 436-437.	6.0	3

#	Article	IF	CITATIONS
397	In-situ constructed SnO2 gradient buffer layer as a tight and robust interphase toward Li metal anodes in LATP solid state batteries. Journal of Energy Chemistry, 2023, 80, 89-98.	7.1	12
398	Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics. Nature Communications, 2023, 14, .	5.8	6
399	Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries. Applied Mechanics Reviews, 2023, 75, .	4.5	10
400	The Batteries' New Clothes: Li and H Dynamics in Poorly Conducting Li ₂ OHCl Directly Probed by Nuclear Spin Relaxation. Journal of Physical Chemistry C, 2023, 127, 7433-7444.	1.5	1
401	Solidâ€state Li–air batteries: Fundamentals, challenges, and strategies. SmartMat, 2023, 4, .	6.4	2
402	Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2023, 80, 458-465.	7.1	19
403	Boron nitride as an "all-in-one―gelator to immobilize concentrated sulfone electrolyte towards high performance lithium metal batteries. Energy Storage Materials, 2023, 59, 102753.	9.5	1
404	Revealing the effect of electrolyte coordination structures on the intercalation chemistry of batteries. Journal of Energy Chemistry, 2023, 81, 149-156.	7.1	1
405	Exploring the use of butadiene rubbers as a binder in composite cathodes for all-solid-state lithium batteries. Journal of Industrial and Engineering Chemistry, 2023, 122, 341-348.	2.9	3
406	Sacrificial cathode additives for enhanced cycle performance for liquid and all–solid–state anode–free lithium secondary batteries. Journal of Alloys and Compounds, 2023, 950, 169910.	2.8	1
407	Lithiumâ€lon Batteries: Nomenclature of Interphases with Liquid or Solidâ€State Electrolytes. Batteries and Supercaps, 2023, 6, .	2.4	0
408	A fully coupled mechano-electrochemical model for all-solid-state Li-ion batteries: An optimal strategy for controlling interfacial contact using internal stress generated by electrode expansion. Electrochimica Acta, 2023, 443, 141958.	2.6	1
409	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. Journal of Power Sources, 2023, 561, 232720.	4.0	6
410	Lithiation Gradients and Tortuosity Factors in Thick NMC111-Argyrodite Solid-State Cathodes. ACS Energy Letters, 2023, 8, 1273-1280.	8.8	5
411	Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochemical Energy Reviews, 2023, 6, .	13.1	17
412	Stabilizing cathodes and interphases for next-generation Li-ion batteries. Journal of Power Sources, 2023, 561, 232738.	4.0	12
413	An endâ€ŧoâ€end artificial intelligence platform enables realâ€ŧime assessment of superionic conductors. SmartMat, 2023, 4, .	6.4	1
414	Guidelines for Impedance Analysis of Parent Metal Anodes in Solidâ€State Batteries and the Role of Current Constriction at Interface Voids, Heterogeneities, and SEI. Advanced Materials Interfaces, 2023, 10	1.9	5

