Sensitivity optimization for NV-diamond magnetometr

Reviews of Modern Physics 92, DOI: 10.1103/revmodphys.92.015004

Citation Report

#	Article	IF	CITATIONS
1	High NV density in a pink CVD diamond grown with N2O addition. Carbon, 2020, 170, 421-429.	5.4	29
2	Is a Quantum Biosensing Revolution Approaching? Perspectives in NVâ€Assisted Current and Thermal Biosensing in Living Cells. Advanced Quantum Technologies, 2020, 3, 2000066.	1.8	36
3	Electrical Control for Extending the Ramsey Spin Coherence Time of Ion-Implanted Nitrogen-Vacancy Centers in Diamond. Physical Review Applied, 2020, 14, .	1.5	6
4	Decoherence of ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 2020, 102, .	1.1	102
5	Axon hillock currents enable single-neuron-resolved 3D reconstruction using diamond nitrogen-vacancy magnetometry. Communications Physics, 2020, 3, 174.	2.0	3
6	Ultralong Spin-Coherence Times for Rubidium Atoms in Solid Parahydrogen via Dynamical Decoupling. Physical Review Letters, 2020, 125, 043601.	2.9	11
7	Photonic quantum metrology. AVS Quantum Science, 2020, 2, .	1.8	226
8	Detection of narrow lines in the inhomogeneously broadened line of P1 centers in diamond by double modulation EPR spectroscopy. Applied Physics Letters, 2020, 117, 153503.	1.5	1
9	Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope. Physical Review Applied, 2020, 14, .	1.5	37
10	Electronic and Magneto-Optical Properties of the Molybdenum-Vacancy Center in Zirconia and Its Qubit Applications. Journal of Physical Chemistry C, 2020, 124, 18707-18713.	1.5	7
11	Vector Electrometry in a Wide-Gap-Semiconductor Device Using a Spin-Ensemble Quantum Sensor. Physical Review Applied, 2020, 14, .	1.5	17
12	Optimization of a Diamond Nitrogen Vacancy Centre Magnetometer for Sensing of Biological Signals. Frontiers in Physics, 2020, 8, .	1.0	22
13	Subnanotesla Magnetometry with a Fiber-Coupled Diamond Sensor. Physical Review Applied, 2020, 14, .	1.5	33
14	Benchmark for Synthesized Diamond Sensors Based on Isotopically Engineered Nitrogenâ€Vacancy Spin Ensembles for Magnetometry Applications. Advanced Quantum Technologies, 2020, 3, 2000074.	1.8	14
15	Enhancement of fluorescence from nitrogen-vacancy center ensemble in bulk diamond with broadband antireflection coatings. AIP Advances, 2020, 10, 085124.	0.6	2
16	Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging. Physical Review Applied, 2020, 14, .	1.5	27
17	Sensitive magnetometry in challenging environments. AVS Quantum Science, 2020, 2, .	1.8	56
18	Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam. Nano Letters, 2020, 20, 8267-8272.	4.5	30

#	Article	IF	CITATIONS
19	Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Science, 2020, 2, .	1.8	69
20	Spin-torque oscillation in a magnetic insulator probed by a single-spin sensor. Physical Review B, 2020, 102, .	1.1	17
21	Microwave-Assisted Spectroscopy Technique for Studying Charge State in Nitrogen-Vacancy Ensembles in Diamond. Physical Review Applied, 2020, 14, .	1.5	15
22	Dissipative Quantum Sensing with a Magnetometer Based on Nitrogen-Vacancy Centers in Diamond. Physical Review Applied, 2020, 14, .	1.5	8
23	Synthesis and coherent properties of 13C-enriched sub-micron diamond particles with nitrogen vacancy color centers. Carbon, 2020, 165, 395-403.	5.4	15
24	Novel color center platforms enabling fundamental scientific discovery. InformaÄnÃ-Materiály, 2021, 3, 869-890.	8.5	29
25	Magnetic Field Generation System of the Magnetic Probe With Diamond Quantum Sensor and Ferromagnetic Materials for the Detection of Sentinel Lymph Nodes With Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	5
26	High homogeneity permanent magnet for diamond magnetometry. Journal of Magnetic Resonance, 2021, 322, 106867.	1.2	6
27	Fundaments of photoelectric readout of spin states in diamond. Semiconductors and Semimetals, 2021, , 105-147.	0.4	2
28	Ultrananocrystalline Diamond Nanowires: Fabrication, Characterization, and Sensor Applications. Materials, 2021, 14, 661.	1.3	5
29	Dissipation-assisted preparation of steady spin-squeezed states of SiV centers. Physical Review A, 2021, 103, .	1.0	9
30	Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum Metasurface. , 2021, , .		0
31	Diamond quantum sensors: from physics to applications on condensed matter research. Functional Diamond, 2021, 1, 160-173.	1.7	19
32	Electron spin contrast of high-density and perfectly aligned nitrogen-vacancy centers synthesized by chemical vapor deposition. Applied Physics Express, 2021, 14, 032001.	1.1	7
33	Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Scientific Reports, 2021, 11, 2412.	1.6	39
34	Micron-Scale NV-NMR Spectroscopy with Signal Amplification by Reversible Exchange. PRX Quantum, 2021, 2, .	3.5	27
35	Enhancement of magnetic detection by ensemble NV color center based on magnetic flux concentration effect. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 147601.	0.2	4
36	Experimental progress of quantum machine learning based on spin systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 140305-140305.	0.2	1

