Significance of nanomaterials in electrochemical glucos (2016-2020)

Biosensors and Bioelectronics 159, 112165

DOI: 10.1016/j.bios.2020.112165

Citation Report

#	Article	IF	CITATIONS
1	Metal-plated 3D-printed electrode for electrochemical detection of carbohydrates. Electrochemistry Communications, 2020, 120, 106827.	2.3	46
2	Application of Electrochemical Sensors Based on Carbon Nanomaterials for Detection of Flavonoids. Nanomaterials, 2020, 10, 2020.	1.9	40
3	Sensitive detection of butylated hydroxyanisole based on free-standing paper decorated with gold and NiO nanoparticles. Microchemical Journal, 2020, 159, 105511.	2.3	9
4	Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chemical Society Reviews, 2020, 49, 7671-7709.	18.7	460
5	Universal laser-assisted growth of transition metal nanoparticles on a flexible graphene electrode for a nonenzymatic glucose sensor. New Journal of Chemistry, 2020, 44, 17954-17960.	1.4	8
6	Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosensors and Bioelectronics, 2020, 165, 112432.	5.3	84
7	General and fast synthesis of graphene frameworks using sugars for high-performance hydrogen peroxide nonenzymatic electrochemical sensor. Mikrochimica Acta, 2020, 187, 669.	2.5	7
8	One-step electrochemical sensor based on an integrated probe toward sub-ppt level Pb2+ detection by fast scan voltammetry. Analytica Chimica Acta, 2020, 1128, 174-183.	2.6	7
9	Hierarchical hollow sea-urchin-like Ni–Co diselenide encapsulated in N-doped carbon networks as an advanced core-shell bifunctional electrocatalyst for fabrication of nonenzymatic glucose and hydrogen peroxide sensors. Sensors and Actuators B: Chemical, 2020, 324, 128730.	4.0	26
10	Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors, 2020, 10, 151.	2.3	72
11	A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors, 2020, 20, 6013.	2.1	110
12	Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors, 2020, 8, 71.	1.8	19
13	Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56943-56953.	4.0	25
14	Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. Sensors, 2020, 20, 5632.	2.1	6
15	Promises of the "Nano-World―for electrochemical sensing and energy devices. Journal of Solid State Electrochemistry, 2020, 24, 2189-2191.	1.2	1
16	Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. Journal of Electroanalytical Chemistry, 2020, 873, 114354.	1.9	52
17	Electrochemical biosensors: a nexus for precision medicine. Drug Discovery Today, 2021, 26, 69-79.	3.2	40
18	Bimetallic CuCo Derived from Prussian Blue Analogue for Nonenzymatic Glucose Sensing. Electroanalysis, 2021, 33, 845-853.	1.5	11

