Treatment of Highly Drug-Resistant Pulmonary Tubero

New England Journal of Medicine 382, 893-902 DOI: 10.1056/nejmoa1901814

Citation Report

#	Article	IF	CITATIONS
1	Advancing Immunotherapeutic Vaccine Strategies Against Pulmonary Tuberculosis. Frontiers in Immunology, 2020, 11, 557809.	2.2	10
2	Mutations in <i>fbiD</i> (<i>Rv2983</i>) as a Novel Determinant of Resistance to Pretomanid and Delamanid in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	48
3	An Exposure-Response Perspective on the Clinical Dose of Pretomanid. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	5
4	In vitro Study of Bedaquiline Resistance in Mycobacterium tuberculosis Multi-Drug Resistant Clinical Isolates. Frontiers in Microbiology, 2020, 11, 559469.	1.5	43
5	Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 2020, 34, .	5.7	66
7	Update of SEPAR Guideline "Diagnosis and Treatment of Drug-Resistant Tuberculosis― Archivos De Bronconeumologia, 2020, 56, 514-521.	0.4	3
8	Reply to Kim et al., "Optimal Dose or Optimal Exposure? Consideration for Linezolid in Tuberculosis Treatment― Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	0
9	Challenge to treat pre-extensively drug-resistant tuberculosis in a low-income country: A report of 12 cases. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2020, 21, 100192.	0.6	5
10	Cell Surface Biosynthesis and Remodeling Pathways in Mycobacteria Reveal New Drug Targets. Frontiers in Cellular and Infection Microbiology, 2020, 10, 603382.	1.8	16
11	Advances in Molecular Diagnosis of Tuberculosis. Journal of Clinical Microbiology, 2020, 58, .	1.8	83
12	Clinical features associated with linezolid resistance among multidrug resistant tuberculosis patients at a tertiary care hospital in Mumbai, India. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2020, 20, 100175.	0.6	10
13	Preserved Efficacy and Reduced Toxicity with Intermittent Linezolid Dosing in Combination with Bedaquiline and Pretomanid in a Murine Tuberculosis Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
14	Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
15	Implementing novel regimens for drug-resistant TB in South Africa: what can the world learn?. International Journal of Tuberculosis and Lung Disease, 2020, 24, 1073-1080.	0.6	14
16	Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-Amino thiazoles. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127655.	1.0	33
17	Outcomes and adverse events of pre- and extensively drug-resistant tuberculosis patients in Kinshasa, Democratique Republic of the Congo: A retrospective cohort study. PLoS ONE, 2020, 15, e0236264.	1.1	10
18	Are We There Yet? Short-Course Regimens in TB and HIV: From Prevention to Treatment of Latent to XDR TB. Current HIV/AIDS Reports, 2020, 17, 589-600.	1.1	5
19	Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. Journal of Bacteriology, 2020, 202, .	1.0	8

#	ARTICLE	IF	CITATIONS
20	Two Decades of TB Drug Discovery Efforts—What Have We Learned?. Applied Sciences (Switzerland), 2020, 10, 5704.	1.3	13
21	Individualized Treatment of Multidrug-resistant Tuberculosis Using Whole-Genome Sequencing and Expanded Drug-Susceptibility Testing. Clinical Infectious Diseases, 2020, 71, 2981-2985.	2.9	3
22	Distribution of Linezolid in Tuberculosis Lesions in Patients with Spinal Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	7
23	A bioinorganic chemistry perspective on the roles of metals as drugs and targets against <i>Mycobacterium tuberculosis</i> – a journey of opportunities. Dalton Transactions, 2020, 49, 15988-16003.	1.6	8
24	Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Frontiers in Immunology, 2020, 11, 891.	2.2	25
25	Synergistic Activity of Nitroimidazole-Oxazolidinone Conjugates against Anaerobic Bacteria. Molecules, 2020, 25, 2431.	1.7	8
26	Pretomanid in drug-resistant tuberculosis: a profile of its use. Drugs and Therapy Perspectives, 2020, 36, 273-279.	0.3	6
27	Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. New England Journal of Medicine, 2020, 382, 2376-2377.	13.9	16
28	Molecule Property Analyses of Active Compounds for <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2020, 63, 8917-8955.	2.9	19
29	Triumph and Tragedy of 21st Century Tuberculosis Drug Development. New England Journal of Medicine, 2020, 382, 959-960.	13.9	10
30	<p>Genetic and Virulence Characteristics of Linezolid and Pretomanid Dual Drug-Resistant Strains Induced from Mycobacterium tuberculosis in vitro</p> . Infection and Drug Resistance, 2020, Volume 13, 1751-1761.	1.1	7
31	Emergence of a novel human coronavirus threatening human health. Nature Medicine, 2020, 26, 317-319.	15.2	125
32	TB Elimination Requires Discovery and Development of Transformational Agents. Applied Sciences (Switzerland), 2020, 10, 2605.	1.3	6
33	Nanotechnologyâ€Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Advanced Therapeutics, 2021, 4, 2000113.	1.6	37
34	Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 23-39.	1.5	27
35	World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. European Respiratory Journal, 2021, 57, 2003300.	3.1	140
36	Linezolid use for the treatment of multidrug-resistant tuberculosis, TB centers of excellence, United States, 2013–2018. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2021, 22, 100201.	0.6	5
37	Novel 6-Month Treatment for Drug-Resistant Tuberculosis, United States. Emerging Infectious Diseases, 2021, 27, 332-334.	2.0	24

#	Article	IF	CITATIONS
38	High rifampicin-resistant TB cure rates and prevention of severe ototoxicity after replacing the injectable by linezolid in early stage of hearing loss. European Respiratory Journal, 2021, 57, 2002250.	3.1	12
39	Multidrug-resistant tuberculosis in children and adolescents: current strategies for prevention and treatment. Expert Review of Respiratory Medicine, 2021, 15, 221-237.	1.0	19
40	Operational Research on the Treatment of Drug-Resistant Tuberculosis: Exciting Results That Need to Be Protected. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 11-13.	2.5	0
41	Rationale for Anti-Tuberculosis Chemotherapy. , 2021, , 109-120.		Ο
43	Concomitant Treatment of Chronic Hepatitis C With Direct-Acting Antivirals and Multidrug-Resistant Tuberculosis Is Effective and Safe. Open Forum Infectious Diseases, 2021, 8, ofaa653.	0.4	8
44	Implementing New Approaches to Tuberculosis Control. China CDC Weekly, 2021, 3, 256-259.	1.0	1
45	Antibacterial Combinations. , 2021, , 21-49.		0
46	Pretomanid: A novel therapeutic paradigm for treatment of drug resistant tuberculosis. Indian Journal of Tuberculosis, 2021, 68, 106-113.	0.3	6
47	Priority Areas for Research on Anti-Tuberculosis Treatment. , 2021, , 423-428.		0
48	Defining Outcomes of Tuberculosis (Treatment): From the Past to the Future. Respiration, 2021, 100, 843-852.	1.2	8
49	Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial. BMC Infectious Diseases, 2021, 21, 183.	1.3	8
50	Predictive Modeling to Study the Treatment-Shortening Potential of Novel Tuberculosis Drug Regimens, Toward Bundling of Preclinical Data. Journal of Infectious Diseases, 2022, 225, 1876-1885.	1.9	10
53	Pretomanid dose selection for pulmonary tuberculosis: An application of multiâ€objective optimization to dosage regimen design. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 211-219.	1.3	8
54	Ending TB: the world's oldest pandemic. Journal of the International AIDS Society, 2021, 24, e25698.	1.2	6
55	Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clinical Pharmacokinetics, 2021, 60, 685-710.	1.6	39
56	Build back better: Advances in tuberculosis research in Canada & globally in 2020. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 121-124.	0.2	Ο
57	The effect of human immunodeficiency virus infection on adverse events during treatment of drug-resistant tuberculosis: A systematic review and meta-analysis. PLoS ONE, 2021, 16, e0248017.	1.1	8
58	Bedaquiline-containing regimens in patients with pulmonary multidrug-resistant tuberculosis in China: focus on the safety. Infectious Diseases of Poverty, 2021, 10, 32.	1.5	13