#	Article	IF	Citations
37	The Possibility of Integrating NV Magnetometer Array by Using Wireless Microwave Excitation and Its Application in Remote Heart Sound Records. IEEE Sensors Journal, 2021, 21, 22587-22594.	2.4	6
38	Nuclear spin assisted magnetic field angle sensing. Npj Quantum Information, 2021, 7, .	2.8	11
39	Homogeneity of the negatively charged assembly of nitrogen vacancy centres in diamonds using the Quasi-finite-element optical scanning position method. Laser Physics, 2021, 31, 045201.	0.6	1
40	Semiconductor qubits in practice. Nature Reviews Physics, 2021, 3, 157-177.	11.9	164
41	Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond. Materials, 2021, 14, 833.	1.3	5
42	Integrated and Portable Magnetometer Based on Nitrogenâ€Vacancy Ensembles in Diamond. Advanced Quantum Technologies, 2021, 4, 2000111.	1.8	60
43	Imaging Damage in Steel Using a Diamond Magnetometer. Physical Review Applied, 2021, 15, .	1.5	7
44	Long-Time-Scale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets. ACS Nano, 2021, 15, 5574-5579.	7.3	28
45	Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Scientific Reports, 2021, 11, 4248.	1.6	24
46	Quantum Control for Nanoscale Spectroscopy With Diamond Nitrogen-Vacancy Centers: A Short Review. Frontiers in Physics, 2021, 8, .	1.0	16
47	Quantifying the performance of multipulse quantum sensing. Physical Review B, 2021, 103, .	1.1	6
48	Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications. Materials for Quantum Technology, 2021, 1, 025001.	1.2	40
49	Quantum sensing of intermittent stochastic signals. Physical Review A, 2021, 103, .	1.0	4
50	Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds. Nanoscale Research Letters, 2021, 16, 44.	3.1	8
51	Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. Nanophotonics, 2021, 10, 1387-1435.	2.9	32
52	Chargeâ€Assisted Engineering of Color Centers in Diamond. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2170021.	0.8	1
53	Cavity-enhanced microwave readout of a solid-state spin sensor. Nature Communications, 2021, 12, 1357.	5.8	32
54	Directional detection of dark matter with diamond. Quantum Science and Technology, 2021, 6, 024011.	2.6	15

		KLI OKI	
#	Article	IF	Citations
55	Performance analysis of diamond-based masers. Journal of Applied Physics, 2021, 129, .	1.1	5
56	Numerical Engineering of Robust Adiabatic Operations. Physical Review Applied, 2021, 15, . <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.5</td><td>4</td></mml:math>	1.5	4
57	overflow="scroll"> <mml:mrow><mml:mrow><mml:mi mathvariant="normal">N</mml:mi </mml:mrow></mml:mrow> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>V</mml:mi> â€"Diamond Magnetic Microscopy Using a Double</mml:math 	1.5	25
58	Quantum 4-Ramsey Protocol. Physical Review Applied, 2021, 15, . A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers. Review of Scientific Instruments, 2021, 92, 044904.	0.6	20
59	Enhancing spin-photon coupling with a micromagnet. Physical Review A, 2021, 103, .	1.0	12
60	Coherent single-spin electron resonance spectroscopy manifested at an exceptional-point singularity in doped polyacetylene. Physical Review A, 2021, 103, .	1.0	5
61	Improving cold-atom sensors with quantum entanglement: Prospects and challenges. Applied Physics Letters, 2021, 118, .	1.5	24
62	Quantum guidelines for solid-state spin defects. Nature Reviews Materials, 2021, 6, 906-925.	23.3	185
63	Experimental test of fluctuation relations for driven open quantum systems with an NV center. New Journal of Physics, 2021, 23, 065004.	1.2	21
64	Preferential coupling of diamond NV centres in step-index fibres. Optics Express, 2021, 29, 14425.	1.7	5
65	Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nature Communications, 2021, 12, 3223.	5.8	19
66	In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study. Frontiers in Neuroscience, 2021, 15, 643614.	1.4	5
67	Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers in diamond. , 2021, , 403-412.		0
68	Toward Quantitative Bio-sensing with Nitrogen–Vacancy Center in Diamond. ACS Sensors, 2021, 6, 2077-2107.	4.0	84
69	Direct writing of high-density nitrogen-vacancy centers inside diamond by femtosecond laser irradiation. Applied Physics Letters, 2021, 118, .	1.5	19
70	Radiative properties of rubidium atoms trapped in solid neon and parahydrogen. Physical Review A, 2021, 103, .	1.0	3
71	A flexible nitrogen-vacancy center probe for scanning magnetometry. Review of Scientific Instruments, 2021, 92, 055001.	0.6	8
72	Vector magnetometry using perfectly aligned nitrogen-vacancy center ensemble in diamond. Applied Physics Letters, 2021, 118, .	1.5	14

ATION RE

#	Article	IF	CITATIONS
73	Magnetic imaging and statistical analysis of the metamagnetic phase transition of FeRh with electron spins in diamond. Journal of Applied Physics, 2021, 129, .	1.1	10
74	Absorptive laser threshold magnetometry: combining visible diamond Raman lasers and nitrogen-vacancy centres. Materials for Quantum Technology, 2021, 1, 025003.	1.2	6
75	Quantitative study of the response of a single NV defect in diamond to magnetic noise. Physical Review B, 2021, 103, .	1.1	12
76	Shallow NV centers augmented by exploiting n-type diamond. Carbon, 2021, 178, 294-300.	5.4	14
77	Nanotesla Magnetometry with the Silicon Vacancy in Silicon Carbide. Physical Review Applied, 2021, 15,	1.5	18
78	Experimental Constraint on an Exotic Parity-Odd Spin- and Velocity-Dependent Interaction with a Single Electron Spin Quantum Sensor. Physical Review Letters, 2021, 127, 010501.	2.9	16
79	Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors. EPJ Quantum Technology, 2021, 8, .	2.9	8
80	Laser threshold magnetometry using green-light absorption by diamond nitrogen vacancies in an external cavity laser. Physical Review A, 2021, 103, .	1.0	4
81	Low Field Nano-NMR via Three-Level System Control. Physical Review Letters, 2021, 126, 220402.	2.9	10
82	Many-Electron System on Helium and Color Center Spectroscopy. Physical Review Letters, 2021, 127, 016801.	2.9	2
83	Nanoscale Vector AC Magnetometry with a Single Nitrogen-Vacancy Center in Diamond. Nano Letters, 2021, 21, 5143-5150.	4.5	19
84	Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy (NV) center in diamond. Journal of Applied Physics, 2021, 129, 241101.	1.1	10
85	Diamond Magnetometry and Gradiometry Towards Subpicotesla dc Field Measurement. Physical Review Applied, 2021, 15, .	1.5	49
86	Ground-state microwave-stimulated Raman transitions and adiabatic spin transfer in the <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mi mathvariant="normal">N <mml:mprescripts></mml:mprescripts> <mml:none /> <mml:mn>15</mml:mn> </mml:none </mml:mi </mml:mmultiscripts> nitrogen vacancy center. Physical Review</mmi:math 	1.1	8
87	8, 2021, 104, . Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins. Nature Communications, 2021, 12, 4421.	5.8	20
88	Identity Test of Single <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>NV</mml:mi></mml:mrow><mml:mrow><mr Centers in Diamond at Hz-Precision Level. Physical Review Letters, 2021, 127, 053601.</mr </mml:mrow></mml:msup></mml:mrow></mml:math>	nl:m2@>â^'<	/m <mark>ഞl:</mark> mo> </td
89	Magnetic Field Mapping Around Individual Magnetic Nanoparticle Agglomerates Using Nitrogenâ€Vacancy Centers in Diamond. Particle and Particle Systems Characterization, 2021, 38, 2100011.	1.2	3
90	A pulsed time-varying method for improving the spin readout efficiency of nitrogen vacancy centers. Journal Physics D: Applied Physics, 2021, 54, 395002.	1.3	3

