Improving the crop productivity in rainfed areas with vedeficit irrigation strategies

Journal of Hydrology 586, 124818

DOI: 10.1016/j.jhydrol.2020.124818

Citation Report

#	Article	IF	CITATIONS
1	Building climate resilience in degraded agricultural landscapes through water management: A case study of Bundelkhand region, Central India. Journal of Hydrology, 2020, 591, 125592.	5.4	30
2	Uncertainty of hydrologic simulation, and its impact on the design and the effectiveness of water conservation structures. Stochastic Environmental Research and Risk Assessment, 2020, 34, 973-991.	4.0	5
3	Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions. Agricultural Water Management, 2021, 243, 106464.	5.6	15
4	Optimal irrigation water allocation in Hetao Irrigation District considering decision makers' preference under uncertainties. Agricultural Water Management, 2021, 246, 106670.	5.6	35
5	Assessment of deficit irrigation efficiency. Case study: Middle Sebou and Innaouene downstream. Open Agriculture, 2021, 6, 102-114.	1.7	2
6	Building resilient agricultural system through groundwater management interventions in degraded landscapes of Bundelkhand region, Central India. Journal of Hydrology: Regional Studies, 2021, 37, 100929.	2.4	5
7	Assessing irrigated water utilization to optimize irrigation schedule in the oasis-desert ecotone of Hexi Corridor of China. Agriculture, Ecosystems and Environment, 2021, 322, 107647.	5.3	15
8	Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia. Agricultural Systems, 2021, 194, 103276.	6.1	23
9	Impact Assessment of Water Harvesting Structures in Micro-Watersheds of Nira River Basin, Maharashtra, India. Hydrospatial Analysis, 2019, 3, 72-89.	0.5	1
10	Assessment of crop parameters and groundwater level in a policy-implemented micro-watershed environment using geospatial technology. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	O
11	An integrated model to optimize irrigation amount and time in shallow groundwater area under drought conditions. Journal of Contaminant Hydrology, 2022, 246, 103956.	3.3	6
12	Impact of water conservation structures on the agricultural productivity in the context of climate change. Water Resources Management, 2022, 36, 1627-1644.	3.9	6
13	Identifying potential zones for rainwater harvesting interventions for sustainable intensification in the semi-arid tropics. Scientific Reports, 2022, 12, 3882.	3.3	14
14	Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules. Agricultural Water Management, 2022, 266, 107599.	5.6	17
15	Determining Economical Irrigation Depths in a Sandy Field Using a Combination of Weather Forecast and Numerical Simulation. Water (Switzerland), 2021, 13, 3403.	2.7	1
16	Landscape resource management for sustainable crop intensification. Environmental Research Letters, 2022, 17, 014006.	5.2	5
17	Optimizing the allocation of irrigation water for multiple crops based on the crop water allocation priority. Irrigation Science, 2023, 41, 49-68.	2.8	5
18	Shallow groundwater enhances water productivity of maize in arid area. Irrigation Science, 2022, 40, 885-908.	2.8	2

#	Article	IF	CITATIONS
19	Planning of Water-Saving Green Space System Based on GIS Technology and Archydrodata Model. Water Resources, 2022, 49, 733-742.	0.9	0
20	Shade net and mulching measures for improving soil and plant water status of fig trees under rainfed conditions. Agricultural Water Management, 2022, 271, 107796.	5.6	3
21	Role of existing and emerging technologies in advancing climate-smart agriculture through modeling: A review. Ecological Informatics, 2022, 71, 101805.	5.2	15
22	A Flashforward Look into Solutions for Fruit and Vegetable Production. Genes, 2022, 13, 1886.	2.4	0
23	Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana. Agricultural Water Management, 2022, 274, 107950.	5.6	8
24	Heavy Metal and Drought Stress in Plants: The Role of Microbes—AÂReview. Gesunde Pflanzen, 2023, 75, 695-708.	3.0	9
25	Soil nitrogen dynamics and sorghum productivity as affected by biochar in the dry tropics. Nutrient Cycling in Agroecosystems, 0, , .	2.2	0
26	Role of Water Harvesting and Supplemental Irrigation in Enhancing Agriculture Productivity of Dryland under Climate Change. , 2023, , 123-143.		0
27	Land cover change and its implications to hydrological variables and soil erodibility in Lower Baro watershed, Ethiopia: a systematic review. Sustainable Water Resources Management, 2023, 9, .	2.1	1
28	Sustainable intensification opportunities for Alfisols and Vertisols landscape of the semi-arid tropics. Agricultural Water Management, 2023, 284, 108332.	5.6	0
29	Colorado River (Argentina) Water Crisis Scenarios and Influence on Irrigation Water Quality Conditions. Sustainability, 2023, 15, 8457.	3.2	2
30	A comparative study of soil microplastic pollution sources: a review. Environmental Pollutants and Bioavailability, 2023, 35, .	3.0	1
31	Impact assessment of rainwater management interventions on land use land cover changes in Parasai-Sindh watershed of Bundelkhand Region, Central India. Ecological Engineering, 2024, 201, 107213.	3.6	0