Enrichment of Potential Halophilic <i>Marinobacter</i>Petroleum Hydrocarbons and Also as Oil Reservoir Indi

Polycyclic Aromatic Compounds 42, 400-411 DOI: 10.1080/10406638.2020.1735456

Citation Report

#	Article	IF	CITATIONS
1	Isolation and characterization of halophilic bacterial consortium from seagrass, Jeddah coast, for the degradation of petroleum hydrocarbons and treatment of hydrocarbons-contaminated boat fuel station wastewater. Clean Technologies and Environmental Policy, 2021, 23, 77-88.	4.1	5
2	Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. Environmental Science and Pollution Research, 2021, 28, 58819-58836.	5.3	10
3	Bioremediation of Diesel Contaminated Marine Water by Bacteria: A Review and Bibliometric Analysis. Journal of Marine Science and Engineering, 2021, 9, 155.	2.6	43
4	Ubiquitousness of Haloferax and Carotenoid Producing Genes in Arabian Sea Coastal Biosystems of India. Marine Drugs, 2021, 19, 442.	4.6	5
5	Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. Journal of Hazardous Materials, 2021, 413, 125351.	12.4	22
6	Role of Biosurfactants in Marine Sediment Remediation of Organic Pollutants. , 2023, , 331-370.		1
7	Enhanced crude oil degradation by remodeling of crude oil-contaminated soil microbial community structure using sodium alginate/graphene oxide/Bacillus C5 immobilized pellets. Environmental Research, 2023, 223, 115465.	7.5	5
9	Advancing Eco-Sustainable Bioremediation for Hydrocarbon Contaminants: Challenges and Solutions. Processes, 2023, 11, 3036.	2.8	0
10	Effects of electron acceptors and donors on anaerobic biodegradation of PAHs in marine sediments. Marine Pollution Bulletin, 2024, 199, 115925.	5.0	0
11	Bioaugmentation of halophilic consortium for degradation of 1,4 dioxane (1,4-DE) and treatment of cosmetic industrial wastewater in continuous stirred tank reactor under saline condition. Bioremediation Journal, 0, , 1-10.	2.0	0
12	Structures and diversities of bacterial communities in oil-contaminated soil at shale gas well site assessed by high-throughput sequencing. Environmental Science and Pollution Research, 2024, 31, 10766-10784.	5.3	0
13	Removal of hydrophobic contaminant/petroleum derivate utilizing biosurfactants. , 2024, , 193-216.		0
14	Isolation, identification, and characterization of potential biosurfactant-producing bacteria from processing wastewater for the development of eco-friendly green technology. Bioresource Technology Reports, 2024, 25, 101763.	2.7	0