#	Article	IF	Citations
91	Spin–spin interactions in defects in solids from mixed all-electron and pseudopotential first-principles calculations. Npj Computational Materials, 2021, 7, .	3.5	12
92	Materials challenges for quantum technologies based on color centers in diamond. MRS Bulletin, 2021, 46, 623-633.	1.7	19
93	High-purity solid parahydrogen. Review of Scientific Instruments, 2021, 92, 073202.	0.6	4
94	Free-space confocal magneto-optical spectroscopies at milliKelvin temperatures. , 2021, , .		0
95	Quantum sensors go flat. Nature Physics, 2021, 17, 1074-1075.	6.5	20
96	Relaxation of a dense ensemble of spins in diamond under a continuous microwave driving field. Scientific Reports, 2021, 11, 16278.	1.6	2
97	Fiberized Diamond-Based Vector Magnetometers. Frontiers in Photonics, 2021, 2, .	1.1	18
98	Optimized Planar Microwave Antenna for Nitrogen Vacancy Center Based Sensing Applications. Nanomaterials, 2021, 11, 2108.	1.9	14
99	Detection of sub-nanotesla magnetic fields by linewidth narrowing in high-density nitrogen vacancy magnetometry with pulsed ESR method. Japanese Journal of Applied Physics, 2021, 60, 092007.	0.8	4
100	Optically Enhanced Electric Field Sensing Using Nitrogen-Vacancy Ensembles. Physical Review Applied, 2021, 16, .	1.5	22
101	Single-channel vector magnetic information detection method based on diamond NV color center*. Chinese Physics B, 2021, 30, 080701.	0.7	1
102	Preparing Dicke states in a spin ensemble using phase estimation. Physical Review A, 2021, 104, .	1.0	3
103	Long-Lived Ensembles of Shallow NV [–] Centers in Flat and Nanostructured Diamonds by Photoconversion. ACS Applied Materials & Interfaces, 2021, 13, 43221-43232.	4.0	11
104	Temperature dependence of divacancy spin coherence in implanted silicon carbide. Physical Review B, 2021, 104, .	1.1	14
105	Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science, 2021, 3, .	1.8	87
106	A compact two-dimensional quantum magnetometer module based on the fixed-frequency optical detection of magnetic resonance using nitrogen vacancy centers. Applied Physics Letters, 2021, 119, .	1.5	4
107	Computational Materials Insights Into Solid-State Multiqubit Systems. PRX Quantum, 2021, 2, .	3.5	3
108	Detection of single ¹³ C spins coupled to NV center via dynamical decoupling design. Journal Physics D: Applied Physics, 2022, 55, 015301.	1.3	2

#	Article	IF	CITATIONS
109	Diamond quantum thermometry: from foundations to applications. Nanotechnology, 2021, 32, 482002.	1.3	39
110	Temperature Selective Thermometry with Subâ€Microsecond Time Resolution Using Dressedâ€Spin States in Diamond. Advanced Quantum Technologies, 2021, 4, 2100084.	1.8	3
111	Preferential Placement of Aligned Nitrogen Vacancy Centers in Chemical Vapor Deposition Overgrown Diamond Microstructures. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100373.	1.2	3
112	Identification of the spintronic Ni _{Ga} V _N center in c-GaN and its qubit applications. Journal Physics D: Applied Physics, 2021, 54, 505109.	1.3	5
113	Magnetometry based on the excited-state lifetimes of a single nitrogen-vacancy center in diamond. Applied Physics Letters, 2021, 119, .	1.5	8
114	Design and simulation of a strong and uniform microwave antenna for a large volume of nitrogen-vacancy ensembles in diamond. Journal of the Korean Physical Society, 2021, 78, 280-283.	0.3	1
115	Nanoscale localization of the near-surface nitrogen vacancy center assisted by a silicon atomic force microscopy probe. JPhys Photonics, 2021, 3, 014003.	2.2	1
116	Nanoscale zero-field detection based on single solid-state spins in diamond. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 213301.	0.2	3
117	Chargeâ€Assisted Engineering of Color Centers in Diamond. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000614.	0.8	13
118	Prospects for nuclear spin hyperpolarization of molecular samples using nitrogen-vacancy centers in diamond. Physical Review B, 2021, 103, .	1.1	19
119	An improved spin readout for nitrogen vacancy center ensemble based on a maximum likelihood estimation method. Journal Physics D: Applied Physics, 2020, 53, 455305.	1.3	5
120	Dynamic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">N<mml:mprescripts></mml:mprescripts><mml:none /><mml:mn>14</mml:mn></mml:none </mml:mi </mml:mmultiscripts></mml:math> nuclear spin polarization in nitrogen-vacancy centers in diamond. Physical Review B. 2020, 102	1.1	14
121	Comparison of different methods of nitrogen-vacancy layer formation in diamond for wide-field quantum microscopy. Physical Review Materials, 2020, 4, .	0.9	14
122	Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond. Physical Review Research, 2020, 2, .	1.3	14
123	Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2020, 2, .	1.3	78
124	Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photonics Research, 2020, 8, 1289.	3.4	18
125	Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity. Nanophotonics, 2020, 9, 4505-4518.	2.9	18
126	Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers in diamond. Nanophotonics, 2020, 10, 393-401.	2.9	13