#	Article	IF	CITATIONS
59	The doubleâ€edged sword of Tregs in M tuberculosis , M avium , and M. abscessus infection. Immunological Reviews, 2021, 301, 48-61.	2.8	6
60	Delamanid is a new anti-tuberculosis drug: use, limitations, and prospects. Tuberculosis and Lung Diseases, 2021, 99, 58-66.	0.2	5
61	Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. International Journal of Infectious Diseases, 2021, 104, 680-684.	1.5	7
62	A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs. Scientific Reports, 2021, 11, 5643.	1.6	15
63	Comparative Efficacy of the Novel Diarylquinoline TBAJ-587 and Bedaquiline against a Resistant <i>Rv0678</i> Mutant in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	26
64	Visualizing the dynamics of tuberculosis pathology using molecular imaging. Journal of Clinical Investigation, 2021, 131, .	3.9	12
65	Tuberculosis multirresistentediez años después. Medicina ClÃnica, 2021, 156, 393-401.	0.3	5
66	Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. Journal of Medicinal Chemistry, 2021, 64, 4359-4395.	2.9	36
67	Multi-drug resistant tuberculosis, ten years later. Medicina ClÃnica (English Edition), 2021, 156, 393-401.	0.1	2
69	Scaling Up Molecular Diagnostic Tests for Drug-Resistant Tuberculosis in Uzbekistan from 2012–2019: Are We on the Right Track?. International Journal of Environmental Research and Public Health, 2021, 18, 4685.	1.2	2
70	Trends, Characteristics and Treatment Outcomes of Patients with Drug-Resistant Tuberculosis in Uzbekistan: 2013–2018. International Journal of Environmental Research and Public Health, 2021, 18, 4663.	1.2	13
71	Impact of the revised definition of extensively drug-resistant tuberculosis. European Respiratory Journal, 2021, 58, 2100641.	3.1	5
72	Cytochrome bd promotes Escherichia coli biofilm antibiotic tolerance by regulating accumulation of noxious chemicals. Npj Biofilms and Microbiomes, 2021, 7, 35.	2.9	15
74	Repurposing Immunomodulatory Drugs to Combat Tuberculosis. Frontiers in Immunology, 2021, 12, 645485.	2.2	22
75	Drug Regimen for Patients after a Pneumonectomy. Journal of Respiration, 2021, 1, 114-134.	0.4	0
76	Effectiveness and Cardiac Safety of Bedaquiline-Based Therapy for Drug-Resistant Tuberculosis: A Prospective Cohort Study. Clinical Infectious Diseases, 2021, 73, 2083-2092.	2.9	24
77	Integrating Real-World Evidence in the Regulatory Decision-Making Process: A Systematic Analysis of Experiences in the US, EU, and China Using a Logic Model. Frontiers in Medicine, 2021, 8, 669509.	1.2	21
78	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>l</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	1.8	3

	СІТАТІО	CITATION REPORT	
#	Article	IF	CITATIONS
79	Novel fidaxomicin antibiotics through site-selective catalysis. Communications Chemistry, 2021, 4, .	2.0	7
80	Low Rate of Acquired Linezolid Resistance in Multidrug-Resistant Tuberculosis Treated With Bedaquiline-Linezolid Combination. Frontiers in Microbiology, 2021, 12, 655653.	1.5	14
81	Growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) against Mycobacterium tuberculosis in vitro and in vivo. Tuberculosis, 2021, 128, 102087.	0.8	2
82	Multidrug-resistant tuberculosis imported into low-incidence countries—a GeoSentinel analysis, 2008–2020. Journal of Travel Medicine, 2021, 28, .	1.4	10
83	Inhibitors of F ₁ F ₀ -ATP synthase enzymes for the treatment of tuberculosis and cancer. Future Medicinal Chemistry, 2021, 13, 911-926.	1.1	5
84	Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid. Microorganisms, 2021, 9, 1074.	1.6	21
85	Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010–2020 Review. Pharmaceuticals, 2021, 14, 461.	1.7	31
86	Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date. Drug Design, Development and Therapy, 2021, Volume 15, 2815-2830.	2.0	25
87	Pretomanid with bedaquiline and linezolid for drug-resistant TB: a comparison of prospective cohorts. International Journal of Tuberculosis and Lung Disease, 2021, 25, 453-460.	0.6	12
88	Dual mTORC1/mTORC2 Inhibition as a Host-Directed Therapeutic Target in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0025321.	1.4	8
90	Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM]. Wellcome Open Research, 2021, 6, 136.	0.9	8
91	Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. The Cochrane Library, 2021, 2021, .	1.5	3
94	The Treatment of Tuberculosis. Clinical Pharmacology and Therapeutics, 2021, 110, 1455-1466.	2.3	49
96	Synthesis, Spectral Characterization and Antitubercular Study of Novel Quinoline Schiff Base and Its Metal Complexes. Analytical Chemistry Letters, 2021, 11, 523-538.	0.4	10
98	Antibiotic Approvals in the Last Decade: Are We Keeping Up With Resistance?. Annals of Pharmacotherapy, 2022, 56, 441-462.	0.9	26
99	Pretomanid: Clinical Trials and Prospects to Be Used in Treatment Regimens for Multiple and Extensive Drug Resistant Tuberculosis. Tuberculosis and Lung Diseases, 2021, 99, 54-60.	0.2	1
100	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
101	A multi-targeting pre-clinical candidate against drug-resistant tuberculosis. Tuberculosis, 2021, 129, 102104.	0.8	12

	CITATION RE	Citation Report	
#	Article	IF	CITATIONS
102	Acceptability, feasibility, and likelihood of stakeholders implementing the novel BPaL regimen to treat extensively drug-resistant tuberculosis patients. BMC Public Health, 2021, 21, 1404.	1.2	10
103	Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe, The, 2021, 2, e604-e616.	3.4	32
104	Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrobial Agents and Chemotherapy, 2021, 65, e0058321.	1.4	33
105	The pharmacotherapeutic management of pulmonary tuberculosis: an update of the state-of-the-art. Expert Opinion on Pharmacotherapy, 2022, 23, 139-148.	0.9	1
106	Pretomanid for tuberculosis: a systematic review. Clinical Microbiology and Infection, 2022, 28, 31-42.	2.8	30
107	<i>In Vitro</i> and <i>In Vivo</i> Activity of Oxazolidinone Candidate OTB-658 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0097421.	1.4	8
108	Novel treatments in multidrug-resistant tuberculosis. Current Opinion in Pharmacology, 2021, 59, 103-115.	1.7	9
109	A systematic review of endpoint definitions in late phase pulmonary tuberculosis therapeutic trials. Trials, 2021, 22, 515.	0.7	6
110	Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model. Pharmaceutics, 2021, 13, 1309.	2.0	4
111	Systematic measurement of combination-drug landscapes to predict inÂvivo treatment outcomes for tuberculosis. Cell Systems, 2021, 12, 1046-1063.e7.	2.9	31
112	Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics, 2021, 10, 981.	1.5	21
113	Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrobial Agents and Chemotherapy, 2021, 65, e0002421.	1.4	12
114	Prevalence of extensively drug-resistant tuberculosis in a Chinese multidrug-resistant TB cohort after redefinition. Antimicrobial Resistance and Infection Control, 2021, 10, 126.	1.5	20
115	Evaluating newly approved drugs for multidrug-resistant tuberculosis (endTB): study protocol for an adaptive, multi-country randomized controlled trial. Trials, 2021, 22, 651.	0.7	18
116	Linezolid Population Pharmacokinetics in South African Adults with Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0138121.	1.4	9
117	Key highlights from the international AIDS society (IAS) conference 2021. Journal of Virus Eradication, 2021, 7, 100058.	0.3	1
118	Sterilizing Effects of Novel Regimens Containing TB47, Clofazimine, and Linezolid in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0070621.	1.4	10
119	Study of a Stable "Trifluoromethoxide Anion Solution―Arising from 2,4â€Dinitroâ€Trifluoromethoxybenzene. Chemistry - A European Journal, 2021, 27, 15986-15991.	1.7	10