#	Article	IF	CITATIONS
415	Solutionâ€Processed Synthesis of Nanoâ€Sized Argyrodite Solid Electrolytes with Cavitation Effect for High Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	1
416	Composite cathode for all-solid-state lithium batteries: Progress and perspective. Materials Today Physics, 2023, 32, 101009.	2.9	10
417	A Rational Design of Siliconâ€Based Anode for Allâ€Solidâ€State Lithiumâ€Ion Batteries: A Review. Energy Technology, 2023, 11, .	1.8	3
418	Application of Potassium Ion Conducting KTiOPO ₄ as Effective Inner Solid-Contact Layer in All-Solid-State Potassium Ion-Selective Electrode. Journal of the Electrochemical Society, 2023, 170, 027507.	1.3	3
419	Advanced Characterization Techniques for Sulfideâ€Based Solidâ€State Lithium Batteries. Advanced Energy Materials, 2023, 13, .	10.2	12
420	Li+ affinity ultra-thin solid polymer electrolyte for advanced all-solid-state lithium-ion battery. Chemical Engineering Journal, 2023, 461, 141995.	6.6	7
421	Cold sintering-enabled interface engineering of composites for solid-state batteries. Frontiers in Energy Research, 0, 11, .	1.2	2
422	Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 2023, 57, 429-459.	9.5	11
423	Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries. Energy Material Advances, 2023, 4, .	4.7	12
424	Structural changes in the silver-carbon composite anode interlayer of solid-state batteries. Joule, 2023, 7, 503-514.	11.7	18
425	Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Accounts of Materials Research, 2023, 4, 472-483.	5.9	21
426	Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries. Journal of Electronic Materials, 2023, 52, 2904-2912.	1.0	4
427	Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries. Journal of the Korean Ceramic Society, 2023, 60, 591-613.	1.1	6
428	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Materials, 2023, 58, 48-73.	9.5	8
429	Suppressing Unfavorable Interfacial Reactions Using Polyanionic Oxides as Efficient Buffer Layers: Low-Cost Li ₃ PO ₄ Coatings for Sulfide-Electrolyte-Based All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2023, 15, 12998-13011.	4.0	6
430	Organicâ€Additiveâ€Derived Cathode Electrolyte Interphase Layer Mitigating Intertwined Chemical and Mechanical Degradation for Sulfideâ€Based Solidâ€State Batteries. Advanced Energy Materials, 2023, 13, .	10.2	6
431	Understanding and Engineering Interfacial Adhesion in Solidâ€State Batteries with Metallic Anodes. ChemSusChem, 2023, 16, .	3.6	8
432	Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nature Communications, 2023, 14, .	5.8	24

#	Article	IF	CITATIONS
433	Transition-metal interdiffusion and solid electrolyte poisoning in all-solid-state batteries revealed by cryo-TEM. Chemical Communications, 2023, 59, 4600-4603.	2.2	5
434	Determining the Role of Ion Transport Throughput in Solid‣tate Lithium Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
435	Determining the Role of Ion Transport Throughput in Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
436	Chemically Understanding the Liquid-Phase Synthesis of Argyrodite Solid Electrolyte Li ₆ PS ₅ Cl with the Highest Ionic Conductivity for All-Solid-State Batteries. Chemistry of Materials, 2023, 35, 2549-2558.	3.2	7
437	Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Materials, 2023, 58, 40-47.	9.5	3
438	Multifunctional Coatings on Sulfideâ€Based Solid Electrolyte Powders with Enhanced Processability, Stability, and Performance for Solidâ€State Batteries. Advanced Materials, 2023, 35, .	11.1	14
439	High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology. Energy and Environmental Science, 2023, 16, 2142-2152.	15.6	31
440	Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes. Matter, 2023, 6, 1096-1124.	5.0	26
441	Structural mapping and tuning of mixed halide ions in amorphous sulfides for fast Li-ion conduction and high deformability. Journal of Materials Chemistry A, 2023, 11, 7457-7467.	5.2	2
442	Fast and stable charge transfer at the lithium–sulfide (electrolyte) interface <i>via</i> an <i>in situ</i> solidified Li ⁺ -conductive interlayer. Materials Chemistry Frontiers, 2023, 7, 2405-2410.	3.2	1
443	Imperfect Battery Materials: A Closer Look at the Role of Defects in Electrochemical Performance. Chemistry of Materials, 2023, 35, 3345-3363.	3.2	8
444	All-Solid-State Thin-Film Lithium-Sulfur Batteries. Nano-Micro Letters, 2023, 15, .	14.4	34
445	Neutron and muon characterisation techniques for battery materials. Journal of Materials Chemistry A, 2023, 11, 10493-10531.	5.2	2
446	Sn-Substituted Argyrodite Li6PS5Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability. Materials, 2023, 16, 2751.	1.3	0
447	Physioâ€Electrochemically Durable Dryâ€Processed Solidâ€State Electrolyte Films for Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2023, 33, .	7.8	10
448	Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nature Communications, 2023, 14, .	5.8	16
449	Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3. Nature Communications, 2023, 14, .	5.8	12
450	Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. Journal of Electroanalytical Chemistry, 2023, 938, 117443.	1.9	2

