Metal–Organic Frameworks against Toxic Chemicals

Chemical Reviews 120, 8130-8160

DOI: 10.1021/acs.chemrev.9b00828

Citation Report

#	Article	IF	CITATIONS
1	Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Transactions, 2020, 49, 15161-15170.	3.3	11
2	Capture of Sulfur Mustard by Pillar[5]arene: From Host-Guest Complexation to Efficient Adsorption Using Nonporous Adaptive Crystals. IScience, 2020, 23, 101443.	4.1	20
3	Benign Integration of a Zn-Azolate Metal–Organic Framework onto Textile Fiber for Ammonia Capture. ACS Applied Materials & Interfaces, 2020, 12, 47747-47753.	8.0	37
4	Doubly Interpenetrated Metal–Organic Framework of pcu Topology for Selective Separation of Propylene from Propane. ACS Applied Materials & Interfaces, 2020, 12, 48712-48717.	8.0	23
5	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	12.7	58
6	Highly Robust 3s–3d {CaZn}–Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO ₂ and Knoevenagel Condensation Reaction. ACS Applied Materials & Interfaces, 2020, 12, 54884-54892.	8.0	85
7	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	2.6	17
8	Function–Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zrâ€MOFs. Chemistry - A European Journal, 2020, 26, 17437-17444.	3.3	8
9	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	6.7	32
10	Mechanistic Insight into the Catalytic NO Oxidation by the MIL-100 MOF Platform: Toward the Prediction of More Efficient Catalysts. ACS Catalysis, 2020, 10, 9445-9450.	11.2	22
11	Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. Langmuir, 2020, 36, 10657-10673.	3.5	35
12	Catalytic Degradation of Nerve Agents. Catalysts, 2020, 10, 881.	3.5	22
13	Water-Based Synthesis of a Stable Iron-Based Metal–Organic Framework for Capturing Toxic Gases. , 2020, 2, 1129-1134.		33
14	Emerging Porous Materials and Their Composites for NH ₃ Gas Removal. Advanced Science, 2020, 7, 2002142.	11.2	58
15	CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. Journal of CO2 Utilization, 2020, 42, 101332.	6.8	14
16	Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. Chemistry of Materials, 2020, 32, 9299-9306.	6.7	38
17	NO ₂ Removal under Ambient Conditions by Nanoporous Multivariate Zirconium-Based Metal–Organic Framework. ACS Applied Nano Materials, 2020, 3, 11442-11454.	5.0	20
18	Robust Anionic Ln ^{III} –Organic Frameworks: Chemical Fixation of CO ₂ , Tunable Light Emission, and Fluorescence Recognition of Fe ³⁺ . Inorganic Chemistry, 2020, 59, 13407-13415.	4.0	25

#	Article	IF	CITATIONS
19	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	6.7	82
20	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 44762-44768.	8.0	11
21	Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS Applied Materials & Interfaces, 2020, 12, 58326-58338.	8.0	22
22	Modeling of Diffusion of Acetone in UiO-66. Journal of Physical Chemistry C, 2020, 124, 28469-28478.	3.1	23
23	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
24	Advances and challenges in metal–organic framework derived porous materials for batteries and electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 24895-24919.	10.3	86
25	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
26	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	3.2	70
27	Efficient hydrolytic cleavage of phosphodiester with a lanthanide-based metal-organic framework. Journal of Solid State Chemistry, 2021, 293, 121820.	2.9	5
28	Straightforward synthesis of a porous chromium-based porphyrinic metal-organic framework for visible-light triggered selective aerobic oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis A: General, 2021, 611, 117965.	4.3	27
29	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	3.3	31
30	Probing adsorbent heterogeneity using Toth isotherms. Journal of Materials Chemistry A, 2021, 9, 944-962.	10.3	12
31	Catalytic Processes for the Neutralization of Sulfur Mustard. Chemistry - A European Journal, 2021, 27, 54-68.	3.3	31
32	Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 426, 213544.	18.8	243
33	Syntheses and structures of three macrocyclic supramolecular complexes and one Zn ^{II} -containing coordination polymer generated from a semi-rigid multidentate N-containing ligand. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 29-39.	0.5	0
34	Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting. Opto-Electronic Advances, 2021, 4, 200063-200063.	13.3	20
35	Cucurbit[6]uril@MIL-101-Cl: loading polar porous cages in mesoporous stable host for enhanced SO ₂ adsorption at low pressures. Nanoscale, 2021, 13, 15952-15962.	5.6	8
36	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	13.7	28

