LRP1 is a master regulator of tau uptake and spread

Nature 580, 381-385 DOI: 10.1038/s41586-020-2156-5

Citation Report

#	Article	IF	CITATIONS
1	Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like― Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570692.	2.0	5
2	Key Physicochemical and Biological Factors of the Phase Behavior of Tau. CheM, 2020, 6, 2924-2963.	5.8	13
3	Sowing the Seeds of Discovery: Tau-Propagation Models of Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 3499-3509.	1.7	7
4	Astrocytes in Tauopathies. Frontiers in Neurology, 2020, 11, 572850.	1.1	39
5	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
6	Understanding the Pathophysiological Actions of Tau Oligomers: A Critical Review of Current Electrophysiological Approaches. Frontiers in Molecular Neuroscience, 2020, 13, 155.	1.4	20
7	Metabolism of Glycosphingolipids and Their Role in the Pathophysiology of Lysosomal Storage Disorders. International Journal of Molecular Sciences, 2020, 21, 6881.	1.8	34
8	The Cell Biology of Tau Secretion. Frontiers in Molecular Neuroscience, 2020, 13, 569818.	1.4	28
9	Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer's disease and cognitive functions. Scientific Reports, 2020, 10, 16551.	1.6	27
10	Presenilin 1 Regulates Membrane Homeostatic Pathways that are Dysregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 961-977.	1.2	15
11	Tau at the interface between neurodegeneration and neuroinflammation. Genes and Immunity, 2020, 21, 288-300.	2.2	33
12	Discontinued disease-modifying therapies for Alzheimer's disease: status and future perspectives. Expert Opinion on Investigational Drugs, 2020, 29, 919-933.	1.9	22
13	Viral Delivery of Non-Mutated Human Truncated Tau to Neurons Recapitulates Key Features of Human Tauopathy in Wild-Type Mice. Journal of Alzheimer's Disease, 2020, 77, 551-568.	1.2	11
14	Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. International Journal of Molecular Sciences, 2020, 21, 4760.	1.8	15
15	Proteomics analysis of serum small extracellular vesicles for the longitudinal study of a glioblastoma multiforme mouse model. Scientific Reports, 2020, 10, 20498.	1.6	13
16	Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. International Journal of Molecular Sciences, 2020, 21, 8948.	1.8	53
17	Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer's disease mouse model. Nature Communications, 2020, 11, 5731.	5.8	94
18	Synergy between amyloid-β and tau in Alzheimer's disease. Nature Neuroscience, 2020, 23, 1183-1193.	7.1	579

#	Article	IF	CITATIONS
19	Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opinion on Emerging Drugs, 2020, 25, 319-335.	1.0	57
20	Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Translational Medicine of Aging, 2020, 4, 60-72.	0.6	27
21	Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules, 2020, 10, 1487.	1.8	5
22	Tau Oligomers and Fibrils Exhibit Differential Patterns of Seeding and Association With RNA Binding Proteins. Frontiers in Neurology, 2020, 11, 579434.	1.1	21
23	SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine, 2020, 61, 103061.	2.7	21
24	Tau proteinopathies and the prion concept. Progress in Molecular Biology and Translational Science, 2020, 175, 239-259.	0.9	20
25	The Endosomal Recycling Pathway—At the Crossroads of the Cell. International Journal of Molecular Sciences, 2020, 21, 6074.	1.8	55
26	Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 265.	1.7	78
27	P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Molecular Neurodegeneration, 2020, 15, 47.	4.4	69
28	Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathologica Communications, 2020, 8, 137.	2.4	7
29	Commentary: LRP1 Is a Master Regulator of Tau Uptake and Spread. Frontiers in Neurology, 2020, 11, 557509.	1.1	1
30	Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Frontiers in Cell and Developmental Biology, 2020, 8, 564351.	1.8	19
31	Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Frontiers in Neurology, 2020, 11, 590059.	1.1	45
32	Conformation-selective tau monoclonal antibodies inhibit tau pathology in primary neurons and a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 64.	4.4	19
33	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
34	Mechanistic insight into the spread of tau pathology. Nature Reviews Neurology, 2020, 16, 298-298.	4.9	Ο
35	Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. Journal of Neurochemistry, 2021, 156, 563-588.	2.1	14
36	Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience, 2021, 453, 69-80.	1.1	4