#	Article	IF	CITATIONS
128	Widefield quantum microscopy with nitrogen-vacancy centers in diamond: Strengths, limitations, and prospects. Journal of Applied Physics, 2021, 130, .	1.1	46
129	Method for Creating High-Sensitivity Two-Stage Hall Effect Magnetometers with High Linearity and Spatial Resolution. Journal of Communications Technology and Electronics, 2021, 66, 1201-1210.	0.2	1
130	Temperature-dependent coherence properties of NV ensemble in diamond up to 600 K. Physical Review B, 2021, 104, .	1.1	7
131	Perspective on room-temperature solid-state masers. Applied Physics Letters, 2021, 119, .	1.5	7
132	Long dephasing time of NV center spins in diamond layers formed by hot ion implantation and high pressure high temperature annealing. Diamond and Related Materials, 2021, 120, 108675.	1.8	3
133	Gaussian quantum metrology in a dissipative environment. Physical Review A, 2021, 104, .	1.0	4
134	Mixed-signal data acquisition system for optically detected magnetic resonance of solid-state spins. Review of Scientific Instruments, 2021, 92, 114702.	0.6	8
135	Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophysical Reviews, 2022, 14, 41-54.	1.5	7
136	Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum Metasurface. ACS Photonics, 2021, 8, 3218-3225.	3.2	4
137	Focusing the electromagnetic field to 10â^'6λ for ultra-high enhancement of field-matter interaction. Nature Communications, 2021, 12, 6389.	5.8	14
138	Stray magnetic field and stability of time-dependent viscous electron flow. Physical Review B, 2021, 104, .	1.1	2
139	Roomâ€Temperature Solidâ€State Quantum Emitters in the Telecom Range. Advanced Quantum Technologies, 2021, 4, 2100076.	1.8	4
140	Characterization of strong NVâ^' gradient in the e-beam irradiated diamond sample. Diamond and Related Materials, 2021, 120, 108689.	1.8	6
141	Stimulated emission assisted time-gated detection of a solid-state spin. Applied Optics, 2020, 59, 6291.	0.9	1
142	Integrated microwave cavity and antenna to improve the sensitivity of diamond NV center spin-based sensors. Applied Physics Express, 2020, 13, 112002.	1.1	5
143	A biocompatible technique for magnetic field sensing at (sub)cellular scale using Nitrogen-Vacancy centers. EPJ Quantum Technology, 2020, 7, .	2.9	3
144	Impact of the laser uniformity on the magnetic sensing with nitrogen-vacancy centers in diamond. , 2020, , .		0
145	Adaptive Circuit Learning for Quantum Metrology. , 2021, , .		1

#	Article	IF	CITATIONS
147	Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy. Nature Communications, 2021, 12, 6528.	5.8	9
148	Laser Writing of Color Centers. Laser and Photonics Reviews, 2022, 16, .	4.4	23
149	Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science, 2021, 374, 1140-1144.	6.0	144
150	Imaging oersted field around current flowing wire based on a diamond scanning magnetometer. Current Applied Physics, 2022, 34, 59-63.	1.1	1
152	MANIFESTATION IN IR-LUMINESCENCE OF THE CROSS RELAXATION PROCESSES BETWEEN NV CENTERS IN WEAK MAGNETIC FIELDS. , 2021, 88, 858-871.		0
153	Tellurite Glass Rods with Submicronâ€Size Diamonds as Photonic Magnetic Field and Temperature Sensors. Advanced Quantum Technologies, 2022, 5, .	1.8	3
154	Manifestation in IR-Luminescence of Cross Relaxation Processes between NV-Centers in Weak Magnetic Fields. Journal of Applied Spectroscopy, 2022, 88, 1131-1143.	0.3	2
155	Optimization of the Double Electron–Electron Resonance for Câ€Centers in Diamond. Physica Status Solidi - Rapid Research Letters, 0, , 2100561.	1.2	0
156	Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond. Advances in Physics: X, 2022, 7, .	1.5	5
157	Multiplexed Sensing of Magnetic Field and Temperature in Real Time Using a Nitrogen-Vacancy Ensemble in Diamond. Physical Review Applied, 2022, 17, .	1.5	18
158	Using Molecular Design to Enhance the Coherence Time of Quintet Multiexcitons Generated by Singlet Fission in Single Crystals. Journal of the American Chemical Society, 2022, 144, 2276-2283.	6.6	35
159	High growth rate synthesis of diamond film containing perfectly aligned nitrogen-vacancy centers by high-power density plasma CVD. Diamond and Related Materials, 2022, 123, 108840.	1.8	11
160	Zero-field magnetometry using hyperfine-biased nitrogen-vacancy centers near diamond surfaces. Physical Review Research, 2022, 4, .	1.3	11
161	Improving NV centre density during diamond growth by CVD process using N2O gas. Diamond and Related Materials, 2022, 123, 108884.	1.8	7
162	Quantum emitters and detectors based on 2D van der Waals materials. Nanoscale, 2022, 14, 5289-5313.	2.8	12
163	Burst eddy current testing with diamond magnetometry. Applied Physics Letters, 2022, 120, . Magnetic-Field-Assisted Spectral Decomposition and Imaging of Charge States of <mml:math< td=""><td>1.5</td><td>3</td></mml:math<>	1.5	3
164	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">N</mml:mi </mml:mrow> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math 	1.5	1
165	overflow="scroll"> <mml:mi>V</mml:mi> Centers in Diamond. Physical Review Applied, 202 High-Precision Mapping of Diamond Crystal Strain Using Quantum Interferometry. Physical Review Applied, 2022, 17, .	1.5	11