#	Article	IF	CITATIONS
37	Sulfur-containing nitrogen-rich robust hierarchically porous organic polymer for adsorptive removal of mercury: experimental and theoretical insights. Environmental Science: Nano, 2021, 8, 2641-2649.	4.3	15
38	Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2021, 8, 1865-1899.	6.0	90
39	Flow neutralisation of sulfur-containing chemical warfare agents with Oxone: packed bed <i>vs.</i> aqueous solution. Green Chemistry, 2021, 23, 2925-2930.	9.0	15
40	Metal–Organic Frameworks (MOFs) Based Analytical Techniques for Food Safety Evaluation. EFood, 2021, 2, 1-12.	3.1	17
41	Guest size limitation in metal–organic framework crystal–glass composites. Journal of Materials Chemistry A, 2021, 9, 8386-8393.	10.3	15
42	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	4.1	35
43	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	7.6	61
44	Capture of toxic gases in MOFs: SO ₂ , H ₂ S, NH ₃ and NO _x . Chemical Science, 2021, 12, 6772-6799.	7.4	79
45	MIL-101(Cr) with incorporated polypyridine zinc complexes for efficient degradation of a nerve agent simulant: spatial isolation of active sites promoting catalysis. Dalton Transactions, 2021, 50, 1995-2000.	3.3	6
46	Turnâ€On Circularly Polarized Luminescence in Metal–Organic Frameworks. Advanced Optical Materials, 2021, 9, 2002096.	7.3	36
47	Solvent-mediated framework flexibility of interdigitated 2D layered metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 3621-3627.	5.9	8
48	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & Interfaces, 2021, 13, 4813-4822.	8.0	6
49	An NH ₂ -modified {EuIII2}–organic framework for the efficient chemical fixation of CO ₂ and highly selective sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2021, 8, 4376-4385.	6.0	20
50	Efficient detection of Fe(<scp>iii</scp>) and chromate ions in water using two robust lanthanide metal–organic frameworks. CrystEngComm, 2021, 23, 1677-1683.	2.6	24
51	Metal–organic frameworks constructed from an [MS4Cux]xâ^'2 (M = W, Mo) unit: isomerization of the cluster unit induced by temperature. CrystEngComm, 0, , .	2.6	0
52	Soft and effective detoxification of a VX simulant in a nylon 3D printed basic flow reactor. Green Chemistry, 2021, 23, 7522-7527.	9.0	5
53	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	7.4	43
54	Synthesis of macroscopic monolithic metal–organic gels for ultra-fast destruction of chemical warfare agents. RSC Advances, 2021, 11, 22125-22130.	3.6	11

