The Prince William Sound Plankton Camera: a profiling particulates

ICES Journal of Marine Science 77, 1440-1455 DOI: 10.1093/icesjms/fsaa029

Citation Report

#	Article	IF	CITATIONS
1	Setting the stage for the machine intelligence era in marine science. ICES Journal of Marine Science, 2020, 77, 1267-1273.	2.5	38
2	MorphoCluster: Efficient Annotation of Plankton Images by Clustering. Sensors, 2020, 20, 3060.	3.8	28
4	Underwater dual-magnification imaging for automated lake plankton monitoring. Water Research, 2021, 203, 117524.	11.3	18
5	Improving Rare-Class Recognition of Marine Plankton with Hard Negative Mining. , 2021, , .		3
6	Development of a Buoy-Borne Underwater Imaging System for <i>In Situ</i> Mesoplankton Monitoring of Coastal Waters. IEEE Journal of Oceanic Engineering, 2022, 47, 88-110.	3.8	20
7	Focusing Evaluation for In situ Darkfield Imaging of Marine Plankton. , 2021, , .		0
8	Automated Plankton Classification With a Dynamic Optimization and Adaptation Cycle. Frontiers in Marine Science, 2022, 9, .	2.5	1
9	Temporal characteristics of plankton indicators in coastal waters: High-frequency data from PlanktonScope. Journal of Sea Research, 2022, 189, 102283.	1.6	7
10	Colorization forÂin situ Marine Plankton Images. Lecture Notes in Computer Science, 2022, , 216-232.	1.3	0
11	Discovering marine biodiversity in the 21st century. Advances in Marine Biology, 2022, , 23-115.	1.4	7
12	Seasonal Changes of Microphytoplankton Community in Prince William Sound, Alaska in 2019. Estuaries and Coasts, 2023, 46, 388-403.	2.2	1
13	Deep focus-extended darkfield imaging for in situ observation of marine plankton. Frontiers in Marine Science, 0, 10, .	2.5	0
14	Artificial Intelligence Methods in Marine Biotechnology. , 2023, , 339-354.		0
15	Toward efficient deep learning system for in-situ plankton image recognition. Frontiers in Marine Science, 0, 10, .	2.5	1
16	Automated zooplankton size measurement using deep learning: Overcoming the limitations of traditional methods. Frontiers in Marine Science, 0, 11, .	2.5	0