#	Article	IF	CITATIONS
120	Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discovery Today, 2021, 27, 326-326.	3.2	13
121	Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Scientific Reports, 2021, 11, 19431.	1.6	37
122	Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant <i>Rv0678</i> Mutant in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0141221.	1.4	16
123	Spinal Tuberculosis: Always Understand, Often Prevent, Sometime Cure. Neurospine, 2021, 18, 648-650.	1.1	3
124	The Mur Enzymes Chink in the Armour of Mycobacterium tuberculosis cell wall. European Journal of Medicinal Chemistry, 2021, 222, 113568.	2.6	14
125	Factors associated with culture conversion among adults treated for pulmonary extensively drug-resistant tuberculosis during 2018-2019 in the Russian Federation: an observational cohort study. Monaldi Archives for Chest Disease, 2021, 91, .	0.3	4
126	Short course treatment of pulmonary tuberculosis patients suffering from multiple drug resistance. The current situation and future perspectives. Tuberculosis and Lung Diseases, 2021, 98, 57-66.	0.2	10
128	Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611683.	1.8	21
129	Proposed Linezolid Dosing Strategies to Minimize Adverse Events for Treatment of Extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2022, 74, 1736-1747.	2.9	26
130	Superior Efficacy of a Bedaquiline, Delamanid, and Linezolid Combination Regimen in a Mouse Tuberculosis Model. Journal of Infectious Diseases, 2021, 224, 1039-1047.	1.9	11
131	A MATHEMATICAL MODEL FOR PREDICTING THE OUTCOME OF TREATMENT OF MULTIDRUD-RESISTANT TUBERCULOSIS. Wiadomości Lekarskie, 2021, 74, 1649-1654.	0.1	0
133	Type I interferon signaling mediates <i>Mycobacterium tuberculosis</i> –induced macrophage death. Journal of Experimental Medicine, 2021, 218, .	4.2	53
134	Safety and Effectiveness of an All-Oral, Bedaquiline-Based, Shorter Treatment Regimen for Rifampicin-Resistant Tuberculosis in High Human Immunodeficiency Virus (HIV) Burden Rural South Africa: A Retrospective Cohort Analysis. Clinical Infectious Diseases, 2021, 73, e3563-e3571.	2.9	23
136	Successful bedaquiline-containing antimycobacterial treatment in post-traumatic skin and soft-tissue infection by Mycobacterium fortuitum complex: a case report. BMC Infectious Diseases, 2020, 20, 365.	1.3	15
137	Anti-bacterial Agents. , 2021, , .		0
138	Treatment Outcomes 24 Months after Initiating Short Bedaquiline- or Injectable-Containing Rifampicin-Resistant Tuberculosis Treatment Regimens: A Retrospective Cohort Study in South Africa. SSRN Electronic Journal, 0, , .	0.4	0
140	Cell Wall Proteomics Reveal Phenotypic Adaption of Drug-Resistant Mycobacterium smegmatis to Subinhibitory Rifampicin Exposure. Frontiers in Medicine, 2021, 8, 723667.	1.2	4
141	Visible-light-promoted late-stage direct fluoroalkylation of nitroimidazoles. Tetrahedron Letters, 2021, 85, 153484.	0.7	8

#	Article	IF	CITATIONS
142	Rifamycins: do not throw the baby out with the bathwater. Is rifampicin still an effective anti-tuberculosis drug?. Future Medicinal Chemistry, 2021, 13, 2129-2131.	1.1	2
143	Antibiotics in the pipeline: a literature review (2017–2020). Infection, 2022, 50, 553-564.	2.3	41
144	Baseline assessment of pharmacovigilance activities in four sub-Saharan African countries: a perspective on tuberculosis. BMC Health Services Research, 2021, 21, 1062.	0.9	3
145	Population pharmacokinetics and target attainment analysis of linezolid in multidrugâ€resistant tuberculosis patients. British Journal of Clinical Pharmacology, 2022, 88, 1835-1844.	1.1	11
146	Synergetic Effect of Rifampin Loaded Musselâ€Inspired Silver Nanoparticles for Enhanced Antibacterial Activity Against Multidrugâ€Resistant Strain of <i>Mycobacterium Tuberculosis</i> . ChemistrySelect, 2021, 6, 10682-10687.	0.7	5
147	Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Scientific Reports, 2021, 11, 19634.	1.6	6
148	Genomic Profiling of <i>Mycobacterium tuberculosis</i> Strains, Myanmar. Emerging Infectious Diseases, 2021, 27, 2847-2855.	2.0	8
150	A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Frontiers in Cellular and Infection Microbiology, 2021, 11, 707244.	1.8	14
151	Discovery of Inhibitors for Mycobacterium Tuberculosis Peptide Deformylase Based on Virtual Screening in Silico. Molecular Informatics, 2021, , 2100002.	1.4	3
153	Principles of chemotherapy for tuberculosis in national tuberculosis programmes of low- and middle-income countries. Indian Journal of Tuberculosis, 2020, 67, S16-S22.	0.3	6
154	Hit movie reveals how a tuberculosis drug halts ATP synthesis. Nature, 2021, 589, 21-22.	13.7	2
155	Drugs in tuberculosis and leprosy. Side Effects of Drugs Annual, 2021, 43, 337-354.	0.6	1
157	Can a new nitroimidazole knockout the unconquered tuberculosis?. Archives of Medicine and Health Sciences, 2020, 8, 79.	0.0	0
158	Nix-TB and ZeNix trials: Paving the way for shorter regimens for drug-resistant tuberculosis. Asian Pacific Journal of Tropical Medicine, 2021, 14, 431.	0.4	5
159	Drug exposure and susceptibility of second-line drugs correlate with treatment response in patients with multidrug-resistant tuberculosis: a multicentre prospective cohort study in China. European Respiratory Journal, 2022, 59, 2101925.	3.1	18
160	Xpert MTB/RIF use is associated with earlier treatment initiation and culture conversion among patients with sputum smear-negative multidrug-resistant tuberculosis. Open Forum Infectious Diseases, 2021, 8, ofab551.	0.4	1
161	Efficacy of integrating short-course chemotherapy with Chinese herbs to treat multi-drug resistant pulmonary tuberculosis in China: a study protocol. Infectious Diseases of Poverty, 2021, 10, 131.	1.5	3
162	The pipeline of new molecules and regimens against drug-resistant tuberculosis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2021, 25, 100285.	0.6	22