#	Article	IF	CITATIONS
55	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	3.5	34
56	Mechanistic Insight into Charge and Energy Transfers of Luminescent Metal–Organic Frameworks Based Sensors for Toxic Chemicals. Advanced Sustainable Systems, 2021, 5, 2000293.	5.3	27
57	An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals. , 2021, 3, 320-326.		13
58	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	47.7	442
59	Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. ACS Applied Materials & Interfaces, 2021, 13, 10409-10415.	8.0	30
60	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	6.7	56
61	Quantitative Structure–Activity Relationship of Nanowire Adsorption to SO ₂ Revealed by <i>In Situ</i> TEM Technique. Nano Letters, 2021, 21, 1679-1687.	9.1	26
62	Comparative Evaluation of Different MOF and Nonâ€MOF Porous Materials for SO ₂ ÂAdsorption and Separation Showing the Importance of Small Pore Diameters for Lowâ€Pressure Uptake. Advanced Sustainable Systems, 2021, 5, 2000285.	5.3	43
63	Successive degradation of organophosphate nerve agent by integrating the merits of artificial enzyme and metal nanoparticle catalyst. Colloids and Interface Science Communications, 2021, 41, 100382.	4.1	5
64	Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. Journal of CO2 Utilization, 2021, 45, 101419.	6.8	18
65	Experimental strategies on enhancing toxic gases uptake of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 430, 213738.	18.8	61
66	Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Industrial & Engineering Chemistry Research, 2021, 60, 4218-4239.	3.7	36
67	Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. Journal of Molecular Liquids, 2021, 325, 115228.	4.9	21
68	Vâ•O Functionalized {Tm ₂ }–Organic Framework Designed by Postsynthesis Modification for Catalytic Chemical Fixation of CO ₂ and Oxidation of Mustard Gas. Inorganic Chemistry, 2021, 60, 5005-5013.	4.0	11
69	MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 2021, 432, 213743.	18.8	231
71	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 16820-16827.	8.0	31
72	Emergent behavior in nanoconfined molecular containers. CheM, 2021, 7, 919-947.	11.7	93
73	A 3D Cd(II) MOF of tetracarboxylate and tris(benzimidazole) ligands: Luminescence sensing properties. Inorganica Chimica Acta, 2021, 518, 120242.	2.4	7

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
74	Strong, Ductile MOF–Poly(urethane urea) Composites. Chemistry of Materials, 2021, 33, 3164-3171.	6.7	25
75	SO ₂ Capture and Oxidation in a Pd₆L₈ Metal–Organic Cage. ACS Applied Materials & Interfaces, 2021, 13, 18658-18665.	8.0	17
76	Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chemical Engineering Journal, 2021, 410, 128268.	12.7	40
77	Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nature Reviews Chemistry, 2021, 5, 370-387.	30.2	47
78	Detection and Removal of Arsenite from Water Using Bisâ€Urea Supramolecular Polymer and Dipeptide Adsorbent. ChemistrySelect, 2021, 6, 4448-4455.	1.5	3
79	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie, 2021, 133, 14722-14729.	2.0	3
80	Simulation Meets Experiment: Unraveling the Properties of Water in Metal–Organic Frameworks through Vibrational Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 12451-12460.	3.1	16
81	Template-Induced {Mn ₂ }–Organic Framework with Lewis Acid–Base Canals as a Highly Efficient Heterogeneous Catalyst for Chemical Fixation of CO ₂ and Knoevenagel Condensation. Inorganic Chemistry, 2021, 60, 7276-7283.	4.0	16
82	Designing Oxide Aerogels With Enhanced Sorptive and Degradative Activity for Acute Chemical Threats. Frontiers in Materials, 2021, 8, .	2.4	7
83	TWO Zn(II) AND Co(II) COORDINATION POLYMERS WITH 3-FOLD RIGHT-HANDED HELICAL CHAINS: SYNTHESES, STRUCTURAL CHARACTERIZATION, AND PHOTOLUMINESCENT PROPERTY. Journal of Structural Chemistry, 2021, 62, 740-747.	1.0	4
84	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie - International Edition, 2021, 60, 14601-14608.	13.8	48
85	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	18.8	57
86	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	13.7	45
88	SERS Approach to Probe the Adsorption Process of Trace Volatile Benzaldehyde on Layered Double Hydroxide Material. Analytical Chemistry, 2021, 93, 8228-8237.	6.5	26
89	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	18.8	80
90	Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO ₂ /C ₂ H ₂ Separation. Angewandte Chemie, 2021, 133, 17335-17341.	2.0	16
91	Computational catalysis for metal-organic frameworks: An overview. Coordination Chemistry Reviews, 2021, 436, 213777.	18.8	34
92	Zirconium and Aluminum MOFs for Low-Pressure SO ₂ Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH ₂ Groups. ACS Applied Materials & Interfaces, 2021, 13, 29137-29149.	8.0	59