#	Article	IF	CITATIONS
166	Quantum coherence of a single NV center in a spin-cavity hybrid system. European Physical Journal B, 2022, 95, 1. Orders of Magnitude Improvement in Coherence of Silicon-Vacancy Ensembles in Isotopically Purified	0.6	0
167	<pre><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mrow><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow></mml:mrow></mml:math> - <mml:math <="" display="inline" pre="" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math></pre>	3.5	3
168	overflow="scroll"> <mmtmi>SIČ</mmtmi> . PRX Quantum, 2022, 3, . Studying Quantum Materials with Scanning SQUID Microscopy. Annual Review of Condensed Matter Physics, 2022, 13, 385-405.	5.2	17
169	Proximal nitrogen reduces the fluorescence quantum yield of nitrogen-vacancy centres in diamond. New Journal of Physics, 2022, 24, 033053.	1.2	10
170	Creation of nitrogen-vacancy centers in chemical vapor deposition diamond for sensing applications. New Journal of Physics, 2022, 24, 033030.	1.2	28
171	Photoelectric Detection of Nitrogenâ€Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects. Advanced Quantum Technologies, 0, , 2100153.	1.8	2
172	Thermally Polarized Solid-State Spin Sensor. Physical Review Applied, 2022, 17, .	1.5	1
173	Nitrogen concentration control in diamonds grown in Co–(Fe)–Ti/Al solvents under high-pressure and high-temperature. Japanese Journal of Applied Physics, 2022, 61, 045507.	0.8	6
174	Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond. Carbon, 2022, 194, 282-289.	5.4	13
175	Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance. Nano Letters, 2022, 22, 461-467.	4.5	33
176	Quasi-continuous cooling of a microwave mode on a benchtop using hyperpolarized NVâ^' diamond. Applied Physics Letters, 2021, 119, .	1.5	8
177	Ensemble Negatively-Charged Nitrogen-Vacancy Centers in Type-Ib Diamond Created by High Fluence Electron Beam Irradiation. Quantum Beam Science, 2022, 6, 2.	0.6	6
178	Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond. Nano Letters, 2021, 21, 10409-10415.	4.5	6
179	Fast high-fidelity geometric quantum control with quantum brachistochrones. Physical Review Research, 2021, 3, .	1.3	9
180	Equilibrium charge state of NV centers in diamond. Applied Physics Letters, 2021, 119, .	1.5	12
181	"Core–Shell―Diamond Nanoparticles with NV [–] Centers and a Highly Isotopically Enriched ¹³ C Shell as a Promising Hyperpolarization Agent. Journal of Physical Chemistry C, 2021, 125, 27647-27653.	1.5	4
182	Dipolar spin relaxation of divacancy qubits in silicon carbide. Npj Computational Materials, 2021, 7, .	3.5	7
183	Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies. Nano Letters, 2021, 21, 10392-10399.	4.5	13

#	ARTICLE	IF	CITATIONS
184	Nanoscale spin detection of copper ions using double electron-electron resonance at room temperature. Physical Review B, 2021, 104, .	1.1	1
185	High-sensitivity double-quantum magnetometry in diamond via quantum control. , 2022, 52, 3.		0
186	Magnetic field sensitivity of the photoelectrically read nitrogen-vacancy centers in diamond. Applied Physics Letters, 2022, 120, 162402.	1.5	1
187	Zero- and Low-Field Sensing with Nitrogen-Vacancy Centers. Physical Review Applied, 2022, 17, .	1.5	13
188	A pulsed lock-in method for DC ensemble nitrogen-vacancy center magnetometry. Diamond and Related Materials, 2022, 125, 109035.	1.8	3
189	Protecting qubit coherence by spectrally engineered driving of the spin environment. Npj Quantum Information, 2022, 8, .	2.8	8
190	Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2022, 128, 177401.	2.9	11
191	Broadband composite pulse for quantum sensing with a solid-state spin in diamond. Applied Physics Letters, 2022, 120, 194001.	1.5	0
192	Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. Physical Review B, 2022, 105, .	1.1	21
193	Optimization of optical spin readout of the nitrogen-vacancy center in diamond based on spin relaxation model. AIP Advances, 2022, 12, 055215.	0.6	0
194	Luminescent diamond composites. Functional Diamond, 2022, 2, 53-63.	1.7	9
195	Beauty beyond the Eye: Color Centers in Diamond Particles for Imaging and Quantum Sensing Applications. Reviews and Advances in Chemistry, 2022, 12, 1-21.	0.2	4
196	Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Advanced Science, 2022, 9, .	5.6	17
197	One decade of quantum optimal control in the chopped random basis. Reports on Progress in Physics, 2022, 85, 076001.	8.1	31
198	Strongly correlated electron–photon systems. Nature, 2022, 606, 41-48.	13.7	66
199	Coherent Interactions between Silicon-Vacancy Centers in Diamond. Physical Review Letters, 2022, 128, ·	2.9	2
200	Magnetic-field-dependent stimulated emission from nitrogen-vacancy centers in diamond. Science Advances, 2022, 8, .	4.7	12
201	Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath. Physical Review Research, 2022, 4, .	1.3	4

	CHAID	INLPORT	
#	Article	IF	CITATIONS
202	Sensing of Arbitrary-Frequency Fields Using a Quantum Mixer. Physical Review X, 2022, 12, .	2.8	16
203	Self-calibrated Fourier transform spectrometer for laser-induced fluorescence spectroscopy with single-photon avalanche diode detection. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 1289.	0.8	2
204	Observing hyperfine interactions of NVâ´' centers in diamond in an advanced quantum teaching lab. American Journal of Physics, 2022, 90, 550-560.	0.3	3
205	Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chemical Communications, 2022, 58, 8165-8181.	2.2	19
206	Simulation of Indirect 13Câ \in "13C J-Coupling Tensors in Diamond Clusters Hosting the NV Center. , 0, , .		1
207	Strong long-range spin-spin coupling via a Kerr magnon interface. Physical Review B, 2022, 105, .	1.1	27
208	Nanoscale MRI for Selective Labeling and Localized Free Radical Measurements in the Acrosomes of Single Sperm Cells. ACS Nano, 2022, 16, 10701-10710.	7.3	19
209	Even-order harmonics in the nitrogen vacancy center in diamond from intertwined intraband and interband transitions. Physical Review B, 2022, 105, .	1.1	3
210	Experimental Quantumâ€Enhanced Machine Learning in Spinâ€Based Systems. Advanced Quantum Technologies, 0, , 2200005.	1.8	3
211	High-Speed Wide-Field Imaging of Microcircuitry Using Nitrogen Vacancies in Diamond. Physical Review Applied, 2022, 17, .	1.5	8
212	Impact of Helium Ion Implantation Dose and Annealing on Dense Near-Surface Layers of NV Centers. Nanomaterials, 2022, 12, 2234.	1.9	4
213	Optimal control of a nitrogen-vacancy spin ensemble in diamond for sensing in the pulsed domain. Physical Review B, 2022, 106, .	1.1	9
214	Diamond Spectroscopy, Defect Centers, Color, and Treatments. Reviews in Mineralogy and Geochemistry, 2022, 88, 637-688.	2.2	17
215	Detection of Single W-Centers in Silicon. ACS Photonics, 2022, 9, 2337-2345.	3.2	29
216	Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. Physical Review A, 2022, 106, .	1.0	6
217	Design of an ultra-sensitive and miniaturized diamond NV magnetometer based on a nanocavity structure. Japanese Journal of Applied Physics, 2022, 61, 082004.	0.8	6
218	Optimal quantum control of a spin qubit in diamond for biosensing. , 2022, , .		0
219	Enhanced conversion efficiency of vacancy-related color centers in diamonds grown on a patterned metal surface by chemical vapor deposition. Carbon, 2022, 198, 392-400.	5.4	4