		CITATION REPORT		
#	Article		IF	CITATIONS
37	A Multilevel View of the Development of Alzheimerâ \in ^{Ms} Disease. Neuroscience, 2021,	457, 283-293.	1.1	43
38	APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic Lancet Neurology, The, 2021, 20, 68-80.	approaches.	4.9	399
39	Protection against Alzheimer's disease by luteolin: Role of brain glucose regulation, antiâ€inflammatory activity, and the gut microbiotaâ€liverâ€brain axis. BioFactors, 202	21, 47, 218-231.	2.6	69
40	Novel Targets for Alzheimer's Disease: A View Beyond Amyloid. Annual Review of Medic 15-28.	ine, 2021, 72,	5.0	22
41	Alzheimer's Disease: Tau Pathology and Dysfunction of Endocytosis. Frontiers in Molec Neuroscience, 2020, 13, 583755.	ular	1.4	19
42	Proteins and Disease The Chemistry of Alzheimer Disease – Molecular, Genetic and Perspectives. , 2021, , 77-85.	Physiologic		0
43	Retromer dysfunction at the nexus of tauopathies. Cell Death and Differentiation, 202	i, 28, 884-899.	5.0	14
44	Phosphorylation of Truncated Tau Promotes Abnormal Native Tau Pathology and Neurc SSRN Electronic Journal, 0, , .	degeneration.	0.4	0
45	PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. Biological Chemistry, 2021, 296, 100636.	Journal of	1.6	21
46	Filamentous recombinant human Tau activates primary astrocytes via an integrin recep Nature Communications, 2021, 12, 95.	tor complex.	5.8	46
47	Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Frontiers in Neurolog 573324.	şy, 2020, 11,	1.1	24
48	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical 2545-2647.		23.0	406
49	Astrocytic expression of the Alzheimer's disease risk allele, ApoEε4, potentiates ne pathology in multiple preclinical models. Scientific Reports, 2021, 11, 3438.	uronal tau	1.6	19
50	Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strates 2021, 371, .	gies. Science,	6.0	133
51	Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines, 2021, 9, 1	90.	1.4	26
52	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau the National Academy of Sciences of the United States of America, 2021, 118, .	ı. Proceedings of	3.3	72
53	Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Frontiers in Cell a Developmental Biology, 2021, 9, 642623.	nd	1.8	34
54	The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. 2021, 34, 108843.	Cell Reports,	2.9	30

#	Article	IF	CITATIONS
56	Astrocytic Propagation of Tau in the Context of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 645233.	1.8	31
57	APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Molecular Psychiatry, 2021, 26, 5715-5732.	4.1	13
58	Continuous Monitoring of Tau-Induced Neurotoxicity in Patient-Derived iPSC-Neurons. Journal of Neuroscience, 2021, 41, 4335-4348.	1.7	10
59	Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Frontiers in Cell and Developmental Biology, 2021, 9, 653815.	1.8	25
60	Alzheimer disease. Nature Reviews Disease Primers, 2021, 7, 33.	18.1	784
61	Tau internalization: A complex step in tau propagation. Ageing Research Reviews, 2021, 67, 101272.	5.0	18
62	Tau-Targeted Multifunctional Nanoinhibitor for Alzheimer's Disease. ACS Applied Materials & Interfaces, 2021, 13, 23328-23338.	4.0	24
63	Environmental Risk Factors for Progressive Supranuclear Palsy. Journal of Movement Disorders, 2021, 14, 103-113.	0.7	8
64	Ken Kosik Faced Some â€~Nos' in His Career Path but His Dogged Pursuit of Alzheimer's Research Has Won This Year's Potamkin Prize. Neurology Today: an Official Publication of the American Academy of Neurology, 2021, 21, 10-11.	0.0	0
65	The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. Frontiers in Molecular Biosciences, 2021, 8, 671458.	1.6	16
67	Role of the endolysosomal pathway and exosome release in tau propagation. Neurochemistry International, 2021, 145, 104988.	1.9	9
68	The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Communications Biology, 2021, 4, 560.	2.0	38
69	Possible effects of <i>Porphyromonas gingivalis</i> on the blood–brain barrier in Alzheimer's disease. Expert Review of Anti-Infective Therapy, 2021, 19, 1367-1371.	2.0	10
70	Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Research Reviews, 2021, 67, 101307.	5.0	62
71	Identification of cis-acting determinants mediating the unconventional secretion of tau. Scientific Reports, 2021, 11, 12946.	1.6	13
72	An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Reports, 2021, 35, 109189.	2.9	8
73	ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer's disease. Nature Aging, 2021, 1, 521-534.	5.3	64
74	Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. Science Advances, 2021, 7, .	4.7	30