#	Article	IF	CITATIONS
93	Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO ₂ /C ₂ H ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 17198-17204.	13.8	93
94	Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter, 2021, 4, 2230-2265.	10.0	158
95	Efficiently Selective Oxidation of H ₂ S to Elemental Sulfur over Covalent Triazine Framework Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 34124-34133.	8.0	21
96	Ultrathin Zirconium Hydroxide Nanosheetâ€Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents. Small, 2021, 17, e2101639.	10.0	20
97	Einlagerung und Abtrennung von SO 2 â€5puren in Metallâ€organischen Gerüstverbindungen durch prÃ8ynthetische Anpassung der Porenumgebung mit Methylgruppen. Angewandte Chemie, 2021, 133, 18145-18153.	2.0	6
98	Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces, 2021, 13, 52014-52022.	8.0	36
99	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	6.7	22
100	Capture and Separation of SO ₂ Traces in Metal–Organic Frameworks via Pre‣ynthetic Pore Environment Tailoring by Methyl Groups. Angewandte Chemie - International Edition, 2021, 60, 17998-18005.	13.8	92
101	Recent Progress in <scp>Metalâ€Organic</scp> Frameworks@Cellulose Hybrids and Their Applications. Chinese Journal of Chemistry, 2021, 39, 3462-3480.	4.9	34
102	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	6.1	49
103	Fine-Tuning Window Apertures in ZIF-8/67 Frameworks by Metal Ions and Temperature for High-Efficiency Molecular Sieving of Xylenes. ACS Applied Materials & Interfaces, 2021, 13, 40830-40836.	8.0	28
104	Synthesis, crystal structure and magnetic properties of poly[[diaqua{î¼ ₆ -2-[bis(carboxylatomethyl)amino]terephthalato}dicobalt(II)] 1.6-hydrate]. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 939-943.	0.5	1
105	Neutral Nitrogen Donor Ligandâ€based MOFs for Sensing Applications. Chemistry - an Asian Journal, 2021, 16, 2569-2587.	3.3	9
106	Enhancing toxic gas uptake performance of Zr-based MOF through uncoordinated carboxylate and copper insertion; ammonia adsorption. Journal of Hazardous Materials, 2021, 416, 125933.	12.4	31
107	Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sensors and Actuators B: Chemical, 2021, 341, 130000.	7.8	29
108	Recent development on the alkaline earth MOFs (AEMOFs). Coordination Chemistry Reviews, 2021, 440, 213955.	18.8	24
109	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13

#	Article	IF	CITATIONS
111	SO ₂ Capture by Two Aluminum-Based MOFs: Rigid-like MIL-53(Al)-TDC <i>versus</i> Breathing MIL-53(Al)-BDC. ACS Applied Materials & Interfaces, 2021, 13, 39363-39370.	8.0	39
112	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	18.8	64
113	Smart Metal–Organic Frameworks with Reversible Luminescence/Magnetic Switch Behavior for HCl Vapor Detection. Advanced Functional Materials, 2021, 31, 2106925.	14.9	42
114	Round-the-clock water harvesting from dry air using a metalâ~`organic framework. Chinese Journal of Chemical Engineering, 2022, 49, 170-177.	3.5	5
115	Smart light-responsive hierarchical metal organic frameworks constructed mixed matrix membranes for efficient gas separation. Green Chemical Engineering, 2022, 3, 71-82.	6.3	12
116	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	12.7	79
117	Capture of Toxic Oxoanions from Water Using Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 9175-9181.	4.6	7
118	Utilizing Zirconium MOFâ€functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. Global Challenges, 2021, 5, 2100001.	3.6	10
119	Non-injective gas sensor arrays: identifying undetectable composition changes. Journal of Physics Condensed Matter, 2021, 33, 464003.	1.8	2
120	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	13.7	64
121	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	14.9	40
122	Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts. Journal of Hazardous Materials, 2021, 417, 126056.	12.4	18
123	Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 2021, 421, 129688.	12.7	92
124	Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chemical Engineering Journal, 2021, 421, 129765.	12.7	18
125	Efficient elimination of organic contaminants with novel and stable zeolite@MOF layer adsorbents. Particuology, 2021, 58, 74-84.	3.6	11
126	Optimizing bromide anchors for easy tethering of amines, nitriles and thiols in porous organic polymers towards enhanced CO2 capture. Microporous and Mesoporous Materials, 2021, 328, 111450.	4.4	10
127	Post modification of Oxo-clusters in robust Zirconium-Based metal organic framework for durable SO2 capture from flue gas. Separation and Purification Technology, 2021, 276, 119349.	7.9	22
128	Remediation of environmentally hazardous organophosphates by artificial metalloenzymes. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100529.	5.9	10