#	ARTICLE	IF	CITATIONS
19	Selectivity, stability and reproducibility effect of CeM - CeO2 modified PIGE electrode for photoelectrochemical behaviour of energy application. Surfaces and Interfaces, 2021, 22, 100835.	1.5	19
20	Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. Sensors and Actuators B: Chemical, 2021, 329, 129205.	4.0	97
21	Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose. Dalton Transactions, 2021, 50, 95-102.	1.6	13
22	A dual-template defective 3DOMM-TiO2-x for enhanced non-enzymatic electrochemical glucose determination. Journal of Materials Science, 2021, 56, 3414-3429.	1.7	8
23	Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation. Sensors and Actuators B: Chemical, 2021, 330, 129325.	4.0	11
24	The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chemical Society Reviews, 2021, 50, 2102-2146.	18.7	28
25	Template Removal in Molecular Imprinting: Principles, Strategies, and Challenges., 2021,, 367-406.		2
26	Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Advanced Fiber Materials, 2021, 3, 47-58.	7.9	36
27	Nonenzymatic Glucose Sensors Based on Copper Sulfides: Effect of Binder-Particles Interactions in Drop-Casted Suspensions on Electrodes Electrochemical Performance. Sensors, 2021, 21, 802.	2.1	11
28	Poly(3,4-ethylenedioxythiophene) bearing fluoro-containing phenylboronic acid for specific recognition of glucose. Materials Chemistry Frontiers, 2021, 5, 7675-7683.	3.2	7
29	Facet-Dependent Cu ₂ O Electrocatalysis for Wearable Enzyme-Free Smart Sensing. ACS Catalysis, 2021, 11, 2949-2955.	5. 5	65
30	Recent Advances in In Vivo Neurochemical Monitoring. Micromachines, 2021, 12, 208.	1.4	25
31	Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochimica Acta, 2021, 370, 137744.	2.6	184
32	Strongyloidiasis Serological Analysis with Three Different Biological Probes and Their Electrochemical Responses in a Screen-Printed Gold Electrode. Sensors, 2021, 21, 1931.	2.1	4
33	An enzymatic glucose sensor based on glucose oxidase immobilized cup-stacked carbon nanofilaments. Tanso, 2021, 2021, 70-75.	0.1	0
34	Nanomaterialâ€Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. Advanced NanoBiomed Research, 2021, 1, 2000104.	1.7	30
35	Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes. Membranes, 2021, 11, 384.	1.4	20
36	Trending Technology of Glucose Monitoring during COVIDâ€19 Pandemic: Challenges in Personalized Healthcare. Advanced Materials Technologies, 2021, 6, 2100020.	3.0	20

3

#	ARTICLE	IF	Citations
37	A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 2021, 25, 101228.	2.4	42
38	Non-enzymatic glucose biofuel cells based on highly porous PtxNi1-x nanoalloys. Journal of Materials Science, 2021, 56, 13066.	1.7	6
39	Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic Glucose Detection. Materials, 2021, 14, 2493.	1.3	14
40	A novel and ultrasensitive electrochemical biosensor based on MnO2-V2O5 nanorods for the detection of the antiplatelet prodrug agent Cilostazol in pharmaceutical formulations. Microchemical Journal, 2021, 164, 105946.	2.3	10
41	A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. Journal of Alloys and Compounds, 2021, 863, 158758.	2.8	23
42	Disposable and portable gold nanoparticles modified - laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochimica Acta, 2021, 378, 138132.	2.6	42
43	Biopolymer Cooperation for Sustainable Highâ€Performance Oxidaseâ€Based Biosensing with the Simplest Possible Readout of Substrate Conversion. Advanced Materials Technologies, 2021, 6, 2100096.	3.0	5
44	Engineered CuO Nanofibers with Boosted Non-Enzymatic Glucose Sensing Performance. Journal of the Electrochemical Society, 2021, 168, 067507.	1.3	37
45	Electrochemical microgap immunosensors for selective detection of pathogenic Aspergillus niger. Journal of Hazardous Materials, 2021, 411, 125069.	6.5	7
46	Flexible porous Ni(OH)2 nanopetals sandwiches for wearable non-enzyme glucose sensors. Applied Surface Science, 2021, 552, 149529.	3.1	30
47	Reviewâ€"Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors. Journal of the Electrochemical Society, 2021, 168, 067506.	1.3	15
48	Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Nanomaterials, 2021, 11, 1893.	1.9	17
49	Phenylboronic acid functionalized helical long period grating for glucose sensing. Optical Fiber Technology, 2021, 64, 102557.	1.4	3
50	Simple and fast colorimetric and electrochemical methods for the ultrasensitive detection of glucose. Analytical and Bioanalytical Chemistry, 2021, 413, 5725-5731.	1.9	8
51	Laser-Assisted Surface Modification of Ni Microstructures with Au and Pt toward Cell Biocompatibility and High Enzyme-Free Glucose Sensing. ACS Omega, 2021, 6, 18099-18109.	1.6	11
52	A limiting current sensor based on porous Ni electrode for ferricyanide and ferrocyanide detection in aqueous solutions. Electrochimica Acta, 2021, 385, 138428.	2.6	2
53	The Impact of Recent Developments in Electrochemical POC Sensor for Blood Sugar Care. Frontiers in Chemistry, 2021, 9, 723186.	1.8	16
54	Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40731-40741.	4.0	26