\sim	T A T I	0.11	Repo	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
220	Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technology, 2022, 9, .	2.9	123
221	Monitoring cells local temperature variation using nitrogen-vacancy (NV) centers in nanodiamonds. , 2022, , .		1
222	Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy. Photonics Research, 2022, 10, 2147.	3.4	1
223	Coherence enhancement of solid-state qubits by local manipulation of the electron spin bath. Nature Physics, 0, , .	6.5	7
224	Single NV centers array preparation and static magnetic field detection. Optics Express, 2022, 30, 32355.	1.7	7
225	Quantum-assisted distortion-free audio signal sensing. Nature Communications, 2022, 13, .	5.8	3
226	Role of High Nitrogenâ€Vacancy Concentration on the Photoluminescence and Raman Spectra of Diamond. Physica Status Solidi (A) Applications and Materials Science, 0, , 2200299.	0.8	2
227	Decoherence of nitrogen-vacancy spin ensembles in a nitrogen electron-nuclear spin bath in diamond. Npj Quantum Information, 2022, 8, .	2.8	8
228	Microscopic Study of Optically Stable Coherent Color Centers in Diamond Generated by High-Temperature Annealing. Physical Review Applied, 2022, 18, .	1.5	3
229	Picotesla magnetometry of microwave fields with diamond sensors. Science Advances, 2022, 8, .	4.7	24
230	Experimental demonstration of adversarial examples in learning topological phases. Nature Communications, 2022, 13, .	5.8	5
231	Strain Quantum Sensing with Spin Defects in Hexagonal Boron Nitride. Nano Letters, 2022, 22, 6553-6559.	4.5	24
232	Opportunities for nitrogen-vacancy-assisted magnetometry to study magnetism in 2D van der Waals magnets. Applied Physics Letters, 2022, 121, .	1.5	8
233	Kerr effect based on two-level emitter coupled to graphene resonator and cavity. Optics Communications, 2022, 524, 128804.	1.0	1
234	High-speed two-stage Hall magnetometer with increased resolution. Sensors and Actuators A: Physical, 2022, 346, 113841.	2.0	0
235	Tunable electronic properties of diamond (100) surface via boron-nitrogen co-termination: A first-principles study. Diamond and Related Materials, 2022, 129, 109387.	1.8	1
236	Diamond surface engineering for molecular sensing with nitrogen—vacancy centers. Journal of Materials Chemistry C, 2022, 10, 13533-13569.	2.7	23
237	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15

#	Article	IF	CITATIONS
238	Turning OPM-MEG into a Wearable Technology. , 2022, , 195-223.		0
239	Dissipative Superradiant Spin Amplifier for Enhanced Quantum Sensing. PRX Quantum, 2022, 3, .	3.5	7
240	High-sensitivity and wide-bandwidth fiber-coupled diamond magnetometer with surface coating. Photonics Research, 2022, 10, 2191.	3.4	11
241	Electrical-Readout Microwave-Free Sensing with Diamond. Physical Review Applied, 2022, 18, .	1.5	2
242	Rapidly Enhanced Spin-Polarization Injection in an Optically Pumped Spin Ratchet. Physical Review Applied, 2022, 18, .	1.5	4
243	High-precision robust monitoring of charge/discharge current over a wide dynamic range for electric vehicle batteries using diamond quantum sensors. Scientific Reports, 2022, 12, .	1.6	16
244	Theory of Field-Angle-Resolved Magnetoacoustic Resonance in Spin–Triplet Systems for Application to Nitrogen–Vacancy Centers in Diamond. Journal of the Physical Society of Japan, 2022, 91, .	0.7	1
245	Generation of multipartite entanglement between spin-1 particles with bifurcation-based quantum annealing. Scientific Reports, 2022, 12, .	1.6	3
246	Accurate magnetic field imaging using nanodiamond quantum sensors enhanced by machine learning. Scientific Reports, 2022, 12, .	1.6	10
247	Vector Magnetometry Based on Polarimetric Optically Detected Magnetic Resonance. Advanced Quantum Technologies, 2022, 5, .	1.8	5
248	Multicolor-illuminated charge-state dynamics of the nitrogen-vacancy center in diamond. Physical Review A, 2022, 106, .	1.0	2
249	Symmetryâ€Protected Twoâ€Level System in the H ₃ Center Enabled by a Spin–Photon Interface: A Competitive Qubit Candidate for the NISQ Technology. Advanced Quantum Technologies, 0, , 2200044.	1.8	1
250	First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride. Npj 2D Materials and Applications, 2022, 6, .	3.9	9
251	Coherent dynamics of multi-spin V\$\${}_{{{{{{{m{B}}}}}}}}^{5\$ center in hexagonal boron nitride. Nature Communications, 2022, 13, .	5.8	25
252	Diamondâ€Based Nanoscale Quantum Relaxometry for Sensing Free Radical Production in Cells. Small, 2022, 18, .	5.2	14
253	Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision. Science Advances, 2022, 8, .	4.7	14
254	QuanEstimation: An open-source toolkit for quantum parameter estimation. Physical Review Research, 2022, 4, .	1.3	11
255	A diamond <scp>NV</scp> centersâ€based magnetic field sensor using a <scp>highâ€Q</scp> waveguide bandpass filter. International Journal of RF and Microwave Computer-Aided Engineering, 0, , .	0.8	0