#	Article	IF	CITATIONS
129	The low-temperature NO2 removal by tailoring metal node in porphyrin-based metal-organic frameworks. Science of the Total Environment, 2021, 801, 149710.	8.0	17
130	Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chemical Engineering Journal, 2022, 427, 130950.	12.7	35
131	One-component nano-metal-organic frameworks with superior multienzyme-mimic activities for 1,4-dihydropyridine metabolism. Journal of Colloid and Interface Science, 2022, 605, 214-222.	9.4	13
132	Hierarchically porous metal hydroxide/metal–organic framework composite nanoarchitectures as broad-spectrum adsorbents for toxic chemical filtration. Journal of Colloid and Interface Science, 2022, 606, 272-285.	9.4	7
133	NH2-MIL-125 filled mixed matrix membrane contactor with SO2 enrichment for flue gas desulphurization. Chemical Engineering Journal, 2022, 428, 132595.	12.7	15
134	A 3D ultramicroporous porous organic frameworks for SO2 and aromatic sulfides capture with high capacity and selectivity. Chemical Engineering Journal, 2022, 429, 132480.	12.7	18
135	Isomer of linker for NU-1000 yields a new she -type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chemical Communications, 2021, 57, 3571-3574.	4.1	25
136	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	4.5	8
137	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	3.3	22
138	Zero-valent metals in metal–organic frameworks: <i>fac</i> -M(CO) ₃ (pyrazine) _{3/2} . Chemical Communications, 2021, 57, 3861-3864.	4.1	12
139	Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal–Organic Framework. ACS Catalysis, 2021, 11, 1424-1429.	11.2	36
140	Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Transactions, 2021, 50, 14951-14966.	3.3	7
141	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	6.7	70
142	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	4.0	21
143	One Robust Microporous Tm ^{III} –Organic Framework for Highly Catalytic Activity on Chemical CO ₂ Fixation and Knoevenagel Condensation. Inorganic Chemistry, 2021, 60, 1028-1036.	4.0	32
144	Visualizing the degradation of nerve agent simulants using functionalized Zr-based MOFs: from solution to hydrogels. Chemical Communications, 2021, 57, 11681-11684.	4.1	8
145	Pressure Tunable Electronic Bistability in Fe(II) Hofmann-like Two-Dimensional Coordination Polymer [Fe(Fpz) ₂ Pt(CN) ₄]: A Comprehensive Experimental and Theoretical Study. Inorganic Chemistry, 2021, 60, 16016-16028.	4.0	16
146	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	5.6	10