#	Article	IF	CITATIONS
75	Exosomal and vesicleâ€free tau seeds—propagation and convergence in endolysosomal permeabilization. FEBS Journal, 2022, 289, 6891-6907.	2.2	24
77	Olfactory Bulb Proteomics Reveals Widespread Proteostatic Disturbances in Mixed Dementia and Guides for Potential Serum Biomarkers to Discriminate Alzheimer Disease and Mixed Dementia Phenotypes. Journal of Personalized Medicine, 2021, 11, 503.	1.1	2
78	Tau Seeding Mouse Models with Patient Brain-Derived Aggregates. International Journal of Molecular Sciences, 2021, 22, 6132.	1.8	14
79	Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Frontiers in Aging Neuroscience, 2021, 13, 653334.	1.7	28
81	The human connectome in Alzheimer disease — relationship to biomarkers and genetics. Nature Reviews Neurology, 2021, 17, 545-563.	4.9	106
82	The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain, Behavior, & Immunity - Health, 2021, 14, 100242.	1.3	14
83	The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomedicine and Pharmacotherapy, 2021, 139, 111667.	2.5	15
84	Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Reports, 2021, 36, 109419.	2.9	78
85	From Junk to Function: LncRNAs in CNS Health and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 714768.	1.4	27
86	Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nature Reviews Neurology, 2021, 17, 601-620.	4.9	41
87	Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 73-99.	9.6	81
88	APOE genotype moderates the relationship between LRP1 polymorphism and cognition across the Alzheimer's disease spectrum via disturbing default mode network. CNS Neuroscience and Therapeutics, 2021, 27, 1385-1395.	1.9	7
90	Pneumonia initiates a tauopathy. FASEB Journal, 2021, 35, e21807.	0.2	20
91	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Molecular Cell, 2021, 81, 4209-4227.e12.	4.5	84
92	Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron, 2021, 109, 2413-2426.e7.	3.8	57
93	Tau and Membranes: Interactions That Promote Folding and Condensation. Frontiers in Cell and Developmental Biology, 2021, 9, 725241.	1.8	27
94	Effect of High Cholesterol Regulation of LRP1 and RAGE on Aβ Transport Across the Blood-Brain Barrier in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 428-442.	0.7	19
95	Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life, 2021, 11, 938.	1.1	13

#	Article	IF	CITATIONS
96	Synaptic tau: A pathological or physiological phenomenon?. Acta Neuropathologica Communications, 2021, 9, 149.	2.4	30
97	Current directions in tau research: Highlights from Tau 2020. Alzheimer's and Dementia, 2022, 18, 988-1007.	0.4	42
98	Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 2021, 184, 5163-5178.e24.	13.5	46
99	Pathologic tau conformer ensembles induce dynamic, liquid-liquid phase separation events at the nuclear envelope. BMC Biology, 2021, 19, 199.	1.7	23
100	Editorial: Tau Pathology in Neurological Disorders. Frontiers in Neurology, 2021, 12, 754669.	1.1	2
101	Rare germline variants in individuals diagnosed with schizophrenia within multiplex families. Psychiatry Research, 2021, 303, 114038.	1.7	6
102	Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. Journal of Biological Chemistry, 2021, 297, 101108.	1.6	4
103	An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. Journal of Biological Chemistry, 2021, 296, 100663.	1.6	12
104	Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. Journal of Biological Chemistry, 2021, 296, 100715.	1.6	52
111	Blocking tau propagation. Science Signaling, 2020, 13, .	1.6	1
112	Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nature Communications, 2021, 12, 5739.	5.8	42
113	Tau Pathology in Neurodegenerative Diseases. Neuromethods, 2022, , 71-97.	0.2	1
114	<scp><i>LRP1</i></scp> : A Novel Mediator of Tau Uptake. Movement Disorders, 2020, 35, 1136-1136.	2.2	1
116	Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Molecular Psychiatry, 2022, 27, 269-280.	4.1	6
117	Editorial: Tau Protein: Mechanisms From Health to Degeneration. Frontiers in Molecular Neuroscience, 2021, 14, 743986.	1.4	0
118	Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 2021, 22, 723-740.	4.9	33
119	Neurotoxic Astrocytes Secreted Glypican-4 Drives Alzheimer's Tau Pathology. SSRN Electronic Journal, O, , .	0.4	1
120	Secretases in Alzheimer's disease: Novel insights into proteolysis of APP and TREM2. Current Opinion in Neurobiology, 2022, 72, 101-110.	2.0	28