ARTICLE IF CITATIONS Treatment outcomes in patients with drug-resistant TB-HIV co-infection treated with bedaquiline and 167 0.6 19 linezolid. International Journal of Tuberculosis and Lung Disease, 2020, 24, 1024-1031. CROI 2021: Tuberculosis, Opportunistic Infections, and COVID-19 Among People with HIV. Topics in 0.1 Antiviral Medicine, 2021, 29, 344-351. Population pharmacokinetics and pharmacodynamics of investigational regimens' drugs in the TB-PRACTECAL clinical trial (the PRACTECAL-PKPD study): a prospective nested study protocol in a 169 0.8 0 randomised controlled trial. BMJ Open, 2021, 11, e047185. Syntheses and structural characterization of metal complexes of 170 0.8 antitubercular activity. Journal of Coordination Chemistry, 0, , 1-13. Clinical Relevance of Rifampicinâ€Moxifloxacin Interaction in Isoniazid-Resistant/Intolerant 171 1.4 4 Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0182921. Cycloserine and Linezolid for Tuberculosis Meningitis: Pharmacokinetic Evidence of Potential Usefulness. Clinical Infectious Diseases, 2022, 75, 682-689. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively 174 0.8 13 drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open, 2021, 11, e051521. Synthesis and structure-activity relationships for a new class of tetrahydronaphthalene amide 2.6 inhibitors of Mycobacterium túberculosis. European Journal of Medicinal Chemistry, 2022, 229, 114059. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging 176 23 2.6 resistance. European Journal of Medicinal Chemistry, 2022, 229, 114066. IMB-XMA0038, a new inhibitor targeting aspartate-semialdehyde dehydrogenase of <i>Mycobacterium tuberculosis </i>. Emerging Microbes and Infections, 2021, 10, 2291-2299 In Vitro and In Vivo Inhibition of the <i>Mycobacterium tuberculosis</i> Phosphopantetheinyl 178 10 2.9 Transferase PptT by Amidinoureas. Journal of Medicinal Chemistry, 2022, 65, 1996-2022. The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 179 1.8 Enzyme. International Journal of Molecular Sciences, 2022, 23, 771. Linezolid toxicity in patients with drug-resistant tuberculosis: a prospective cohort study. Journal of 180 1.3 15 Antimicrobial Chemotherapy, 2022, 77, 1146-1154. MDR Tuberculosis Treatment. Medicina (Lithuania), 2022, 58, 188. 0.8 Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Global 182 2.0 13 Health, 2022, 7, e007182. Concise Clinical Review of Hematologic Toxicity of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis: Role of Mitochondria. Tuberculosis and Respiratory Diseases, 2022, 85, 111-121. Experimental Confirmation that an Uncommon <i>rrs</i>Gene Mutation (g878a) of Mycobacterium 184 tuberculosis Confers Resistance to Streptomycin. Antimicrobial Agents and Chemotherapy, 2022, 66, 1.4 3 AAC0191521. Pharmacovigilance in low―and middleâ€income countries: A review with particular focus on Africa. 1.1 British Journal of Clinical Pharmacology, 2023, 89, 491-509.

#	Article	IF	CITATIONS
186	Drug resistance patterns, treatment outcomes and factors affecting unfavourable treatment outcomes among extensively drug resistant tuberculosis patients in Pakistan; a multicentre record review. Saudi Pharmaceutical Journal, 2022, 30, 462-469.	1.2	4
187	Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis. Journal of Global Antimicrobial Resistance, 2022, 29, 29-41.	0.9	21
188	Transition-metal-free, direct C H radical trifluoromethylation of nitroimidazoles with Togni's reagent. Tetrahedron Letters, 2022, 92, 153659.	0.7	8
189	Evaluating the effect of clofazimine against Mycobacterium tuberculosis given alone or in combination with pretomanid, bedaquiline or linezolid. International Journal of Antimicrobial Agents, 2022, 59, 106509.	1.1	6
191	Particularités des infections ostéo-articulaires tuberculeuses. Revue Du Rhumatisme Monographies, 2022, , .	0.0	0
192	Cutaneous tuberculosis. Part II: Complications, diagnostic workup, histopathologic features, and treatment. Journal of the American Academy of Dermatology, 2023, 89, 1107-1119.	0.6	10
193	History of prevention, diagnosis, treatment and rehabilitation of pulmonary sequelae of tuberculosis. Presse Medicale, 2022, 51, 104112.	0.8	9
194	DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2022, 8, 612-625.	1.8	11
195	A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. Journal of Drug Delivery Science and Technology, 2022, 69, 103069.	1.4	12
196	Definitive outcomes in patients with rifampicin-resistant tuberculosis treated in Niger from 2012 to 2019: A retrospective cohort study. International Health, 2023, 15, 258-264.	0.8	1
197	Programme costs of longer and shorter tuberculosis drug regimens and drug import: a modelling study for Karakalpakstan, Uzbekistan. ERJ Open Research, 2022, 8, 00622-2021.	1.1	5
198	Antimicrobial agents and torsades de pointes. , 2022, , 231-266.		0
200	Drug-resistant tuberculosis: advances in diagnosis and management. Current Opinion in Pulmonary Medicine, 2022, 28, 211-217.	1.2	10
201	Pre-Clinical Tools for Predicting Drug Efficacy in Treatment of Tuberculosis. Microorganisms, 2022, 10, 514.	1.6	3
202	An All-Oral 6-Month Regimen for Multidrug-Resistant Tuberculosis: A Multicenter, Randomized Controlled Clinical Trial (the NExT Study). American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1214-1227.	2.5	38
204	Antiâ€ŧuberculous drug allergy: Diagnostic challenges. Clinical and Experimental Allergy, 2022, 52, 370-371.	1.4	1
205	Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). Journal of Antimicrobial Chemotherapy, 2022, 77, 1720-1724.	1.3	11
206	Treatments of Multidrug-Resistant Tuberculosis: Light at the End of the Tunnel. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1142-1144.	2.5	10

#	Article	IF	CITATIONS
207	Global Control of Tuberculosis: Current Status and Future Prospects. Zoonoses, 2022, 2, .	0.5	10
208	Childhood Tuberculosis — Time for Shorter and Differentiated Treatment. New England Journal of Medicine, 2022, 386, 988-989.	13.9	4
209	Ancient and recent differences in the intrinsic susceptibility of <i>Mycobacterium tuberculosis</i> complex to pretomanid. Journal of Antimicrobial Chemotherapy, 2022, 77, 1685-1693.	1.3	34
210	Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Frontiers in Microbiology, 2022, 13, 775030.	1.5	22
211	Chapter 8: Drug-resistant tuberculosis. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2022, 6, 109-128.	0.2	1
212	Model-Informed Precision Dosing of Linezolid in Patients with Drug-Resistant Tuberculosis. Pharmaceutics, 2022, 14, 753.	2.0	9
213	Early Bactericidal Activity of Meropenem plus Clavulanate (with or without Rifampin) for Tuberculosis: The COMRADE Randomized, Phase 2A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1228-1235.	2.5	17
214	The scientific response to TB – the other deadly global health emergency. International Journal of Tuberculosis and Lung Disease, 2022, 26, 186-189.	0.6	8
215	Safety and Effectiveness Outcomes From a 14-Country Cohort of Patients With Multi-Drug Resistant Tuberculosis Treated Concomitantly With Bedaquiline, Delamanid, and Other Second-Line Drugs. Clinical Infectious Diseases, 2022, 75, 1307-1314.	2.9	14
216	Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC-Antimicrobial Resistance, 2022, 4, dlac029.	0.9	24
217	Single Ascending-Dose Study To Evaluate the Safety, Tolerability, and Pharmacokinetics of Sutezolid in Healthy Adult Subjects. Antimicrobial Agents and Chemotherapy, 2022, 66, e0210821.	1.4	7
218	Randomized Clinical Trial of High-Dose Rifampicin With or Without Levofloxacin Versus Standard of Care for Pediatric Tuberculous Meningitis: The TBM-KIDS Trial. Clinical Infectious Diseases, 2022, 75, 1594-1601.	2.9	12
219	Efficacy of inhaled CPZEN-45 in treating tuberculosis in the guinea pig. Tuberculosis, 2022, 135, 102207.	0.8	4
220	Population pharmacokinetics and pharmacodynamics of investigational regimens' drugs in the TB-PRACTECAL clinical trial (the PRACTECAL-PKPD study): a prospective nested study protocol in a randomised controlled trial. BMJ Open, 2021, 11, e047185.	0.8	5
221	Nanocarrier-Based Approaches for the Efficient Delivery of Anti-Tubercular Drugs and Vaccines for Management of Tuberculosis. Frontiers in Pharmacology, 2021, 12, 749945.	1.6	8
222	Machine Learning Models for <i>Mycobacterium tuberculosis</i> Â <i>In Vitro</i> Activity: Prediction and Target Visualization. Molecular Pharmaceutics, 2022, 19, 674-689.	2.3	8
224	Anti-Mycobacterial Drug Resistance in Japan: How to Approach This Problem?. Antibiotics, 2022, 11, 19.	1.5	0
225	Sterile tuberculous granuloma in a patient with XDR-TB treated with bedaquiline, pretomanid and linezolid. BMJ Case Reports, 2021, 14, e245612.	0.2	3