#	Article	IF	Citations
147	Highly Breathable Chemically Protective MOFâ€Fiber Catalysts. Advanced Functional Materials, 2022, 32, 2108004.	14.9	19
148	Nanoflake-Engineered Zirconic Fibrous Aerogels with Parallel-Arrayed Conduits for Fast Nerve Agent Degradation. Nano Letters, 2021, 21, 8839-8847.	9.1	10
149	Adsorption and Decomposition of Sarin on Dry and Wet Cu ₂ O(111) and CuO(111) Surfaces: Insight from First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 24396-24405.	3.1	6
150	Dual-purpose high-efficiency air filter paper loaded with reactive zirconium hydroxide for the filtration aerosols and degradation of chemical warfare agents. RSC Advances, 2021, 11, 35245-35257.	3.6	8
151	Local structure determination using total scattering data. , 2023, , 222-247.		1
152	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. Journal of the American Chemical Society, 2021, 143, 18261-18271.	13.7	33
153	A new two-dimensional folding sheet-like coordination polymer assembled from cadmium(II) and (<i>S</i>)-2-(benzylamino)succinic acid: synthesis, structure and properties. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 770-776.	0.5	0
154	Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Physical Chemistry Chemical Physics, 2022, 24, 1191-1201.	2.8	1
155	A hybrid nanobiocatalyst with in situ encapsulated enzyme and exsolved Co nanoclusters for complete chemoenzymatic conversion of methyl parathion to 4-aminophenol. Journal of Hazardous Materials, 2022, 424, 127755.	12.4	10
156	Highly Dispersed Ionic Liquids in Mesoporous Molecular Sieves Enable a Record NH ₃ Absorption. ACS Sustainable Chemistry and Engineering, 2021, 9, 16363-16372.	6.7	14
157	On the Role of Dioxane in the Synthesis of In-Derived MOFs. Crystal Growth and Design, 2021, 21, 6840-6846.	3.0	2
158	Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal. ACS Applied Materials & amp; Interfaces, 2021, 13, 58848-58861.	8.0	15
159	PolyMOFs: Molecular Level Integration of MOFs and Polymers. RSC Smart Materials, 2021, , 6-30.	0.1	0
160	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	38.1	148
161	Low temperature heat capacity and thermodynamic functions of Al-MIL-53-X metal-organic frameworks. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100027.	1.5	1
162	Effect of amine type on acidic toxic gas adsorption at ambient conditions on modified CuBTC. Journal of Environmental Chemical Engineering, 2022, 10, 107261.	6.7	7
163	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	47.7	121
164	Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Transactions, 2022, 51, 2567-2576.	3.3	15

		15	6
#	ARTICLE	IF	CITATIONS
165	synthesis, decontamination and detection. Green Chemistry, 2022, 24, 585-613.	9.0	19
166	Comparative Study of Nitro―and Azideâ€Functionalized Zn ^{II} â€Based Coordination Polymers (CPs) as Fluorescent Turnâ€On Probes for Rapid and Selective Detection of H ₂ S in Living Cells. Chemistry - A European Journal, 2022, 28, .	3.3	4
167	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 3048-3056.	8.0	18
168	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	15.6	145
169	One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chemical Engineering Journal, 2022, 435, 134830.	12.7	44
170	Hypothetical yet effective: Computational identification of high-performing MOFs for CO2 capture. Computers and Chemical Engineering, 2022, 160, 107705.	3.8	11
171	Selective CO ₂ adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022, 10, 8856-8865.	10.3	29
172	Metal–organic cages against toxic chemicals and pollutants. Chemical Communications, 2022, 58, 5055-5071.	4.1	24
173	Recent advances in metal–organic frameworks for gas adsorption/separation. Nanoscale Advances, 2022, 4, 2077-2089.	4.6	59
174	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986.	8.0	109
175	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	47.7	175
176	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
177	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	2.0	0
178	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	6.8	36
179	Using recycled coffee grounds for the synthesis of ZIF-8@BC to remove Congo red in water. Ecotoxicology and Environmental Safety, 2022, 236, 113450.	6.0	15
180	Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: A first principle approach. Science of the Total Environment, 2022, 824, 153858.	8.0	41
181	MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection. Chemical Engineering Journal, 2022, 442, 136094.	12.7	31
182	Friedläder, Knoevenagel, and Michael Reactions Employing the Same MOF: Synthesis, Structure, and		