\sim	T . T	1011	DEDC	NDT.
		10N	REPC	ד אונ
\sim	/		ICEI C	

#	ARTICLE	IF	CITATIONS
121	Tau Oligomer Induced HMGB1 Release Contributes to Cellular Senescence and Neuropathology Linked to Alzheimer's Disease and Frontotemporal Dementia. SSRN Electronic Journal, 0, , .	0.4	0
122	The Blood-Brain Barrier in Alzheimer's Disease. Handbook of Experimental Pharmacology, 2020, , 247-266.	0.9	12
123	A receptor that lets dementia-associated tau proteins into neurons. Nature, 2020, 580, 326-327.	13.7	3
124	The apolipoprotein receptor LRP3 compromises APP levels. Alzheimer's Research and Therapy, 2021, 13, 181.	3.0	9
126	The Reciprocal Interaction Between Sleep and Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2021, 1344, 169-188.	0.8	1
127	Post-translational modifications within tau paired helical filament nucleating motifs perturb microtubule interactions and oligomer formation. Journal of Biological Chemistry, 2022, 298, 101442.	1.6	16
128	Presenilin/Ĵ ³ -Secretase Activity Is Located in Acidic Compartments of Live Neurons. Journal of Neuroscience, 2022, 42, 145-154.	1.7	19
129	Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications, 2021, 12, 6565.	5.8	70
130	Dysfunction of the blood–brain barrier in Alzheimer's disease: Evidence from human studies. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	51
131	Microtubule-modulating Agents in the Fight Against Neurodegeneration: Will it ever Work?. Current Neuropharmacology, 2022, 20, 782-798.	1.4	10
132	Ginsenoside compound K acts via LRP1 to alleviate Amyloid β42-induced neuroinflammation in microglia by suppressing NF-κB. Biochemical and Biophysical Research Communications, 2022, 590, 14-19.	1.0	11
133	Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. Journal of Molecular Neuroscience, 2022, 72, 772-791.	1.1	12
134	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	1.9	6
135	Human neural cell typeâ€specificÂextracellular vesicle proteome defines diseaseâ€related molecules associated with activated astrocytes in Alzheimer's disease brain. Journal of Extracellular Vesicles, 2022, 11, e12183.	5.5	54
136	The Protective Role of Hippocampal LRP1 Knockdown Involves Synaptic Plasticity Through the Promoting Microtubule Dynamics and Activation of Akt/GSK-31² Pathway in Depressive Rats. SSRN Electronic Journal, 0, , .	0.4	0
137	Cytotoxic tau released from lung microvascular endothelial cells upon infection with Pseudomonas aeruginosa promotes neuronal tauopathy. Journal of Biological Chemistry, 2022, 298, 101482.	1.6	14
138	Occlusal disharmony transiently decrease cognition via cognitive suppressor molecules and partially restores cognitive ability via clearance molecules. Biochemical and Biophysical Research Communications, 2022, 594, 74-80.	1.0	2
139	Cell biology of prion strains in vivo and in vitro. Cell and Tissue Research, 2022, , .	1.5	5

