Constraining the astrophysics and cosmology from 21⢠with the SKA

Monthly Notices of the Royal Astronomical Society 494, 5761-5774

DOI: 10.1093/mnras/staa1151

Citation Report

#	Article	IF	CITATIONS
1	Cosmological parameter estimation from large-scale structure deep learning. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	24
2	A new way to constrain the densities of intragroup medium in groups of galaxies with convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5090-5102.	1.6	3
3	Deep learning for intensity mapping observations: component extraction. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L54-L58.	1.2	15
4	Investigating X-Ray Sources during the Epoch of Reionization with the 21 cm Signal. Astrophysical Journal, 2021, 912, 143.	1.6	12
5	Cosmic Velocity Field Reconstruction Using Al. Astrophysical Journal, 2021, 913, 2.	1.6	11
6	Deep learning approach for identification of H <scp>ii</scp> regions during reionization in 21-cm observations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3982-3997.	1.6	16
7	Predicting 21 cm-line map from Lyman-α emitter distribution with generative adversarial networks. Monthly Notices of the Royal Astronomical Society, 2021, 506, 357-371.	1.6	4
8	HInet: Generating Neutral Hydrogen from Dark Matter with Neural Networks. Astrophysical Journal, 2021, 916, 42.	1.6	16
9	The CAMELS Project: Cosmology and Astrophysics with Machine-learning Simulations. Astrophysical Journal, 2021, 915, 71.	1.6	113
10	Removing Astrophysics in 21 cm Maps with Neural Networks. Astrophysical Journal, 2021, 907, 44.	1.6	27
11	Constraining the Reionization History using Bayesian Normalizing Flows. Machine Learning: Science and Technology, 2020, 1, 035014.	2.4	13
12	Inference from the 21 cm Signal. , 0, , .		0
13	Machine learning astrophysics from 21Âcm lightcones: impact of network architectures and signal contamination. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3852-3867.	1.6	22
14	Inferring astrophysics and dark matter properties from 21 cm tomography using deep learning. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3446-3462.	1.6	4
15	Estimation of H II Bubble Size Distribution from 21 cm Power Spectrum with Artificial Neural Networks. Research in Astronomy and Astrophysics, 0, , .	0.7	2
16	Deep learning the astrometric signature of dark matter substructure. Physical Review D, 2021, 104, .	1.6	3
17	Simulation-based Inference of Reionization Parameters from 3D Tomographic 21 cm Light-cone Images. Astrophysical Journal, 2022, 926, 151.	1.6	27
18	Exploring the cosmic 21-cm signal from the epoch of reionization using the wavelet scattering transform. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1719-1741.	1.6	10

#	Article	IF	CITATIONS
19	Cosmology with One Galaxy?. Astrophysical Journal, 2022, 929, 132.	1.6	10
20	Exploring the cosmic dawn and epoch of reionization with the 21 cm line. Publication of the Astronomical Society of Japan, 2023, 75, S1-S32.	1.0	2
21	Probing the Inflaton Potential with SKA. SciPost Physics Core, 2022, 5, .	0.9	1
22	Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum. Astrophysical Journal, 2022, 933, 236.	1.6	12
23	A bubble size distribution model for the Epoch of Reionization. Astronomy and Astrophysics, 2022, 667, A118.	2.1	2
24	HIFlow: Generating Diverse Hi Maps and Inferring Cosmology while Marginalizing over Astrophysics Using Normalizing Flows. Astrophysical Journal, 2022, 937, 83.	1.6	5
25	Learning Cosmology and Clustering with Cosmic Graphs. Astrophysical Journal, 2022, 937, 115.	1.6	17
26	Inpainting Hydrodynamical Maps with Deep Learning. Astrophysical Journal, 2022, 941, 132.	1.6	1
27	Detecting the non-Gaussianity of the 21-cm signal during reionization with the wavelet scattering transform. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5288-5303.	1.6	4
28	Artificial neural networks for galaxy clustering: Learning from the two-point correlation function of BOSS galaxies. Astronomy and Computing, 2023, 42, 100692.	0.8	Ο
29	Test of artificial neural networks in likelihood-free cosmological constraints: A comparison of information maximizing neural networks and denoising autoencoder. Physical Review D, 2023, 107, .	1.6	1
30	The CAMELS Project: Public Data Release. Astrophysical Journal, Supplement Series, 2023, 265, 54.	3.0	14

CITATION REPORT