#	Article	IF	CITATIONS
55	Postmodulation of the Metal–Organic Framework Precursor toward the Vacancy-Rich Cu _{<i>x</i>} O Transducer for Sensitivity Boost: Synthesis, Catalysis, and H _{O_{O_{O_{O_{Sensing. Analytical Chemistry, 2021, 93, 11066-11071.}}}}}	3.2	9
56	Electrodeposition of bimetallic NiPt nanosheet arrays on carbon papers for high performance nonenzymatic disposable glucose sensors. Journal of Materials Science: Materials in Electronics, 2021, 32, 22493-22505.	1.1	6
57	Novel non-enzymatic glucose biosensor based on electrospun PAN/PANI/CuO nano-composites. Journal of the Textile Institute, 2022, 113, 2100-2107.	1.0	3
58	MoS2/Chitosan/GOx-Gelatin modified graphite surface: Preparation, characterization and its use for glucose determination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115215.	1.7	13
59	Enzymatic Biosensor Based on Oneâ€step Electrodeposition of Grapheneâ€gold Nanohybrid Materials and its Sensing Performance for Glucose. Electroanalysis, 2021, 33, 2243-2251.	1.5	2
60	Programming a " <i>Crab Claw</i> ―like DNA Nanomachine as a Super Signal Amplifier for Ultrasensitive Electrochemical Assay of Hg ²⁺ . Analytical Chemistry, 2021, 93, 12075-12080.	3.2	19
61	High-Sensitivity Enzymatic Glucose Sensor Based on ZnO Urchin-like Nanostructure Modified with Fe3O4 Magnetic Particles. Micromachines, 2021, 12, 977.	1.4	8
62	In vitro glucose concentration measurement by a reusable enzymatic glucose sensor and a highly stable circular heterodyne polarimeter. Optics Letters, 2021, 46, 5004.	1.7	2
63	Amine mediated synthesis of nickel oxide nanoparticles and their superior electrochemical sensing performance for glucose detection. Inorganic Chemistry Communication, 2021, 131, 108779.	1.8	18
64	Iron, Nitrogen-Doped Carbon Aerogels for Fluorescent and Electrochemical Dual-Mode Detection of Glucose. Langmuir, 2021, 37, 11309-11315.	1.6	34
65	Recent Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management- A Review. Frontiers in Chemistry, 2021, 9, 748957.	1.8	60
66	NiO-Coated CuCo ₂ O ₄ Nanoneedle Arrays on Carbon Cloth for Non-enzymatic Glucose Sensing. ACS Applied Nano Materials, 2021, 4, 9821-9830.	2.4	24
67	Thermal stress-induced fabrication of carbon micro/nanostructures and the application in high-performance enzyme-free glucose sensors. Sensors and Actuators B: Chemical, 2021, 345, 130364.	4.0	14
68	Cobalt-doped cerium oxide nanocrystals shelled 1D SnO2 structures for highly sensitive and selective xanthine detection in biofluids. Journal of Colloid and Interface Science, 2021, 600, 299-309.	5.0	11
69	Plasmonic contact lens materials for glucose sensing in human tears. Sensors and Actuators B: Chemical, 2021, 344, 130297.	4.0	28
70	Complete fabrication of a nonenzymatic glucose sensor with a wide linear range for the direct testing of blood samples. Electrochimica Acta, 2021, 395, 139145.	2.6	8
71	Design of a bioelectronic tongue for glucose monitoring using zinc oxide nanofibers and graphene derivatives. Sensors and Actuators Reports, 2021, 3, 100050.	2.3	9
72	Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor. Sensors and Actuators B: Chemical, 2021, 347, 130653.	4.0	42