#	Article	IF	Citations
140	Challenges and hopes for Alzheimer's disease. Drug Discovery Today, 2022, 27, 1027-1043.	3.2	87
141	Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. Journal of Experimental Medicine, 2022, 219, .	4.2	93
143	Tau propagation is dependent on the genetic background of mouse strains. Brain Communications, 2022, 4, fcac048.	1.5	8
144	Delivery of Intravenously Administered Antibodies Targeting Alzheimer's Disease-Relevant Tau Species into the Brain Based on Receptor-Mediated Transcytosis. Pharmaceutics, 2022, 14, 411.	2.0	12
145	Tau Toxicity in Neurodegeneration. Molecular Neurobiology, 2022, 59, 3617-3634.	1.9	15
146	ApoE4 reduction: An emerging and promising therapeutic strategy for Alzheimer's disease. Neurobiology of Aging, 2022, 115, 20-28.	1.5	20
147	Rhes protein transits from neuron to neuron and facilitates mutant huntingtin spreading in the brain. Science Advances, 2022, 8, eabm3877.	4.7	12
148	Wolframin is a novel regulator of tau pathology and neurodegeneration. Acta Neuropathologica, 2022, 143, 547-569.	3.9	22
149	Aβ/tau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer's disease. Cellular and Molecular Life Sciences, 2022, 79, 222.	2.4	14
150	HMTM-Mediated Enhancement of Brain Bioenergetics in a Mouse Tauopathy Model Is Blocked by Chronic Administration of Rivastigmine. Biomedicines, 2022, 10, 867.	1.4	0
151	A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Frontiers in Aging Neuroscience, 2022, 14, 854380.	1.7	6
152	Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochemistry International, 2022, 155, 105307.	1.9	5
153	The prion protein and its ligands: Insights into structure-function relationships. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119240.	1.9	10
154	Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Seminars in Cell and Developmental Biology, 2022, 126, 125-137.	2.3	13
155	Peroxisomes in intracellular cholesterol transport: from basic physiology to brain pathology. , 2021, 1, .		3
156	Missing Inc(RNAs) in Alzheimer's Disease?. Genes, 2022, 13, 39.	1.0	3
157	Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 858429.	1.7	9
160	The Plasma Membrane Ca2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience, 2022, , .	1.1	3

#	Article	IF	CITATIONS
161	Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Reports, 2022, 39, 110776.	2.9	19
162	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	1.8	36
163	The chaperone Clusterin in neurodegenerationâ^'friend or foe?. BioEssays, 2022, 44, e2100287.	1.2	18
164	Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience, 2023, 518, 10-26.	1.1	5
165	LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer's Disease. , 2022, 13, 837.		10
167	An immuno-enrichment free, validated quantification of tau protein in human CSF by LC-MS/MS. PLoS ONE, 2022, 17, e0269157.	1.1	3
168	LDL receptor-related protein 1 (LRP1), a novel target for opening the blood-labyrinth barrier (BLB). Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	8
169	Disease modification in Parkinsonism: obstacles and ways forward. Journal of Neural Transmission, 0,	1.4	7
170	Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. Advanced Materials, 2022, 34, .	11.1	9
171	Microglia: Friend and foe in tauopathy. Progress in Neurobiology, 2022, 216, 102306.	2.8	13
172	The Fate of Tau Aggregates Between Clearance and Transmission. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
173	The emerging role of LRRK2 in tauopathies. Clinical Science, 2022, 136, 1071-1079.	1.8	12
174	Therapeutic functions of astrocytes to treat α-synuclein pathology in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
175	Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science, 2022, 377, 56-62.	6.0	107
176	Phosphorylation of Truncated Tau Promotes Abnormal Native Tau Pathology and Neurodegeneration. Molecular Neurobiology, 2022, 59, 6183-6199.	1.9	5
177	Targeting hIAPP fibrillation: A new paradigm to prevent β-cell death?. Biochimica Et Biophysica Acta - Biomembranes, 2022, , 184002.	1.4	5
178	Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer's disease. Acta Neuropathologica, 2022, 144, 843-859.	3.9	17
179	Spreading of P301S Aggregated Tau Investigated in Organotypic Mouse Brain Slice Cultures. Biomolecules, 2022, 12, 1164.	1.8	3