#	Article	IF	CITATIONS
227	Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics, 2021, 10, 1515.	1.5	8
228	Perfil epidemiológico dos pacientes que evoluÃram para óbito por tuberculose no PiauÃ-entre 2016 e 2020. Research, Society and Development, 2021, 10, e143101724414.	0.0	Ο
229	Treatment of Rifampicin-Resistant Tuberculosis Disease and Infection in Children: Key Updates, Challenges and Opportunities. Pathogens, 2022, 11, 381.	1.2	13
231	Linezolid for patients with multidrug-resistant tuberculosis/extensively drug-resistant tuberculosis in China. Drug Discoveries and Therapeutics, 2022, , .	0.6	0
232	Bedaquiline Adherence Measured by Electronic Dose Monitoring Predicts Clinical Outcomes in the Treatment of Patients With Multidrug-Resistant Tuberculosis and HIV/AIDS. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 90, 325-332.	0.9	3
233	Patient-centered approach to the management of drug-resistant tuberculosis in France: How far off the mark are we?. PLOS Global Public Health, 2022, 2, e0000313.	0.5	1
238	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	5.8	22
239	Toxicity and toxicokinetic assessment of an anti-tubercular drug pretomanid in cynomolgus monkeys. Toxicology Reports, 2022, 9, 927-936.	1.6	2
240	In vitro activity of tedizolid and linezolid against multidrug-resistant Mycobacterium tuberculosis: a comparative study using microdilution broth assay and genomics. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115714.	0.8	3
241	Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology, 2022, 20, 685-701.	13.6	142
242	Effects of Glycyrrhiza Polysaccharides on Chickens' Intestinal Health and Homeostasis. Frontiers in Veterinary Science, 2022, 9, .	0.9	5
243	New Quinoline–Urea–Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals, 2022, 15, 576.	1.7	11
244	Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infectious Diseases, The, 2022, 22, 1042-1051.	4.6	28
245	Treatment of Tuberculosis and the Drug Interactions Associated With HIV-TB Co-Infection Treatment. Frontiers in Tropical Diseases, 2022, 3, .	0.5	5
246	Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. The Cochrane Library, 2022, 2022, CD014841.	1.5	14
247	Linezolid-Associated Neuropathy in Patients with MDR/XDR Tuberculosis in Shenzhen, China. Infection and Drug Resistance, 0, Volume 15, 2617-2624.	1.1	10
248	Safety and pharmacokinetic profile of pretomanid in healthy Chinese adults: Results of a phase I single dose escalation study. Pulmonary Pharmacology and Therapeutics, 2022, 73-74, 102132.	1.1	3
249	CSK2556286 Is a Novel Antitubercular Drug Candidate Effective <i>In Vivo</i> with the Potential To Shorten Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	12

#	Article	IF	CITATIONS
250	High mortality among patients hospitalized for drugâ€resistant tuberculosis with acquired secondâ€line drug resistance and high <scp>HIV</scp> prevalence. HIV Medicine, 2022, 23, 1085-1097.	1.0	2
251	Tuberculosis Drug Discovery: Challenges and New Horizons. Journal of Medicinal Chemistry, 2022, 65, 7489-7531.	2.9	59
252	Effectiveness of the Novel Anti-TB Bedaquiline against Drug-Resistant TB in Africa: A Systematic Review of the Literature. Pathogens, 2022, 11, 636.	1.2	3
253	Bedaquiline-containing regimens and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Jornal Brasileiro De Pneumologia, 0, , e20210384.	0.4	17
254	Insights into innovative therapeutics for drug-resistant tuberculosis: Host-directed therapy and autophagy inducing modified nanoparticles. International Journal of Pharmaceutics, 2022, 622, 121893.	2.6	5
255	Can Pan-TB shorter regimens be a promising hope for ending TB in India by 2025 in ongoing COVID-19 era?. Indian Journal of Tuberculosis, 2022, , .	0.3	0
256	Association Between Increased Linezolid Plasma Concentrations and the Development of Severe Toxicity in Multidrug-Resistant Tuberculosis Treatment. Clinical Infectious Diseases, 2023, 76, e947-e956.	2.9	7
257	TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II–III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials, 2022, 23, .	0.7	22
258	Pharmacokinetic-Pharmacodynamic Determinants of Clinical Outcomes for Rifampin-Resistant Tuberculosis: A Multisite Prospective Cohort Study. Clinical Infectious Diseases, 2023, 76, 497-505.	2.9	4
259	A narrative review of tuberculosis in the United States among persons aged 65Âyears and older. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2022, 28, 100321.	0.6	8
260	Predicting resistance to fluoroquinolones among patients with rifampicin-resistant tuberculosis using machine learning methods. , 2022, 1, e0000059.		1
261	Bedaquiline, Delamanid, Linezolid, and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2023, 76, e938-e946.	2.9	29
262	Male reproductive hormones in patients treated with pretomanid. International Journal of Tuberculosis and Lung Disease, 2022, 26, 558-565.	0.6	2
263	Clinical standards for the dosing and management of TB drugs. International Journal of Tuberculosis and Lung Disease, 2022, 26, 483-499.	0.6	22
264	Assessment of the Carcinogenic Potential of Pretomanid in Transgenic Tg.rasH2 Mice. International Journal of Toxicology, 0, , 109158182211132.	0.6	0
265	To End Tuberculosis, India must Embrace Innovation: Lessons from the ZeNix Trial Results. The Indian Journal of Chest Diseases & Allied Sciences, 2022, 64, 63-64.	0.1	1
266	Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms, 2022, 10, 1421.	1.6	4
267	Bedaquiline and Linezolid improve anti-TB treatment outcome in drug-resistant TB patients with HIV: A systematic review and meta-analysis. Pharmacological Research, 2022, 182, 106336.	3.1	9