#	Article	IF	CITATIONS
73	Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosensors and Bioelectronics, 2021, 193, 113606.	5. 3	112
74	Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection. Journal of the Electrochemical Society, 2021, 168, 017501.	1.3	83
75	Recent research trends in voltammetric sensing platforms for hormones and their applications to human serum analyses. Analytical Sciences, 2022, 38, 11-21.	0.8	5
76	High rate fabrication of copper and copper–gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing. RSC Advances, 2021, 11, 19521-19530.	1.7	17
77	Facile synthesis of CuCo2O4@NiCo2O4 hybrid nanowire arrays on carbon cloth for a multicomponent non-enzymatic glucose sensor. Nanotechnology, 2020, 31, 495708.	1.3	11
78	Hierarchical cage-frame type nanostructure of CeO ₂ for bio sensing applications: from glucose to protein detection. Nanotechnology, 2021, 32, 025504.	1.3	12
79	Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. Nanomaterials, 2021, 11, 2809.	1.9	19
80	3D CoxP@NiCo-LDH heteronanosheet array: As a high sensitivity sensor for glucose. Microchemical Journal, 2022, 172, 106923.	2.3	17
81	Magnetic-field-induced acicular nickel immobilized on carbon nanofibers as electrodes for electrochemical glucose sensing. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 237-245.	2.7	8
82	Bifunctional Ag@Ni-MOF for high performance supercapacitor and glucose sensor. Synthetic Metals, 2021, 282, 116931.	2.1	24
83	Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT. Chemosphere, 2022, 291, 132720.	4.2	25
84	One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401, 139472.	2.6	11
85	Highly sensitive urine glucose detection with graphene field-effect transistors functionalized with electropolymerized nanofilms. Sensors & Diagnostics, 2022, 1, 139-148.	1.9	21
86	A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sensors and Actuators B: Chemical, 2022, 350, 130898.	4.0	18
87	Thermoplastic Electrode (TPE)â€based Enzymatic Glucose Sensor Using Polycaprolactoneâ€graphite Composites. Electroanalysis, 2022, 34, 1869-1876.	1.5	4
88	Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst, The, 2021, 147, 40-47.	1.7	18
89	Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews, 2022, 452, 214282.	9.5	57
90	Electrodeposited CuO thin film for wide linear range photoelectrochemical glucose sensing. Applied Surface Science, 2022, 576, 151822.	3.1	14

#	Article	IF	CITATIONS
91	Reduced Graphene Oxide-Coated Silica Nanospheres as Flexible Enzymatic Biosensors for Detection of Glucose in Sweat. ACS Applied Nano Materials, 2021, 4, 12442-12452.	2.4	24
92	Non-Enzymatic Amperometric Glucose Screen-Printed Sensors Based on Copper and Copper Oxide Particles. Applied Sciences (Switzerland), 2021, 11, 10830.	1.3	8
93	Electrochemical Characterization of Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors. Sensors, 2021, 21, 7928.	2.1	6
94	Thermal Detection of Glucose in Urine Using a Molecularly Imprinted Polymer as a Recognition Element. ACS Sensors, 2021, 6, 4515-4525.	4.0	26
95	Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochimica Acta, 2022, 404, 139749.	2.6	8
96	Three-dimensional flexible polyurethane decorated with Ni and reduced graphene oxide for high-sensitive sensing of glucose. Materials Chemistry and Physics, 2022, 278, 125679.	2.0	6
97	A self-powered closed-loop brain-machine-interface system for real-time detecting and rapidly adjusting blood glucose concentration. Nano Energy, 2022, 93, 106817.	8.2	18
98	Photoinduced phase-transition on CuO electrospun nanofibers over the TiO2 photosensitizer for enhancing non-enzymatic glucose-sensing performance. Journal of Alloys and Compounds, 2022, 900, 163409.	2.8	8
99	Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH) ₂ /N-Doped Graphene. Analytical Chemistry, 2022, 94, 1919-1924.	3.2	51
100	Electrochemical sensors for agricultural application. , 2022, , 147-164.		0
101	Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media. Journal of Electroanalytical Chemistry, 2022, 907, 116084.	1.9	1
102	Bismuth and metal-doped bismuth nanoparticles produced by laser ablation for electrochemical glucose sensing. Sensors and Actuators B: Chemical, 2022, 357, 131334.	4.0	11
103	Fabrication of porous nickel (II)-based MOF@carbon nanofiber hybrid mat for high-performance non-enzymatic glucose sensing. Materials Science in Semiconductor Processing, 2022, 142, 106500.	1.9	22
104	A review of noninvasive methods applied in diabetes management and treatment., 2022,, 157-230.		0
105	Diabetes in general. , 2022, , 27-92.		1
106	Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Advances, 2022, 12, 5072-5079.	1.7	12
107	Binder free 3D core–shell NiFe layered double hydroxide (LDH) nanosheets (NSs) supported on Cu foam as a highly efficient non-enzymatic glucose sensor. Journal of Colloid and Interface Science, 2022, 615, 865-875.	5.0	25
108	Development of an electrochemical nanoplatform for non-enzymatic glucose sensing based on Cu/ZnO nanocomposite. Materials Chemistry and Physics, 2022, 280, 125844.	2.0	12