#	Article	IF	CITATIONS
183	Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chemical Science, 2022, 13, 5650-5658.	7.4	16
184	Strategic design of a bifunctional Ag(<scp>i</scp>)-grafted NHC-MOF for efficient chemical fixation of CO ₂ from a dilute gas under ambient conditions. Inorganic Chemistry Frontiers, 2022, 9, 2583-2593.	6.0	26
185	Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 19747-19755.	8.0	15
186	Microwave-Assisted Synthesis of Porous Composites MOF–Textile for the Protection against Chemical and Nuclear Hazards. ACS Applied Materials & Interfaces, 2022, 14, 21497-21508.	8.0	28
187	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ Selectivity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	50
188	Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes. Journal of the American Chemical Society, 2022, 144, 8818-8826.	13.7	7
189	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	3.3	8
190	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ Selectivity. Angewandte Chemie, 2022, 134, .	2.0	4
191	Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH ₂ Metal–Organic Gels. ACS Applied Materials & Interfaces, 2022, 14, 23383-23391.	8.0	17
192	A versatile route to fabricate Metal/UiO-66 (MetalÂ=ÂPt, Pd, Ru) with high activity and stability for the catalytic oxidation of various volatile organic compounds. Chemical Engineering Journal, 2022, 448, 136900.	12.7	33
193	Hierarchical microspheres constructed by NiCo2O4/NiO@C composite nanorods for lithium-ion batteries with enhanced reversible capacity and cycle performance. Journal of Alloys and Compounds, 2022, , 165456.	5.5	5
194	<i>In situ</i> ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics. CrystEngComm, 2022, 24, 4187-4200.	2.6	15
195	Triptycene-based and imine linked porous uniform microspheres for efficient and reversible scavenging of iodine from various media: a systematic study. Environmental Science Advances, 2022, 1, 320-330.	2.7	9
196	Superelastic and Photothermal RGO/Zr-Doped TiO ₂ Nanofibrous Aerogels Enable the Rapid Decomposition of Chemical Warfare Agents. Nano Letters, 2022, 22, 4368-4375.	9.1	15
197	Aggregation-Suppressed Porous Processable Hexa-Zirconium/Polymer Composites for Detoxification of a Nerve Agent Simulant. Chemistry of Materials, 2022, 34, 4983-4991.	6.7	7
198	Synthesis, Crystal Structures, H ₂ S, and Iodine Uptake Properties of Four New Coordination Polymers Constructed from Group 12 Transition Metal Ions and a Bidentate Sulfur Donor Ligand. Crystal Growth and Design, 2022, 22, 4343-4356.	3.0	6
199	Zirconium Metal–Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS Applied Materials & Interfaces, 2022, 14, 26501-26506.	8.0	9
200	Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Journal of Chemical Theory and Computation, 2022, 18, 3593-3606.	5.3	19