#	ARTICLE Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1. Proceedings of	IF	CITATIONS
180	the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
182	Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
183	HDL-like-Mediated Cell Cholesterol Trafficking in the Central Nervous System and Alzheimer's Disease Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 9356.	1.8	10
184	Structural basis of receptor usage by the engineered capsid AAV-PHP.eB. Molecular Therapy - Methods and Clinical Development, 2022, 26, 343-354.	1.8	9
185	Mesenchymal stem cell-derived exosomes altered neuron cholesterol metabolism via Wnt5a-LRP1 axis and alleviated cognitive impairment in a progressive Parkinson's disease model. Neuroscience Letters, 2022, 787, 136810.	1.0	7
186	Endocytosis in β-amyloid biology and Alzheimer's disease. , 2022, , 111-131.		0
187	LRP1 is a neuronal receptor for $\hat{l}\pm$ -synuclein uptake and spread. Molecular Neurodegeneration, 2022, 17, .	4.4	26
188	Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells, 2022, 11, 2997.	1.8	6
189	APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Molecular Neurodegeneration, 2022, 17, .	4.4	62
190	Soluble LRP-1 in Parkinson's disease: clues for paradoxical effects. International Journal of Neuroscience, 0, , 1-8.	0.8	2
191	The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells, 2022, 11, 3235.	1.8	3
192	Dysfunctional microglia and tau pathology in Alzheimer's disease. Reviews in the Neurosciences, 2023, 34, 443-458.	1.4	8
193	Immunogenicity of MultiTEP platform technology-based Tau vaccine in non-human primates. Npj Vaccines, 2022, 7, .	2.9	5
194	Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. International Journal of Molecular Sciences, 2022, 23, 13043.	1.8	7
195	Pathogenic Role of RAGE in Tau Transmission and Memory Deficits. Biological Psychiatry, 2023, 93, 829-841.	0.7	4
196	P2X7 Receptor and Purinergic Signaling: Orchestrating Mitochondrial Dysfunction in Neurodegenerative Diseases. ENeuro, 2022, 9, ENEURO.0092-22.2022.	0.9	7
197	Association between the <i>LRP1B</i> and <i>APOE</i> loci and the development of Parkinson's disease dementia. Brain, 2023, 146, 1873-1887.	3.7	12
198	ApoE in Alzheimerâ \in ${}^{\rm Ms}$ s disease: pathophysiology and therapeutic strategies. Molecular Neurodegeneration, 2022, 17, .	4.4	97

#	Article	IF	CITATIONS
199	TREM2 and microglia exosomes: a potential highway for pathological tau. Molecular Neurodegeneration, 2022, 17, .	4.4	3
200	All the Tau We Cannot See. Annual Review of Medicine, 2023, 74, 503-514.	5.0	12
201	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	3.6	1
202	The protective role of hippocampal LRP1 knockdown involves synaptic plasticity through the promoting microtubule dynamics and activation of Akt/GSK-3β pathway in depressive rats. Journal of Affective Disorders, 2023, 322, 63-75.	2.0	1
203	Amelioration of central neurodegeneration by docosahexaenoic acid in trigeminal neuralgia rats through the regulation of central neuroinflammation. International Immunopharmacology, 2023, 114, 109544.	1.7	0
204	Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Translational Neurodegeneration, 2022, 11, .	3.6	11
205	LRP1: a novel receptor for the transmission of pathological $\hat{I}\pm$ -Synuclein. Molecular Neurodegeneration, 2022, 17, .	4.4	0
206	Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays in Biochemistry, 2023, 67, 119-130.	2.1	11
207	Amyloid-β in Alzheimer's disease – front and centre after all?. Neuronal Signaling, 2023, 7, .	1.7	9
208	PICALM and Alzheimer's Disease: An Update and Perspectives. Cells, 2022, 11, 3994.	1.8	19
209	Small-molecule compound from AlphaScreen disrupts tau-glycan interface. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
210	Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 15940.	1.8	4
211	The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. BMC Molecular and Cell Biology, 2022, 23, .	1.0	5
212	Vascular endothelial cells: a fundamental approach for brain waste clearance. Brain, 2023, 146, 1299-1315.	3.7	4
213	Rate of tau propagation is a heritable disease trait in genetically diverse mouse strains. IScience, 2023, 26, 105983.	1.9	1
214	LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific TÂcell antigens. Cell Chemical Biology, 2023, 30, 55-68.e10.	2.5	4
215	Probing the Interactions of LRP1 Ectodomain-Derived Peptides with Fibrillar Tau Protein and Its Impact on Cellular Internalization. Applied Sciences (Switzerland), 2023, 13, 853.	1.3	0
216	Apoe4 and Alzheimer's Disease Pathogenesis—Mitochondrial Deregulation and Targeted Therapeutic Strategies. International Journal of Molecular Sciences, 2023, 24, 778.	1.8	21