#	Article		CITATIONS
268	Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. MBio, 2022, 13, .	1.8	8
269	Comparing timelines and evidence available to support new TB, HIV, and HCV drug approvals: The same, only different. PLoS ONE, 2022, 17, e0271102.	1.1	3
272	Linezolid Exposure Is Associated with Cytopenias in Patients Treated for Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	7
273	Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opinion on Drug Discovery, 2022, 17, 929-947.	2.5	6
274	Availability and costs of medicines for the treatment of tuberculosis in Europe. Clinical Microbiology and Infection, 2023, 29, 77-84.	2.8	17
275	Bedaquiline-based treatment for extensively drug-resistant tuberculosis in South Africa: A cost-effectiveness analysis. PLoS ONE, 2022, 17, e0272770.	1.1	0
276	The contribution of drug import to the cost of tuberculosis treatment: A cost analysis of longer, shorter, and short drug regimens for Karakalpakstan, Uzbekistan. PLOS Global Public Health, 2022, 2, e0000567.	0.5	3
277	Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Frontiers in Public Health, 0, 10, .	1.3	8
278	Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
279	The second national antiâ€tuberculosis drugâ€resistance survey in Tanzania, 2017â€18. Tropical Medicine and International Health, 0, , .	1.0	2
280	Revised Definitions of Tuberculosis Resistance and Treatment Outcomes, France, 2006–2019. Emerging Infectious Diseases, 2022, 28, 1796-1804.	2.0	7
281	Bottlenecks and opportunities in antibiotic discovery against Mycobacterium tuberculosis. Current Opinion in Microbiology, 2022, 69, 102191.	2.3	10
282	Pretomanid for tuberculosis treatment: an update for clinical purposes. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100128.	1.7	6
283	Infectious Diseases of the Peripheral Nerve and Spinal Cord. , 2022, , 205-234.		0
285	Question 19., 2022, , 41-42.		0
286	Multiple Choice Questions with explanations. , 2022, , 1-267.		0
287	Randomised trial to evaluate the effectiveness and safety of varying doses of linezolid with bedaquiline and pretomanid in adults with pre-extensively drug-resistant or treatment intolerant/non-responsive multidrug-resistant pulmonary tuberculosis: study protocol. BMJ Open, 2022, 12, e058606.	0.8	0
288	RNase HI Depletion Strongly Potentiates Cell Killing by Rifampicin in Mycobacteria. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	2

#	Article	IF	Citations
289	Structure-Based Optimization of Coumestan Derivatives as Polyketide Synthase 13-Thioesterase(Pks13-TE) Inhibitors with Improved hERG Profiles for <i>Mycobacterium tuberculosis</i> Treatment. Journal of Medicinal Chemistry, 2022, 65, 13240-13252.	2.9	8
291	Linezolid for Drug-Resistant Tuberculosis. New England Journal of Medicine, 2022, 387, 842-843.	13.9	9
292	Failing upwards: Genetics-based strategies to improve antibiotic discovery and efficacy in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
293	Mechanism underlying linezolid-induced peripheral neuropathy in multidrug-resistant tuberculosis. Frontiers in Pharmacology, 0, 13, .	1.6	3
294	Diagnosis and treatment of tuberculosis in adults with HIV. Medicine (United States), 2022, 101, e30405.	0.4	6
295	Bedaquiline–Pretomanid–Linezolid Regimens for Drug-Resistant Tuberculosis. New England Journal of Medicine, 2022, 387, 810-823.	13.9	153
296	Rifampicin resistance and mortality in patients hospitalised with HIV-associated tuberculosis. Southern African Journal of HIV Medicine, 2022, 23, .	0.3	0
297	A Mycobacterium tuberculosis-Infected Patient Who Could Not Tolerate Oral Intake Successfully Treated Using an Intravenous Tedizolid-Containing Regimen. American Journal of Case Reports, 0, 23, .	0.3	1
298	Linezolid-Induced Pancytopenia in Patients Using Dapagliflozin: A Case Series. Infection and Drug Resistance, 0, Volume 15, 5509-5517.	1.1	3
299	Optimization and Scale Up of Spray Dried CPZEN-45 Aerosol Powders for Inhaled Tuberculosis Treatment. Pharmaceutical Research, 2022, 39, 3359-3370.	1.7	2
300	Pretomanid in the Treatment of Patients with Tuberculosis in the United States. New England Journal of Medicine, 2022, 387, 850-852.	13.9	9
301	Design principles to assemble drug combinations for effective tuberculosis therapy using interpretable pairwise drug response measurements. Cell Reports Medicine, 2022, 3, 100737.	3.3	16
302	"Upcycling―known molecules and targets for drug-resistant TB. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
303	Drug Degradation Caused by <i>mce3R</i> Mutations Confers Contezolid (MRX-I) Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	3
304	Low-Dose Linezolid for Treatment of Patients With Multidrug-Resistant Tuberculosis. Open Forum Infectious Diseases, 2022, 9, .	0.4	3
305	The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clinical Microbiology Reviews, 2022, 35, .	5.7	10
306	Programmatic management of rifampicin-resistant tuberculosis with standard regimen in Cameroon: a retrospective cohort study. International Journal of Infectious Diseases, 2022, 124, 81-88.	1.5	1
307	Temporal trend of drug-resistant tuberculosis among Thai children during 2006–2021. IJID Regions, 2022, 5, 79-85.	0.5	3

#	Article		CITATIONS
308	Pretomanid development and its clinical roles in treating tuberculosis. Journal of Global Antimicrobial Resistance, 2022, 31, 175-184.	0.9	6
309	Adverse effects induced by second-line antituberculosis drugs: an update based on last WHO treatment recommendations for drug-resistant tuberculosis. Pneumologia, 2021, 70, 117-126.	0.1	0
310	Advances in Diagnostics of Pulmonary TB: What Is the Latest Approach to Diagnose Pulmonary TB?. Respiratory Disease Series, 2022, , 103-120.	0.1	0
311	Advances in Treatment of Drug-Resistant Pulmonary TB: What Is the Latest Approach to Treat Drug-Resistant Pulmonary TB?. Respiratory Disease Series, 2022, , 133-165.	0.1	0
312	Clinical Trials of TB: Challenges and Opportunities. Respiratory Disease Series, 2022, , 257-279.	0.1	0
313	Safety and effectiveness of all-oral and injectable-containing, bedaquiline-based long treatment regimen for pre-XDR tuberculosis in Vietnam. Frontiers in Pharmacology, 0, 13, .	1.6	2
314	New Drugs and Regimens for Tuberculosis Disease Treatment in Children and Adolescents. Journal of the Pediatric Infectious Diseases Society, 2022, 11, S101-S109.	0.6	3
315	Sequencing Mycobacteria and Algorithm-determined Resistant Tuberculosis Treatment (SMARTT): a study protocol for a phase IV pragmatic randomized controlled patient management strategy trial. Trials, 2022, 23, .	0.7	4
316	9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet, The, 2022, 400, 1522-1530.	6.3	16
317	Synthetic approaches to potent heterocyclic inhibitors of tuberculosis: A decade review. Frontiers in Pharmacology, 0, 13, .	1.6	2
319	Lysyl-tRNA synthetase, a target for urgently needed M. tuberculosis drugs. Nature Communications, 2022, 13, .	5.8	10
320	Childhood Tuberculosis: Historical Perspectives, Recent Advances, and a Call to Action. Journal of the Pediatric Infectious Diseases Society, 2022, 11, S63-S66.	0.6	0
321	Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
322	Minocycline intra-bacterial pharmacokinetic hysteresis as a basis for pharmacologic memory and a backbone for once-a-week pan-tuberculosis therapy. Frontiers in Pharmacology, 0, 13, .	1.6	0
323	M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life, 2022, 12, 1774.	1.1	4
324	Recent Advances of DprE1 Inhibitors against <i>Mycobacterium tuberculosis</i> : Computational Analysis of Physicochemical and ADMET Properties. ACS Omega, 2022, 7, 40659-40681.	1.6	11
326	Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet, The, 2022, 400, 1858-1868.	6.3	43
327	Treatment options for children with multi-drug resistant tuberculosis. Expert Review of Clinical Pharmacology, 2023, 16, 5-15.	1.3	7