#	Article	IF	CITATIONS
109	Facile synthesis of bamboo-like Ni3S2@NCNT as efficient and stable electrocatalysts for non-enzymatic glucose detection. Applied Surface Science, 2022, 585, 152683.	3.1	21
110	Surface modification with nanomaterials for electrochemical biosensing application., 2022,, 101-120.		1
111	Highly Conductive Melanin-like Polymer Composites for Nonenzymatic Glucose Biosensors with a Wide Detection Range. ACS Applied Polymer Materials, 2022, 4, 2527-2535.	2.0	5
112	Enhanced analytical performance of disposable 3D carbon electrodes prepared with stainless steel wire mesh. Analytica Chimica Acta, 2022, 1202, 339674.	2.6	2
113	The Facile Preparation of PBA-GO-CuO-Modified Electrochemical Biosensor Used for the Measurement of α-Amylase Inhibitors' Activity. Molecules, 2022, 27, 2395.	1.7	2
114	Flexible carbon cloth in-situ assembling WO3 microsheets bunches with Ni dopants for non-enzymatic glucose sensing. Applied Surface Science, 2022, 586, 152822.	3.1	10
115	Tuning of Co3X4 (XÂ=ÂO, S, Se) by anion substitution for highly electrochemical sensing of glucose. Microchemical Journal, 2022, 179, 107436.	2.3	1
116	Recent trends in layered double hydroxides based electrochemical and optical (bio)sensors for screening of emerging pharmaceutical compounds. Environmental Research, 2022, 211, 113068.	3.7	21
117	Synthesis of CoNi2S4 Nanoflake-modified Nickel Wire Electrode for Sensitive Non-enzymatic Detection of Glucose. Sensors and Actuators Reports, 2022, 4, 100090.	2.3	4
118	Ferroceneâ€Functionalized Multiwalled Carbon Nanotubes for the Simultaneous Determination of Dopamine, Uric Acid, and Xanthine. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
119	Nano-tattoosâ€"a novel approach for glucose monitoring and diabetes management. , 2022, , 97-110.		0
120	Nanomaterials as glucose sensors for diabetes monitoring. , 2022, , 59-95.		0
121	ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor. Analytica Chimica Acta, 2022, 1209, 339839.	2.6	9
122	Effect of Ethanol Consumption on the Accuracy of a Glucose Oxidase-Based Subcutaneous Glucose Sensor in Subjects with Type 1 Diabetes. Sensors, 2022, 22, 3101.	2.1	1
123	High performance of non-enzymatic glucose biosensors based on the design of microstructure of Ni2P/Cu3P nanocomposites. Applied Surface Science, 2022, 593, 153395.	3.1	10
124	Multifunctional flexible contact lens for eye health monitoring using inorganic magnetic oxide nanosheets. Journal of Nanobiotechnology, 2022, 20, 202.	4.2	8
125	Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis. Applied Biochemistry and Biotechnology, 2022, 194, 3689-3705.	1.4	3
126	Electron Beam-Induced Modifications in Dielectric and AC Electrical Properties of Gelatin-Acrylic Acid Blends. Journal of Electronic Materials, 2022, 51, 3925-3943.	1.0	3