#	Article	IF	CITATIONS
256	Stabilization of spin states of an open system: bichromatic driving of resonance transitions in NV ensembles in diamond. Optics Express, 2022, 30, 44350.	1.7	1
257	Sunlight-Driven Quantum Magnetometry. , 2022, 1, .		3
258	Wide-field magnetometry using nitrogen-vacancy color centers with randomly oriented micro-diamonds. Scientific Reports, 2022, 12, .	1.6	5
259	Transfer-printing-based integration of silicon nitride grating structure on single-crystal diamond toward sensitive magnetometers. Applied Physics Letters, 2022, 121, 161103.	1.5	2
260	Magnetometry goes nuclear. Nature Physics, 0, , .	6.5	0
261	Optimizing ion implantation to create shallow NV centre ensembles in high-quality CVD diamond. Materials for Quantum Technology, 2022, 2, 045001.	1.2	2
262	A Decade of Advancement of Quantum Sensing and Metrology in India Using Cold Atoms and Ions. Journal of the Indian Institute of Science, 2023, 103, 609-632.	0.9	4
263	Photonic Indistinguishability of the Tin-Vacancy Center in Nanostructured Diamond. Physical Review Letters, 2022, 129, .	2.9	18
264	Anti-Stokes excitation of optically active point defects in semiconductor materials. Materials for Quantum Technology, 2022, 2, 042001.	1.2	2
265	<i>n</i> -type diamond synthesized with <i>tert</i> -butylphosphine for long spin coherence times of perfectly aligned NV centers. Journal of Applied Physics, 2022, 132, .	1.1	2
266	Predicting Phonon-Induced Spin Decoherence from First Principles: Colossal Spin Renormalization in Condensed Matter. Physical Review Letters, 2022, 129, .	2.9	6
267	Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]. Optical Materials Express, 2023, 13, 191.	1.6	11
268	Microwave mode cooling and cavity quantum electrodynamics effects at room temperature with optically cooled nitrogen-vacancy center spins. Npj Quantum Information, 2022, 8, .	2.8	1
269	Interaction between NV centers and substituting nitrogen complexes in diamond as a diagnostic probe of the local nitrogen concentration. Journal of Applied Physics, 2022, 132, 175705.	1.1	2
270	Quantum sensing technologies for Defence applications: the project QUANDO. , 2022, , .		0
271	dc Quantum Magnetometry below the Ramsey Limit. Physical Review Applied, 2022, 18, .	1.5	3
272	Quantum metrology with imperfect measurements. Nature Communications, 2022, 13, .	5.8	10
273	Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble. Nanomaterials, 2022, 12, 3938.	1.9	0

#	Article	IF	CITATIONS
274	Vibrationally resolved optical excitations of the nitrogen-vacancy center in diamond. Npj Computational Materials, 2022, 8, .	3.5	12
275	Boron–nitrogen co-terminated diamond (110) surface for nitrogen-vacancy quantum sensors from first-principles calculations. Journal of Physics Condensed Matter, 2023, 51, 025001.	0.7	0
276	<i>In vitro</i> recording of muscle activity induced by high intensity laser optogenetic stimulation using a diamond quantum biosensor. AVS Quantum Science, 2022, 4, .	1.8	3
277	Directional detection of dark matter using solid-state quantum sensing. AVS Quantum Science, 2022, 4,	1.8	4
278	2023 roadmap for materials for quantum technologies. Materials for Quantum Technology, 2023, 3, 012501.	1.2	12
279	New constraints on exotic spin-dependent interactions with an ensemble-NV-diamond magnetometer. National Science Review, 2023, 10, .	4.6	6
280	Nanoscale imaging of antiferromagnetic domains in epitaxial films of Cr ₂ O ₃ <i>via</i> scanning diamond magnetic probe microscopy. RSC Advances, 2022, 13, 178-185.	1.7	9
281	Challenges and prospects of in situ nuclear magnetic resonance for electrochemistry devices. Materials Today Energy, 2023, 31, 101210.	2.5	4
282	SAW Coupled Diamond NV ^{â^'} Spin Oscillators and Quantum Sensors. , 2022, , .		2
283	A Hahn-Ramsey scheme for dynamical decoupling of single solid-state qubits. Frontiers in Photonics, 0, 3, .	1.1	0
284	Intrinsic radio-frequency gradiometer. Physical Review A, 2022, 106, .	1.0	4
285	Millihertz magnetic resonance spectroscopy combining the heterodyne readout based on solid-spin sensors. Optics Express, 2023, 31, 3187.	1.7	1
286	Enhanced quantum sensing with room-temperature solid-state masers. Science Advances, 2022, 8, .	4.7	6
287	Diamond-based microwave quantum amplifier. Science Advances, 2022, 8, .	4.7	12
288	Preparation of metrological states in dipolar-interacting spin systems. Npj Quantum Information, 2022, 8, .	2.8	7
289	Enhancing quantum sensing performance by optimizing the concentration and dephasing time of the NV ensemble in CVD-diamond. Optical Materials Express, 2023, 13, 393.	1.6	1
290	Nitrogen related paramagnetic defects: Decoherence source of ensemble of NVâ^' center. Journal of Applied Physics, 2022, 132, .	1.1	8
291	Three-dimensional fourier imaging of thousands of individual solid-state quantum bits – a tool for spin-based quantum technology. Physica Scripta, 2023, 98, 035815.	1.2	1