#	Article	IF	CITATIONS
328	Pharmacodynamics and Bactericidal Activity of Combination Regimens in Pulmonary Tuberculosis: Application to Bedaquiline-Pretomanid-Pyrazinamide. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	0
330	Efficacy of Tuberculosis Treatment in Patients with Drug-Resistant Tuberculosis with the Use of Bedaquiline: The Experience of the Russian Federation. Antibiotics, 2022, 11, 1622.	1.5	2
331	Effectiveness and safety of bedaquiline-based, modified all-oral 9–11-month treatment regimen for rifampicin-resistant tuberculosis in Vietnam. International Journal of Infectious Diseases, 2023, 126, 148-154.	1.5	4
332	A revolution in the management of multidrug-resistant tuberculosis. Lancet, The, 2022, 400, 1823-1825.	6.3	6
333	Lifesaving, cost-saving: Innovative simplified regimens for drug-resistant tuberculosis. PLOS Global Public Health, 2022, 2, e0001287.	0.5	3
334	Targeting the phosphoserine phosphatase MtSerB2 for tuberculosis drug discovery, an hybrid knowledge based /fragment based approach. European Journal of Medicinal Chemistry, 2023, 245, 114935.	2.6	2
336	A New Benzothiazolthiazolidine Derivative, 11726172, Is Active <i>In Vitro</i> , <i>In Vivo</i> , and against Nonreplicating Cells of Mycobacterium tuberculosis. MSphere, 0, , .	1.3	0
337	Are We Moving Towards Development of Universal Drug Regimen for Treatment of Tuberculosis?. The Indian Journal of Chest Diseases & Allied Sciences, 2022, 62, 5-7.	0.1	0
340	Selection bias in multidrug-resistant tuberculosis cohort studies assessing sputum culture conversion. PLoS ONE, 2022, 17, e0276457.	1.1	3
341	Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in <i>Mycobacterium tuberculosis</i> . Science Advances, 2022, 8, .	4.7	3
342	Drug Repurposing Approaches towards Defeating Multidrug-Resistant Gram-Negative Pathogens: Novel Polymyxin/Non-Antibiotic Combinations. Pathogens, 2022, 11, 1420.	1.2	7
344	Pathogenicity and virulence of <i>Mycobacterium tuberculosis</i> . Virulence, 2023, 14, .	1.8	27
345	Bedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: a retrospective cohort analysis. BMC Infectious Diseases, 2022, 22, .	1.3	11
346	Factors Associated With Receiving Longer Than Recommended Therapy Among Culture-Negative Pulmonary Tuberculosis Patients. Open Forum Infectious Diseases, 2022, 9, .	0.4	0
347	Emergence of phenotypic and genotypic antimicrobial resistance in Mycobacterium tuberculosis. Scientific Reports, 2022, 12, .	1.6	0
348	The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs, 2022, 82, 1695-1715.	4.9	17
349	A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis. New England Journal of Medicine, 2022, 387, 2331-2343.	13.9	86
350	Assessing Pretomanid for Tuberculosis (APT), a Randomized Phase 2 Trial of Pretomanid-Containing Regimens for Drug-Sensitive Tuberculosis: 12-Week Results. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 929-9 <u>35.</u>	2.5	4

#	Article	IF	CITATIONS
351	Safety of chemotherapy of MDR/XDR-TB patients in high HIV prevalence settings. Tuberculosis and Lung Diseases, 2022, 100, 56-65.	0.2	1
352	New and Repurposed Drugs for the Treatment of Active Tuberculosis: An Update for Clinicians. Respiration, 2023, 102, 83-100.	1.2	9
353	Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opinion on Drug Discovery, 2023, 18, 83-97.	2.5	6
354	Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Frontiers in Microbiology, 0, 13, .	1.5	9
355	Two Steps Forward, One Step Back. New England Journal of Medicine, 2022, 387, 2380-2381.	13.9	1
356	Costs and import costs of past, present, and future TB drug regimens: a case study for Karakalpakstan, Uzbekistan. Journal of Public Health, 0, , .	1.0	2
357	Cost-effectiveness of short, oral treatment regimens for rifampicin resistant tuberculosis. PLOS Global Public Health, 2022, 2, e0001337.	0.5	6
358	A Phase 2A Trial of the Safety and Tolerability of Increased Dose Rifampicin and Adjunctive Linezolid, With or Without Aspirin, for Human Immunodeficiency Virus–Associated Tuberculous Meningitis: The LASER-TBM Trial. Clinical Infectious Diseases, 2023, 76, 1412-1422.	2.9	10
360	A comparison of clinical development pathways to advance tuberculosis regimen development. BMC Infectious Diseases, 2022, 22, .	1.3	1
361	Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Annals of Medicine, 2023, 55, 311-318.	1.5	10
362	Liposomal Delivery of Saquinavir to Macrophages Overcomes Cathepsin Blockade by Mycobacterium tuberculosis and Helps Control the Phagosomal Replicative Niches. International Journal of Molecular Sciences, 2023, 24, 1142.	1.8	7
364	Discovery of new inhibitors of Mycobacterium tuberculosis EPSP synthase - A computational study. Journal of Molecular Graphics and Modelling, 2023, , 108404.	1.3	1
365	The Myxobacterial Antibiotic Myxovalargin: Biosynthesis, Structural Revision, Total Synthesis, and Molecular Characterization of Ribosomal Inhibition. Journal of the American Chemical Society, 2023, 145, 851-863.	6.6	4
366	New treatments for Drug Resistant TB: Past imperfect, future bright. Lung India, 2023, 40, 1.	0.3	0
367	A prospective patient registry to monitor safety, effectiveness, and utilisation of bedaquiline in patients with multidrug-resistant tuberculosis in South Korea. BMC Infectious Diseases, 2023, 23, .	1.3	1
368	Population pharmacokinetics and dose evaluations of linezolid in the treatment of multidrug-resistant tuberculosis. Frontiers in Pharmacology, 0, 13, .	1.6	2
369	Promise and Peril of Pretomanid-Rifamycin Regimens for Drug-Susceptible Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	0
370	Contemporary Pharmacotherapies for Nontuberculosis Mycobacterial Infections: A Narrative Review. Infectious Diseases and Therapy, 2023, 12, 343-365.	1.8	2

#	Article	IF	CITATIONS
371	Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
372	Efficacy of Replacing Linezolid with OTB-658 in Anti-Tuberculosis Regimens in Murine Models. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	3
373	Cyclic AMP-Mediated Inhibition of Cholesterol Catabolism in <i>Mycobacterium tuberculosis</i> by the Novel Drug Candidate GSK2556286. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	7
374	Pharmacokinetic analysis of linezolid for multidrug resistant tuberculosis at a tertiary care centre in Mumbai, India. Frontiers in Pharmacology, 0, 13, .	1.6	0
375	Structure, mechanism and inhibition of anthranilate phosphoribosyltransferase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	4
376	ERS International congress 2022: highlights from the respiratory infections assembly. ERJ Open Research, 0, , 00628-2022.	1.1	0
377	Vanoxerine kills mycobacteria through membrane depolarization and efflux inhibition. Frontiers in Microbiology, 0, 14, .	1.5	1
378	Improved outcomes following addition of bedaquiline and clofazimine to a treatment regimen for multidrug-resistant tuberculosis. Journal of International Medical Research, 2023, 51, 030006052211484.	0.4	2
379	Update on drug treatments for multidrug resistant tuberculosis. Current Opinion in Infectious Diseases, 0, Publish Ahead of Print, .	1.3	0
380	Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomaterials Science, 2023, 11, 2103-2114.	2.6	3
381	Personalized Tuberculosis Care for Drug-Resistant Tuberculosis. Integrated Science, 2023, , 403-428.	0.1	0
382	A Novel Tool to Identify Bactericidal Compounds against Vulnerable Targets in Drug-Tolerant M. tuberculosis found in Caseum. MBio, 2023, 14, .	1.8	4
383	Molecular bases of the interaction of <i>Mycobacteria tuberculosis complex</i> and anti-tuberculosis drugs: Current state of the problem and its epidemiological significance. Epidemiology and Infectious Diseases (Russian Journal), 2023, 28, 78-97.	0.1	0
384	Decentralized, Integrated Treatment of RR/MDR-TB and HIV Using a Bedaquiline-Based, Short-Course Regimen Is Effective and Associated With Improved HIV Disease Control. Journal of Acquired Immune Deficiency Syndromes (1999), 2023, 92, 385-392.	0.9	2
385	Tuberculosis combined with HIV infection in Russia in the period before — and during the COVID-19 pandemic. HIV Infection and Immunosuppressive Disorders, 2023, 14, 29-35.	0.1	0
387	Catastrophic Costs among Tuberculosis-Affected Households in Egypt: Magnitude, Cost Drivers, and Coping Strategies. International Journal of Environmental Research and Public Health, 2023, 20, 2640.	1.2	2
388	What's new in childhood tuberculosis. Current Opinion in Pediatrics, 2023, 35, 166-175.	1.0	2
389	Designing molecular diagnostics for current tuberculosis drug regimens. Emerging Microbes and Infections, 2023, 12, .	3.0	1