#	Article	IF	CITATIONS
127	Carbon Paste Electrochemical Sensors for the Detection of Neurotransmitters. Frontiers in Sensors, 2022, 3, .	1.7	5
128	In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosensors and Bioelectronics, 2022, 210, 114303.	5.3	30
129	Electrospinning one-dimensional surface-phosphorized CuCo/C nanofibers for enzyme-free glucose sensing. New Journal of Chemistry, 2022, 46, 11531-11539.	1.4	2
130	Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. Journal of Colloid and Interface Science, 2022, 624, 320-337.	5.0	35
131	A study on the recent developments in voltammetric sensors for the \hat{l}^2 -blocker propranolol hydrochloride. , 2022, , 23-31.		0
132	Nanomaterials for virus sensing and tracking. Chemical Society Reviews, 2022, 51, 5805-5841.	18.7	23
133	Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opinion on Drug Delivery, 2022, 19, 771-793.	2.4	4
134	Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors. Mikrochimica Acta, 2022, 189 , .	2.5	10
135	Quasi-aligned Cu ₂ S/Cu(OH) ₂ nanorod arrays anchored on Cu foam as self-supported electrode for non-enzymatic glucose detection. Nanotechnology, 2022, 33, 385501.	1.3	4
136	Electrode surface roughness greatly enhances the sensitivity of electrochemical non-enzymatic glucose sensors. Journal of Electroanalytical Chemistry, 2022, 919, 116541.	1.9	3
137	A review on the current progress of layered double hydroxide application in biomedical sectors. European Physical Journal Plus, 2022, 137, .	1.2	4
138	Wearable Electrochemical Sensors for Monitoring of Glucose and Electroactive Drugs. International Journal of Electrochemical Science, 2022, 17, 220841.	0.5	4
139	Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors, 2022, 22, 5670.	2.1	12
141	Enhanced Electrocatalytic Activity and Ultrasensitive Enzyme-Free Glucose Sensing Based on Heterogeneous Co(OH) ₂ Nanosheets/CuO Microcoral Arrays via Interface Engineering. Industrial & Description of the Engineering Chemistry Research, 2022, 61, 12567-12575.	1.8	2
142	Surface modification of copper selenide for reliable non-enzymatic glucose sensing. Materials Today Sustainability, 2022, 20, 100215.	1.9	6
143	Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor. Nano Research, 2023, 16, 1558-1567.	5.8	5
144	A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach. Analytica Chimica Acta, 2022, 1227, 340257.	2.6	7
145	Electrospun nanofiber-based glucose sensors for glucose detection. Frontiers in Chemistry, 0, 10, .	1.8	50

