Beta cell-specific CD8+ T cells maintain stem cell memo during type 1 diabetes

Nature Immunology 21, 578-587 DOI: 10.1038/s41590-020-0633-5

Citation Report

#	Article	IF	CITATIONS
1	Cytocidal macrophages in symbiosis with CD4 and CD8 T cells cause acute diabetes following checkpoint blockade of PD-1 in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31319-31330.	3.3	29
2	Rewriting History: Epigenetic Reprogramming of CD8+ T Cell Differentiation to Enhance Immunotherapy. Trends in Immunology, 2020, 41, 665-675.	2.9	42
3	Assessing effector T cells in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27, 240-247.	1.2	4
4	Mass cytometry and type 1 diabetes research in the age of single-cell data science. Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27, 231-239.	1.2	6
5	MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nature Immunology, 2021, 22, 53-66.	7.0	95
6	The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Frontiers in Immunology, 2020, 11, 615371.	2.2	12
7	The many faces of islet antigenâ€specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 475-485.	1.0	6
8	Harnessing CD8 + Tâ€cell exhaustion to treat type 1 diabetes. Immunology and Cell Biology, 2021, 99, 486-495.	1.0	5
9	Epigenetic regulation of T cell adaptive immunity. Immunological Reviews, 2021, 300, 9-21.	2.8	16
10	Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nature Communications, 2021, 12, 1009.	5.8	19
11	Stem cell-like memory T cells: A perspective from the dark side. Cellular Immunology, 2021, 361, 104273.	1.4	13
12	Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR–T-cell responses against ALL. Blood, 2021, 138, 122-135.	0.6	28
13	Uncovering Pathways to Personalized Therapies in Type 1 Diabetes. Diabetes, 2021, 70, 831-841.	0.3	20
14	Remodeling the Epigenetic Landscape of Cancer—Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Frontiers in Oncology, 2021, 11, 705903.	1.3	14
15	CAR TÂcells need a pitstop to win the race. Cancer Cell, 2021, 39, 756-758.	7.7	4
16	Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nature Immunology, 2021, 22, 809-819.	7.0	113
17	Defining the Molecular Hallmarks of T-Cell Memory. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037804.	2.3	2
18	A human mutation in STAT3 promotes type 1 diabetes through a defect in CD8+ T cell tolerance. Journal of Experimental Medicine, 2021, 218, .	4.2	32

#	Article	IF	Citations
19	New developments implicating IL-21 in autoimmune disease. Journal of Autoimmunity, 2021, 122, 102689.	3.0	36
20	Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Frontiers in Immunology, 2021, 12, 725618.	2.2	22
21	Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 TÂcell effector differentiation. Cell Reports, 2021, 37, 109796.	2.9	14
22	DNA Methylation and Immune Memory Response. Cells, 2021, 10, 2943.	1.8	11
24	CD19-CAR TÂcells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Reports, 2021, 37, 110079.	2.9	48
25	An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature, 2022, 602, 156-161.	13.7	85
26	Strong Expansion of Human Regulatory T Cells for Adoptive Cell Therapy Results in Epigenetic Changes Which May Impact Their Survival and Function. Frontiers in Cell and Developmental Biology, 2021, 9, 751590.	1.8	10
27	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	5.8	123
28	Immune Reconstitution Following Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis: A Review on Behalf of the EBMT Autoimmune Diseases Working Party. Frontiers in Immunology, 2021, 12, 813957.	2.2	22
29	Epigenetics and CD8 ⁺ T cell memory*. Immunological Reviews, 2022, 305, 77-89.	2.8	22
30	Personalized Immunotherapies for Type 1 Diabetes: Who, What, When, and How?. Journal of Personalized Medicine, 2022, 12, 542.	1.1	10
32	A dormant Tâ€cell population with autoimmune potential exhibits low selfâ€reactivity and infiltrates islets in type 1 diabetes. European Journal of Immunology, 2022, 52, 1158-1170.	1.6	3
33	In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. Journal of Experimental Medicine, 2022, 219, .	4.2	42
34	Transgenic Expression of IL15 Retains CD123-Redirected T Cells in a Less Differentiated State Resulting in Improved Anti-AML Activity in Autologous AML PDX Models. Frontiers in Immunology, 2022, 13, .	2.2	7
35	Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends in Cancer, 2022, 8, 726-734.	3.8	18
36	Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nature Immunology, 2022, 23, 868-877.	7.0	32
37	Activated-memory T cells influence naÃ ⁻ ve T cell fate: a noncytotoxic function of human CD8 T cells. Communications Biology, 2022, 5, .	2.0	6
38	Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Science Alliance, 2022, 5, e202201503.	1.3	2

CITATION REPORT

#	Article	IF	CITATIONS
39	Self-antigens, benign autoimmunity and type 1 diabetes: a beta-cell and T-cell perspective. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 370-378.	1.2	5
40	Single-cell sorting based on secreted products for functionally defined cell therapies. Microsystems and Nanoengineering, 2022, 8, .	3.4	18
41	The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events?. Diabetes, 2022, 71, 1603-1610.	0.3	7
42	Stem-like T cells and niches: Implications in human health and disease. Frontiers in Immunology, 0, 13, .	2.2	2
45	Clinical and experimental treatment of type 1 diabetes. Clinical and Experimental Immunology, 2022, 210, 105-113.	1.1	4
46	The Role of Epigenetics in Autoimmune Disorders. , 2023, , 715-736.		0
47	An update on epigenetic regulation in autoimmune diseases. Journal of Translational Autoimmunity, 2022, 5, 100176.	2.0	8
48	Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nature Immunology, 2023, 24, 280-294.	7.0	11
49	Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating CD8+ TÂcells. Molecular Cell, 2023, 83, 622-636.e10.	4.5	7
50	Epitope-based precision immunotherapy of Type 1 diabetes. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	2
52	Effects of Aire on perforin expression in BMDCs via TLR7/8 and its therapeutic effect on type 1 diabetes. International Immunopharmacology, 2023, 117, 109890.	1.7	3
53	Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proceedings of the United States of America, 2023, 120, .	3.3	10
63	The immunology of type 1 diabetes. Nature Reviews Immunology, 0, , .	10.6	0

CITATION REPORT