#	Article	IF	CITATIONS
451	Li-ion transport at the LiFePO4/γ-Li3PO4 interface and its enhancement through surface nitrogen doping. Journal of Applied Physics, 2023, 133, .	1.1	2
452	A Flexible Solid Polymer Electrolyte based Polymerized Ionic Liquid for High Performance Solid‧tate Batteries. Batteries and Supercaps, 2023, 6, .	2.4	1
453	New Concepts and Tools. , 2023, , 714-764.		0
454	Solid-state batteries: from â€~all-solid' to â€~almost-solid'. National Science Review, 2023, 10, .	4.6	15
456	Materials Towards the Development of Li Rechargeable Thin Film Battery. , 2023, 2, 26-40.		3
457	Mixed ionâ€electron conducting Li ₃ P for efficient cathode prelithiation of allâ€solidâ€state Liâ€ion batteries. SmartMat, 2023, 4, .	6.4	2
458	2D sp2-carbon-linked covalent organic frameworks as artificial SEI film for dendrite-free lithium metal batteries. Science China Materials, 2023, 66, 2591-2600.	3.5	10
459	Tailoring Conversionâ€Reactionâ€Induced Alloy Interlayer for Dendriteâ€Free Sulfideâ€Based Allâ€Solidâ€State Lithiumâ€Metal Battery. Advanced Science, 2023, 10, .	5.6	8
460	The nature and suppression strategies of interfacial reactions in all-solid-state batteries. Energy and Environmental Science, 2023, 16, 2579-2590.	15.6	19
461	Tailoring of the Anti-Perovskite Solid Electrolytes at the Grain-Scale. ACS Energy Letters, 2023, 8, 2356-2364.	8.8	7
462	Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries. Nano Energy, 2023, 112, 108471.	8.2	11
466	Unique Li deposition behavior in Li ₃ PS ₄ solid electrolyte observed <i>via operando</i> X-ray computed tomography. Chemical Communications, 0, , .	2.2	0
491	Application of Liquid Metal Electrodes in Electrochemical Energy Storage. , 0, , .		0
494	Ion modulation engineering toward stable lithium metal anodes. Materials Horizons, 2023, 10, 3218-3236.	6.4	2
499	Electrode/electrolyte interphases in high-temperature batteries: a review. Energy and Environmental Science, 2023, 16, 2825-2855.	15.6	7
501	Insights into interfacial physiochemistry in sulfide solid-state batteries: a review. Materials Chemistry Frontiers, 2023, 7, 4810-4832.	3.2	4
521	Facile Solid-State Synthesis of a Layered Co-Free, Ni-Rich Cathode Material for All-Solid-State Batteries. Chemical Communications, 0, , .	2.2	1
526	A reflection on polymer electrolytes for solid-state lithium metal batteries. Nature Communications, 2023, 14, .	5.8	15

#	Article	IF	CITATIONS
530	Ion Migration Mechanism Study of Hydroborate/Carborate Electrolytes for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
536	All-solid-state lithium–sulfur batteries enabled by single-ion conducting binary nanoparticle electrolytes. Materials Horizons, 2023, 10, 4139-4147.	6.4	0
541	Garnet-type solid-state electrolytes: crystal structure, interfacial challenges and controlling strategies. Rare Metals, 2023, 42, 3177-3200.	3.6	2
555	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
582	An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 2024, 16, .	14.4	1
598	Fluorination in advanced battery design. Nature Reviews Materials, 2024, 9, 119-133.	23.3	2
603	Interface potentials inside solid-state batteries: Origins and implications. MRS Bulletin, 0, , .	1.7	1
610	Lithium batteries - Secondary systems – All-solid state systems Polymer electrolytes. , 2023, , .		0
623	Strategies to regulate the interface between Li metal anodes and all-solid-state electrolytes. Materials Chemistry Frontiers, 2024, 8, 1421-1450.	3.2	0
632	Advances in solid-state batteries: Materials, interfaces, characterizations, and devices. MRS Bulletin, 2023, 48, 1221-1229.	1.7	0
637	Recent progress on metal–organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy and Environmental Science, 2024, 17, 1854-1884.	15.6	0
638	Recent advances in all-solid-state batteries for commercialization. Materials Chemistry Frontiers, 2024, 8, 1861-1887.	3.2	0