#	ARTICLE	IF	CITATIONS
146	A stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanotubes. Biochemical Engineering Journal, 2022, 187, 108589.	1.8	6
147	Effects of nickel–cobalt material properties on glucose catalysis. Microchemical Journal, 2022, 182, 107950.	2.3	0
148	Dual-strategy biosensing of glucose based on multifunctional CuWO ₄ nanoparticles. Analyst, The, 2022, 147, 4049-4054.	1.7	6
149	One-Step Synthesis of Copper-Platinum Nanoparticles Modified Electrode for Non-Enzymatic Salivary Glucose Detection. SSRN Electronic Journal, 0, , .	0.4	1
150	Minimally Invasive Implant Type Electromagnetic Biosensor for Continuous Glucose Monitoring System: In Vivo Evaluation. IEEE Transactions on Biomedical Engineering, 2023, 70, 1000-1011.	2.5	5
151	An Electrochemical Nonenzymatic Microsensor Modified by CuCo ₂ O ₄ Nanoparticles for Glucose Sensing. IEEE Sensors Journal, 2022, 22, 21462-21469.	2.4	3
152	Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes. RSC Advances, 2022, 12, 28505-28518.	1.7	9
153	La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. Biosensors, 2022, 12, 705.	2.3	6
154	Graphene Oxide/Multiwalled Carbon Nanotubes Assisted Serial Quadruple Tapered Structure-Based LSPR Sensor for Glucose Detection. IEEE Sensors Journal, 2022, 22, 16904-16911.	2.4	75
155	Nanostructured Nickelâ€based Nonâ€enzymatic Electrochemical Glucose Sensors. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
156	Dual-function glucose and hydrogen peroxide sensors based on Copper-embedded porous carbon composites. Journal of Electroanalytical Chemistry, 2022, 924, 116881.	1.9	2
157	Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review. Physics in Medicine, 2022, 14, 100054.	0.6	13
158	Surface charge modulation enhanced high stability of gold oxidation intermediates for electrochemical glucose sensors. Analytical Methods, 2022, 14, 4474-4484.	1.3	2
159	High-Linearity Hydrogel-Based Capacitive Sensor Based on Con A–Sugar Affinity and Low-Melting-Point Metal. Polymers, 2022, 14, 4302.	2.0	2
160	Glucose test strips with the largest linear range made via single step modification by glucose oxidase-hexacyanoferrate-chitosan mixture. Biosensors and Bioelectronics, 2023, 220, 114851.	5.3	6
161	Constructing heterointerface of crystalline Au nanoparticles and amorphous porous CoSnO3 nanocubes for sensitive electrochemical detection of glucose. Microchemical Journal, 2022, 183, 108039.	2.3	3
162	Structural design of electrospun nanofibers for electrochemical energy storage and conversion. Journal of Alloys and Compounds, 2023, 935, 167920.	2.8	8
163	Stable, reproducible, and binder-free gold/copper core–shell nanostructures for high-sensitive non-enzymatic glucose detection. Scientific Reports, 2022, 12, .	1.6	4

#	Article	IF	CITATIONS
164	Triple tapered SMF sensor probes for glucose detection based on LSPR., 2023,,.		0
165	Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing. New Journal of Chemistry, 0, , .	1.4	0
166	In-situ construction of Au/Cu2O nanowire arrays for sensitive glucose sensing. Talanta, 2023, 254, 124194.	2.9	7
167	Growth of Ni-Co-S Nanoflakes on Ni Bowl-Like Micro/Nano Array as a Non-Enzymatic Electrode for Detection of Glucose. Journal of Nano Research, 0, 76, 39-47.	0.8	0
168	Decorating NiCo alloy nanosheet arrays with Pt nanoparticles on carbon paper for highly sensitive glucose sensing. Bulletin of Materials Science, 2022, 45, .	0.8	0
169	Electrochemical Sensing Platform based on Greenly Synthesized Gum Arabic Stabilized Silver Nanoparticles for Hydrogen Peroxide and Glucose. Journal of the Electrochemical Society, 2022, 169, 127519.	1.3	5
170	MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose. Journal of Nanobiotechnology, 2022, 20 , .	4.2	7
171	Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. Biosensors, 2022, 12, 1128.	2.3	4
172	Oxalamide Based Fe(II)-MOFs as Potential Electrode Modifiers for Glucose Detection. Chemistry, 2023, 5, 19-30.	0.9	0
173	Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors, 2022, 12, 1136.	2.3	29
174	Leveraging the future of diagnosis and management of diabetes: From old indexes to new technologies. European Journal of Clinical Investigation, 2023, 53, .	1.7	2
175	Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. Molecules, 2023, 28, 617.	1.7	4
176	Cavitation regulated sonochemical synthesis of flexible self-supported CuO@PDA/CC electrode for highly sensitive glucose sensor. Electrochimica Acta, 2023, 441, 141801.	2.6	1
177	Boosting Electrochemical Catalysis and Nonenzymatic Sensing Toward Glucose by Singleâ€Atom Pt Supported on Cu@CuO Core–Shell Nanowires. Small, 2023, 19, .	5.2	12
178	Biosensors for organs-on-a-chip and organoids. , 2023, , 471-514.		0
179	A sprayed graphene transistor platform for rapid and low-cost chemical sensing. Nanoscale, 0, , .	2.8	0
180	Biosensors for virus detection., 2023,, 53-80.		2
181	Biosensors for glucose detection., 2023,, 235-259.		1