		CITATION REPORT		
#	Article		IF	Citations
292	Nanoscale covariance magnetometry with diamond quantum sensors. Science, 2022, 3	378, 1301-1305.	6.0	13
293	Sensitivity-enhanced magnetometry using nitrogen-vacancy ensembles via adaptively o transitions overlapping. Review of Scientific Instruments, 2022, 93, 125105.	complete	0.6	2
294	Surface roughness noise analysis and comprehensive noise effects on depth-dependen of NV centers in diamond. Physical Review B, 2022, 106, .	t coherence time	1.1	1
295	Error-Mitigated Quantum Metrology via Virtual Purification. Physical Review Letters, 20	022, 129, .	2.9	16
296	Recent advances on applications of NV ^{â^'} magnetometry in condensed m Photonics Research, 2023, 11, 393.	atter physics.	3.4	10
297	Optimizing NV magnetometry for Magnetoneurography and Magnetomyography appl in Neuroscience, 0, 16, .	ications. Frontiers	1.4	4
298	Realization of high-dynamic-range broadband magnetic-field sensing with ensemble nit centers in diamond. Review of Scientific Instruments, 2023, 94, .	rogen-vacancy	0.6	3
299	Nanophotonic quantum sensing with engineered spin-optic coupling. Nanophotonics,	2023, .	2.9	3
300	An integrated and scalable experimental system for nitrogen-vacancy ensemble magne of Scientific Instruments, 2023, 94, .	tometry. Review	0.6	1
301	Machine and quantum learning for diamond-based quantum applications. Materials for Technology, 2023, 3, 012001.	r Quantum	1.2	2
302	A DDS-based integrated microwave source for fast frequency sweeping in quantum magnetic-resonance systems. AIP Advances, 2023, 13, .		0.6	2
303	Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diam Accounts of Chemical Research, 2023, 56, 95-105.	iond Sensors.	7.6	3
304	Exploiting ionization dynamics in the nitrogen vacancy center for rapid, high-contrast s charge state initialization. Physical Review Research, 2023, 5, .	spin, and	1.3	7
305	Efficient Signal Processing for Low-Cost Magnetometry Using Nitrogen Vacancy Center IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	r in Diamond.	2.4	0
306	Online optimization for optical readout of a single electron spin in diamond. Frontiers 2023, 18, .	of Physics,	2.4	2
307	Relaxation Processes and Coherent Spin Manipulations for Triplet Si–C Divacancies i Enriched Tenfold in the 13C Isotope. JETP Letters, 2022, 116, 785-790.	n Silicon Carbide	0.4	1
308	Thermal conductivity of pink CVD diamond: Influence of nitrogen-related centers. Journ Physics, 2023, 133, .	nal of Applied	1.1	4
309	Radio-Frequency Electric Field Sensing Based on a Single Solid-State Spin. Physical Rev 2023, 19, .	iew Applied,	1.5	2

#	Article	IF	CITATIONS
310	Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. Physical Review Letters, 2023, 130, .	2.9	12
311	Low-Field Microwave-Free Magnetometry Using the Dipolar Spin Relaxation of Quartet Spin States in Silicon Carbide. Physical Review Applied, 2023, 19, .	1.5	2
312	Quantumâ€Based Magnetic Field Sensors for Biosensing. Advanced Quantum Technologies, 2023, 6, .	1.8	4
313	Cooperation between Coherent Control and Noises in Quantum Metrology. Advanced Quantum Technologies, 2023, 6, .	1.8	0
314	Fast, Broad-Band Magnetic Resonance Spectroscopy with Diamond Widefield Relaxometry. ACS Sensors, 2023, 8, 1667-1675.	4.0	2
315	Fiber-Coupled Diamond Magnetometry with an Unshielded Sensitivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mn>30</mml:mn><mml:mspace <br="" width="0.1em">/><mml:mi>pT</mml:mi><mml:mo>/</mml:mo><mml:msqrt><mml:mi>Hz</mml:mi></mml:msqrt>.</mml:mspace></mml:math 	1.5	4
316	Physical Review Applied, 2023, 19. Over 100 μm thickness CVD diamond film with perfectly aligned nitrogen-vacancy centers on highly misoriented substrates. Applied Physics Express, 2023, 16, 025503.	1.1	1
317	Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers. Review of Scientific Instruments, 2023, 94, 023101.	0.6	1
318	Quantum sensors for biomedical applications. Nature Reviews Physics, 2023, 5, 157-169.	11.9	57
319	Optimal Microwave Control Pulse for Nuclear Spin Polarization and Readout in Dense Nitrogenâ€Vacancy Ensembles in Diamond. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	1
320	Fundamental quantum limits of magnetic nearfield measurements. Npj Quantum Information, 2023, 9, .	2.8	0
321	Enhanced spin-mechanical interaction with levitated micromagnets. Physical Review A, 2023, 107, .	1.0	3
322	Fast Quantum State Tomography in the Nitrogen Vacancy Center of Diamond. Physical Review Letters, 2023, 130, .	2.9	1
323	Microwave Spectrum Detection at Microscopic Scale Based on Nitrogen Vacancy Center in Diamond. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	0
324	Single-Spin Readout and Quantum Sensing Using Optomechanically Induced Transparency. Physical Review Letters, 2023, 130, .	2.9	4
325	Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field. Chinese Physics B, 0, , .	0.7	0
326	All Fiber Vector Magnetometer Based on Nitrogen-Vacancy Center. Nanomaterials, 2023, 13, 949.	1.9	1
327	Noisy intermediate-scale quantum computers. Frontiers of Physics, 2023, 18, .	2.4	19

#	Article	IF	CITATIONS
328	Insulator–metal transition characterized by multifunctional diamond quantum sensor. Applied Physics Letters, 2023, 122, .	1.5	2
329	Quantum enhanced radio detection and ranging with solid spins. Nature Communications, 2023, 14, .	5.8	4
330	Spin-Dependent Dynamics of Photocarrier Generation in Electrically Detected Nitrogen-Vacancy-Based Quantum Sensing. Physical Review Applied, 2023, 19, .	1.5	2
331	Bayesian quantum parameter estimation with Gaussian states and homodyne measurements in a dissipative environment. Results in Physics, 2023, 47, 106383.	2.0	1
332	Magnetic nanostructures. , 2024, , 112-131.		385
333	Sub-micron spin-based magnetic field imaging with an organic light emitting diode. Nature Communications, 2023, 14, .	5.8	2
334	First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects. Journal of Physical Chemistry Letters, 2023, 14, 3266-3273.	2.1	10
335	Materials Innovations for Quantum Technology Acceleration: A Perspective. Advanced Materials, 2023, 35, .	11.1	3
336	High-sensitivity optical-fiber magnetic sensor based on diamond and magnetic flux concentrators. Optics Express, 2023, 31, 14685.	1.7	2
337	Ferrimagnetic Oscillator Magnetometer. Physical Review Applied, 2023, 19, .	1.5	2
338	Optically detected magnetic resonance of silicon vacancies in 4H-SiC at elevated temperatures toward magnetic sensing under harsh environments. Journal of Applied Physics, 2023, 133, 154402.	1.1	0
349	Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS Nano, 2023, 17, 9870-9905.	7.3	8
424	Quantum sensing for earth observation at the European Space Agency: latest developments, challenges, and future prospects. , 2023, , .		0
429	Perspective: nanoscale electric sensing and imaging based on quantum sensors. , 2023, 2, .		0
462	Nano-Cylinder-Based Static Magnetic Field Concentrator with Positive Permeability. , 2023, , .		0