Emissions benefits of electric vehicles in Uber and Lyft

Nature Energy 5, 520-525 DOI: 10.1038/s41560-020-0632-7

Citation Report

#	Article	IF	CITATIONS
1	Exploring side effects of ridesharing services in urban China: role of pollution–averting behavior. Electronic Commerce Research, 2022, 22, 1007-1034.	3.0	4
2	Has ridesourcing reduced haze? An analysis using the Didi app. Environmental Science and Pollution Research, 2021, 28, 45571-45585.	2.7	6
3	Incentive-driven transition to high ride-sharing adoption. Nature Communications, 2021, 12, 3003.	5.8	22
4	Switching to electric vehicles can lead to significant reductions of PM2.5 and NO2 across China. One Earth, 2021, 4, 1037-1048.	3.6	33
5	Estimating the energy impact of electric, autonomous taxis: evidence from a select market. Environmental Research Letters, 2021, 16, 094036.	2.2	2
6	What factors affect the public acceptance of new energy vehicles in underdeveloped regions? A case study of Gansu Province, China. Journal of Cleaner Production, 2021, 318, 128432.	4.6	20
7	Exploring Side Effects of Ridesharing Services in Urban China: Role of Pollution-Averting Behavior. SSRN Electronic Journal, 0, , .	0.4	0
8	Climate-intelligent cities and resilient urbanisation: Challenges and opportunities for information research. International Journal of Information Management, 2022, 63, 102446.	10.5	23
9	Electrifying Ride-Hailing in the United States, Europe, and Canada: How to Enable Ride-Hailing Drivers to Switch to Electric Vehicles. , 0, , .		0
10	Empirical grid impact of in-home electric vehicle charging differs from predictions. Resources and Energy Economics, 2022, 67, 101275.	1.1	13
11	A Business Perspective. Management for Professionals, 2021, , 91-112.	0.3	1
12	The potential of ride-pooling in VKT reduction and its environmental implications. Transportation Research, Part D: Transport and Environment, 2022, 103, 103155.	3.2	14
13	MaaS system development and APPs. , 2022, , 1-24.		0
14	Hydrogen-powered vehicles for autonomous ride-hailing fleets. International Journal of Hydrogen Energy, 2022, 47, 9422-9427.	3.8	6
15	Occupancy and GHG emissions: thresholds for disruptive transportation modes and emerging technologies. Transportation Research, Part D: Transport and Environment, 2022, 102, 103127.	3.2	16
16	The optimal pricing for green ride services in the ride-sharing economy. Transportation Research, Part D: Transport and Environment, 2022, 104, 103205.	3.2	16
17	Life Cycle Environmental Impact of Mobility Servitization: The Effect of Fleet Technology Changes. Procedia CIRP, 2022, 105, 829-834.	1.0	0
18	Estimating Fast Charging Infrastructure Requirements to Fully Electrify Ride-Hailing Fleets Across the United States. IEEE Transactions on Transportation Electrification, 2022, 8, 2177-2190.	5.3	7

#	Article	IF	CITATIONS
19	The Housing Market Impacts of Bicycle-Sharing Systems. SSRN Electronic Journal, 0, , .	0.4	0
20	Memory-Based Ant Colony System Approach for Multi-Source Data Associated Dynamic Electric Vehicle Dispatch Optimization. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17491-17505.	4.7	22
21	A simulation–optimization framework for a dynamic electric ride-hailing sharing problem with a novel charging strategy. Transportation Research, Part E: Logistics and Transportation Review, 2022, 159, 102615.	3.7	15
22	Electrifying New York City Ride-Hailing fleets: An examination of the need for public fast charging. IScience, 2022, 25, 104171.	1.9	1
23	Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Applied Energy, 2022, 313, 118832.	5.1	100
24	Spontaneous symmetry breaking in ride-sharing adoption dynamics. Physical Review E, 2022, 105, 044309.	0.8	4
25	Optimization-based trip chain emulation for electrified ride-sourcing charging demand analyses. Transportation Letters, 2023, 15, 510-526.	1.8	3
26	What Do We Know about Zero-Emission Vehicle Mandates?. Environmental Science & Technology, 2022, 56, 7553-7563.	4.6	10
27	Operation and Management Strategy of Online Car-Hailing Platforms Based on Big Data Diagnosis and Game Perspective. Wireless Communications and Mobile Computing, 2022, 2022, 1-15.	0.8	2
28	Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers. Applied Energy, 2022, 319, 119246.	5.1	6
29	How Many Chargers Must California Install to Complete the Transition to Electric Vehicles? An Analysis of Electric Vehicle Adoption and Potential Charging Infrastructure Needs 2022-2045. SSRN Electronic Journal, 0, , .	0.4	0
30	Regulatory policies to electrify ridesourcing systems. Transportation Research Part C: Emerging Technologies, 2022, 141, 103743.	3.9	7
31	Temporal Equilibrium for Electrified Ride-Sourcing Markets Considering Charging Capacity Constraint and Driving Fatigue. SSRN Electronic Journal, 0, , .	0.4	0
33	Gross polluters and vehicle emissions reduction. Nature Sustainability, 2022, 5, 699-707.	11.5	26
34	Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data. Energy Economics, 2022, 112, 106170.	5.6	14
35	Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California. Applied Energy, 2022, 323, 119638.	5.1	7
36	Real-world carbon emissions evaluation for prefabricated component transportation by battery electric vehicles. Energy Reports, 2022, 8, 8186-8199.	2.5	11
37	Historical patterns and sustainability implications of worldwide bicycle ownership and use. Communications Earth & Environment, 2022, 3, .	2.6	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Engine emissions with air pollutants and greenhouse gases and their control technologies. Journal of Cleaner Production, 2022, 376, 134260.	4.6	42
39	The housing market impacts of bicycle-sharing systems. Regional Science and Urban Economics, 2022, , 103849.	1.4	1
40	Chemical route to the synthesis of novel ternary CuCr2S4 cathodes for asymmetric supercapacitors. Journal of Energy Storage, 2022, 56, 106175.	3.9	4
41	Temporal equilibrium for electrified ride-sourcing markets considering charging capacity and driving fatigue. Transportation Research Part C: Emerging Technologies, 2023, 147, 104008.	3.9	6
42	On ride-sourcing services of electric vehicles considering cruising for charging and parking. Transportation Research, Part D: Transport and Environment, 2023, 118, 103716.	3.2	3
43	Smart Transportation Behavior through the COVID-19 Pandemic: A Ride-Hailing System in Iran. Sustainability, 2023, 15, 4178.	1.6	7
44	Charging forward: deploying EV infrastructure for Uber and Lyft in California. Transportation, 0, , .	2.1	0