#	Article	IF	CITATIONS
182	Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. Lab on A Chip, 2023, 23, 1339-1348.	3.1	9
183	Reduced graphene oxide cotton fabric based on copper nanowires for flexible non-enzyme glucose sensor. Cellulose, 2023, 30, 5131-5143.	2.4	1
184	Trends in bimetallic nanomaterials and methods for fourth-generation glucose sensors. TrAC - Trends in Analytical Chemistry, 2023, 162, 117042.	5.8	5
185	Review of oxygen-vacancies nanomaterials for non-enzymatic electrochemical sensors application. Coordination Chemistry Reviews, 2023, 484, 215102.	9.5	6
186	High-performance enzyme-free glucose and hydrogen peroxide sensors based on bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes. Microchemical Journal, 2023, 189, 108504.	2.3	5
187	NiNP/Cu-MOF-C/GCE for the the noninvasive detection of glucose in natural saliva samples. Microchemical Journal, 2023, 190, 108657.	2.3	3
188	Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. Biosensors, 2023, 13, 208.	2.3	7
189	Eco-friendly fabrication of nonenzymatic electrochemical sensor based on cobalt/polymelamine/nitrogen-doped graphitic-porous carbon nanohybrid material for glucose monitoring in human blood. Environmental Research, 2023, 223, 115403.	3.7	4
190	Non-enzymatic rapid sensing platform based on iron doped lead sulfide nano-interfaces for chloramphenicol. Inorganic Chemistry Communication, 2023, 150, 110487.	1.8	0
191	CDs-Peroxyfluor Conjugation for Ratiometric Fluorescence Detection of Glucose and Shortening Its Detection Time from Reaction Dynamic Perspective. Biosensors, 2023, 13, 222.	2.3	0
192	Porous nitrogen-doped reduced graphene oxide-supported CuO@Cu2O hybrid electrodes for highly sensitive enzyme-free glucose biosensor. IScience, 2023, 26, 106155.	1.9	3
193	Sugar Molecules Detection via C2N Transistor-Based Sensor: First Principles Modeling. Nanomaterials, 2023, 13, 700.	1.9	2
194	Polymer and biopolymer based nanocomposites for glucose sensing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 490-521.	1.8	2
195	An enzyme-free Ti3C2/Ni/Sm-LDH-based screen-printed-electrode for real-time sweat detection of glucose. Analytica Chimica Acta, 2023, 1250, 340981.	2.6	17
196	Recent advances in MXenes-based glucose biosensors. Chinese Chemical Letters, 2023, 34, 108241.	4.8	5
197	Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH. Biosensors, 2023, 13, 287.	2.3	8
198	Electrochemical Biosensors in Agricultural and Veterinary Applications. , 2023, , 349-385.		1
199	Monitoring and sensing of glucose molecule by micropillar coated electrochemical biosensor via CuO/[Fe(CN)6]3a^ and its applications. Materials Today: Proceedings, 2023, , .	0.9	0

#	Article	IF	CITATIONS
200	The Enzymatic Doped/Undoped Poly-Silicon Nanowire Sensor for Glucose Concentration Measurement. Sensors, 2023, 23, 3166.	2.1	0
201	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	16.0	6
202	Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification. Talanta, 2023, 260, 124538.	2.9	6
206	Direct glucose fuel cell towards a self-powered point-of-care nanobiosensor. , 2023, , 505-549.		0
237	Sensitivity enhancement of nickel nanowire-gated FET glucose sensor using graphene film as intermediate layer. , 2023, , .		0
238	Electrochemical Biosensors for Metabolites Detection. , 2023, , 77-99.		O
247	Conductive polymer nanocomposites: recent advances in the construction of electrochemical biosensors. Sensors & Diagnostics, 2024, 3, 165-180.	1.9	0
261	Wearable flexible biosensing devices contributing to modern precision medicine. , 2024, , 267-313.		0