#	Article	IF	CITATIONS
217	iPS cell technologies toward overcoming neurological diseases. Folia Pharmacologica Japonica, 2023, 158, 57-63.	0.1	0
218	The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Molecular Neurobiology, 2023, 60, 2520-2538.	1.9	7
219	Viruses for Systemic Delivery. Neuromethods, 2023, , 125-152.	0.2	0
220	Anti-malaria drug artesunate prevents development of amyloid- \hat{I}^2 pathology in mice by upregulating PICALM at the blood-brain barrier. Molecular Neurodegeneration, 2023, 18, .	4.4	6
221	The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines, 2023, 11, 408.	1.4	5
223	Structures of LRP2 reveal a molecular machine for endocytosis. Cell, 2023, 186, 821-836.e13.	13.5	13
224	Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science, 2023, 379, 1336-1341.	6.0	18
225	Tau, RNA, and RNA-Binding Proteins: Complex Interactions in Health and Neurodegenerative Diseases. Neuroscientist, 0, , 107385842311545.	2.6	1
226	The unique neuropathological vulnerability of the human brain to aging. Ageing Research Reviews, 2023, 87, 101916.	5.0	4
227	miR-204 ameliorates osteoarthritis pain by inhibiting SP1-LRP1 signaling and blocking neuro-cartilage interaction. Bioactive Materials, 2023, 26, 425-436.	8.6	4
228	Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Experimental Neurology, 2023, 362, 114337.	2.0	2
229	Toxic Tau Aggregation in AD. , 2023, , 1-30.		1
230	MoLrp1-mediated signaling induces nuclear accumulation of MoMsn2 to facilitate fatty acid oxidation for infectious growth of the rice blast fungus. Plant Communications, 2023, 4, 100561.	3.6	3
231	Network of hotspot interactions cluster tau amyloid folds. Nature Communications, 2023, 14, .	5.8	10
232	Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. Nature Aging, 2023, 3, 275-296.	5.3	25
234	TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective. Journal of Neuroinflammation, 2023, 20, .	3.1	16
235	Comparison of Three Transcytotic Pathways for Distribution to Brain Metastases of Breast Cancer. Molecular Cancer Therapeutics, 2023, 22, 646-658.	1.9	3
237	Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics, 2023, 15, 1057.	2.0	20

#	Article	IF	CITATIONS
238	Apolipoproteinâ€E Recognizes Alzheimer's Disease Associated 3â€ <i>O</i> Sulfation of Heparan Sulfate. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
239	Apolipoprotein E Recognizes Alzheimer's Disease Associated 3â€O Sulfation of Heparan Sulfate. Angewandte Chemie, 0, , .	1.6	0
240	APP mediates tau uptake and its overexpression leads to the exacerbated tau pathology. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	3
241	Endocrine Regulation of Microvascular Receptor—Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9—Mediated Regulation. Pharmaceutics, 2023, 15, 1268.	2.0	0
242	The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells, 2023, 12, 1204.	1.8	1
245	Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cellular and Molecular Neurobiology, 2023, 43, 3115-3136.	1.7	7
278	Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases. Neuroscience Bulletin, 2024, 40, 241-254.	1.5	0
286	Reply:ÂSoluble oligomers or insoluble fibrils?. Acta Neuropathologica, 0, , .	3.9	0
304	Clial Cell Biology and Their Multifaceted Functions in Alzheimer's Disease. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 280-312.	0.2	0