#	Article	IF	CITATIONS
390	Variation in missed doses and reasons for discontinuation of anti-tuberculosis drugs during hospital treatment for drug-resistant tuberculosis in South Africa. PLoS ONE, 2023, 18, e0281097.	1.1	3
392	Shortening Tuberculosis Treatment — A Strategic Retreat. New England Journal of Medicine, 2023, 388, 939-941.	13.9	5
393	Effectiveness of Bedaquiline Use beyond Six Months in Patients with Multidrug-Resistant Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 1525-1532.	2.5	6
394	Analysis of Dynamic Efficacy Endpoints of the Nix-TB Trial. Clinical Infectious Diseases, 2023, 76, 1903-1910.	2.9	6
395	Discovery of natural-product-derived sequanamycins as potent oral anti-tuberculosis agents. Cell, 2023, 186, 1013-1025.e24.	13.5	11
396	Predictions of Bedaquiline and Pretomanid Target Attainment in Lung Lesions of Tuberculosis Patients using Translational Minimal Physiologically Based Pharmacokinetic Modeling. Clinical Pharmacokinetics, 2023, 62, 519-532.	1.6	2
397	Assessment of Structural Basis for Thiazolopyridine Derivatives as DNA Gyrase-B Inhibitors. Current Drug Discovery Technologies, 2023, 20, .	0.6	1
398	Long-term treatment outcomes in patients with multidrug-resistant tuberculosis. Clinical Microbiology and Infection, 2023, 29, 751-757.	2.8	5
399	Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. MBio, 2023, 14, .	1.8	3
400	Recent developments of imidazo[1,2- <i>a</i>]pyridine analogues as antituberculosis agents. RSC Medicinal Chemistry, 2023, 14, 644-657.	1.7	11
401	Near-field sensor array with 65-GHz CMOS oscillators can rapidly and comprehensively evaluate drug susceptibility of Mycobacterium. Scientific Reports, 2023, 13, .	1.6	1
402	Identification of a Chemical Inhibitor with a Novel Scaffold Targeting Decaprenylphosphoryl-β-D-Ribose Oxidase (DprE1). Infectious Disorders - Drug Targets, 2023, 23, .	0.4	0
403	Side-by-Side Profiling of Oxazolidinones to Estimate the Therapeutic Window against Mycobacterial Infections. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	5
404	Next-Generation Diarylquinolines Improve Sterilizing Activity of Regimens with Pretomanid and the Novel Oxazolidinone TBI-223 in a Mouse Tuberculosis Model. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	9
406	Which trial do we need? A global, adaptive, platform trial to reduce death and disability from tuberculous meningitis. Clinical Microbiology and Infection, 2023, 29, 826-828.	2.8	2
407	Advantages of analysing both pairwise SNV-distance and differing SNVs between Mycobacterium tuberculosis isolates for recurrent tuberculosis cause determination. Microbial Genomics, 2023, 9, .	1.0	0
408	Design and Synthesis of Novel Antimicrobial Agents. Antibiotics, 2023, 12, 628.	1.5	14
409	Synthesis and Characterization of Phenylalanine Amides Active against <i>Mycobacterium abscessus</i> and Other Mycobacteria. Journal of Medicinal Chemistry, 2023, 66, 5079-5098.	2.9	2

#	Article	IF	CITATIONS
410	A Case of Multidrug-Resistant (MDR) Tuberculosis and HIV Co-Infection. Cureus, 2023, , .	0.2	0
411	At Long Last: Short, All-Oral Regimens for Multidrug-Resistant Tuberculosis in the United States. Open Forum Infectious Diseases, 2023, 10, .	0.4	3
412	Designing New Magic Bullets to Penetrate the Mycobacterial Shield: An Arduous Quest for Promising Therapeutic Candidates. Microbial Drug Resistance, 0, , .	0.9	0
413	Linezolid Pharmacokinetics and Its Association with Adverse Drug Reactions in Patients with Drug-Resistant Pulmonary Tuberculosis. Antibiotics, 2023, 12, 714.	1.5	5
414	Mycobacterial Diseases. Physician Assistant Clinics, 2023, , .	0.1	0
415	Update on drug-resistant pulmonary tuberculosis treatment in hemodialysis patients. Indian Journal of Tuberculosis, 2023, , .	0.3	0
416	"Weighting―the Evidence: How Much Bedaquiline Is Enough?. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	0
417	Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development. Frontiers in Pharmacology, 0, 14, .	1.6	1
418	Design, synthesis, and biological evaluation of 1,2,4-triazole derivatives as potent antitubercular agents. Chinese Chemical Letters, 2024, 35, 108464.	4.8	1
419	Structure-directed identification of pyridine-2-methylamine derivatives as MmpL3 inhibitors for use as antitubercular agents. European Journal of Medicinal Chemistry, 2023, 255, 115351.	2.6	1
420	Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis, 2023, , 102346.	0.8	0
421	Natural products and their analogues acting against <i>Mycobacterium tuberculosis</i> : A recent update. Drug Development Research, 2023, 84, 779-804.	1.4	2
423	Medicinal Chemistry for Neglected Diseases – Malaria, Tuberculosis, Sleeping Sickness, Leishmaniasis and River Blindness. , 2023, , 873-910.		0
427	New Oxazolidinone: Tedizolid. , 2023, , 87-96.		0
429	New Anti-tuberculous Drugs: Bedaquiline, Delamanid, and Pretomanid. , 2023, , 115-127.		1
445	Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS Omega, 2023, 8, 17362-17380.	1.6	6
451	Review Article: Virulence Factors of Mycobacterium Tuberculosis. , 2023, 2, 221-237.		1
455	Tuberculosis Vaccines. , 2023, , 1158-1176.e8.		0

		CHAHON	REPORT	
#	Article		IF	CITATIONS
462	The basis of tuberculosis treatment: fundamental concepts before treating a patient. , 20)23, , 104-116.		0
466	Targeting <i>Mycobacterium tuberculosis</i> iron-scavenging tools: a recent update on s inhibitors. RSC Medicinal Chemistry, 2023, 14, 1885-1913.	iderophores	1.7	1
467	Revolutionizing control strategies against Mycobacterium tuberculosis infection through targeting of lipid metabolism. Cellular and Molecular Life Sciences, 2023, 80, .	1 selected	2.4	2
469	Treatment of drug-susceptible and drug-resistant tuberculosis. , 2023, , 117-138.			0
478	Novel pharmaceutical approaches targeting antibiotic resistance. , 2023, , .			0
521	Mycobacterium tuberculosis. , 2024, , 1569-1584.			0
536	Treatment of Drug-Resistant Pulmonary Tuberculosis. , 2023, , 227-240.			0