#	Article	IF	CITATIONS
201	Batch-screening guided continuous flow synthesis of the metal-organic framework HKUST-1 in a millifluidic droplet reactor. Microporous and Mesoporous Materials, 2022, 339, 112005.	4.4	4
202	Pillared-layer ultramicroporous material for highly selective SO2 capture from CO2 mixtures. Separation and Purification Technology, 2022, 295, 121337.	7.9	8
203	Regeneration strategies for metal–organic frameworks post acidic gas capture. Coordination Chemistry Reviews, 2022, 467, 214629.	18.8	9
204	Environmental Applications of Metalâ^'Organic Frameworks and Derivatives: Recent Advances and Challenges. ACS Symposium Series, 0, , 257-298.	0.5	1
205	Layer-by-layer coating of MIL-100(Fe) on a cotton fabric for purification of water-soluble dyes by the combined effect of adsorption and photocatalytic degradation. RSC Advances, 2022, 12, 17505-17513.	3.6	4
206	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
207	Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 2022, 298, 121448.	7.9	70
208	Aminalâ€Linked Porphyrinic Covalent Organic Framework for Rapid Photocatalytic Decontamination of Mustardâ€Gas Simulant. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
209	Photoinduced Phase Transition of Ce-UiO-66 to Ce-BDC-OH. Inorganic Chemistry, 0, , .	4.0	4
210	Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Separation and Purification Technology, 2022, 297, 121471.	7.9	22
211	Facile in-situ strategy for incorporating amphoteric dopamine into metal–organic framework with optimized degradation capacity of nerve agents simulant. Chemical Engineering Journal, 2022, 448, 137702.	12.7	9
212	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0
213	Aminalâ€Linked Porphyrinic Covalent Organic Framework for Rapid Photocatalytic Decontamination of Mustardâ€Gas Simulant. Angewandte Chemie, 0, , .	2.0	2
214	Intracellular fate and immune response of porphyrin-based nano-sized metal-organic frameworks. Chemosphere, 2022, 307, 135680.	8.2	6
215	Heteroatom-Doped Porous Carbons as Effective Adsorbers for Toxic Industrial Gasses. ACS Applied Materials & Interfaces, 2022, 14, 33173-33180.	8.0	8
216	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	6.7	4
217	Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environmental Research, 2022, 214, 113795.	7.5	17
218	Synthesis of Hierarchical Porous MOFs via Ligand Thermolysis for High-Performance Supercapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 4412-4421.	3.7	6

#	Article	IF	CITATIONS
219	Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents. ACS Omega, 2022, 7, 27079-27089.	3.5	2
220	Simultaneous Occurrence of Vapochromism and Vapoluminescence in Formaldehyde-Responsive Amino-Functionalized Copper(I) Polymorphic Coordination Polymers. Inorganic Chemistry, 2022, 61, 11734-11745.	4.0	7
221	In Search of Preferential Macrocyclic Hosts for Sulfur Mustard Sensing and Recognition: A Computational Investigation through the New Composite Method r2SCAN-3c of the Key Factors Influencing the Host-Guest Interactions. Nanomaterials, 2022, 12, 2517.	4.1	5
222	Experimental and Simulation Studies of the Adsorption of Methylbenzene by Fe(III)-Doped NU-1000 (Zr). ACS Applied Materials & Interfaces, 2022, 14, 40052-40061.	8.0	4
223	CsCu ₂ I ₃ Nanoparticles Incorporated within a Mesoporous Metal–Organic Porphyrin Framework as a Catalyst for One-Pot Click Cycloaddition and Oxidation/Knoevenagel Tandem Reaction. ACS Applied Materials & Interfaces, 2022, 14, 36515-36526.	8.0	16
224	Computational Investigations of Metal–Organic Frameworks as Sorbents for BTEX Removal. Journal of Physical Chemistry Letters, 2022, 13, 8150-8156.	4.6	4
225	Extremely Stable Sulfuric Acid Covalent Organic Framework for Highly Effective Ammonia Capture ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2445-2450.	4.9	14
226	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	14.9	46
227	Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal–Organic Frameworks. Small Science, 2022, 2, .	9.9	20
228	Output Enhancement of Triboelectric Nanogenerators Based on Hierarchically Regular Cadmium Coordination Polymers for Photocycloaddition. Inorganic Chemistry, 2022, 61, 12736-12745.	4.0	13
229	Regulating the Pore Microenvironment of Microporous Metal–Organic Frameworks for Efficient Adsorption of Low-Concentration Ammonia. ACS Sustainable Chemistry and Engineering, 2022, 10, 10945-10954.	6.7	7
230	Surface Assessment <i>via</i> Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, 2022, 62, 4690-4701.	5.4	6
231	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	12.7	39
232	Ultrahigh carbon monoxide capture by novel protic cuprous-functionalized dicationic ionic liquids through complexation interactions. Chemical Engineering Journal, 2023, 451, 138519.	12.7	9
233	Graphene aerogel encapsulated Co3O4 open-ended microcage anode with enhanced performance for lithium-ion batteries. Applied Surface Science, 2022, 605, 154759.	6.1	7
234	Coalescing aptamers and liquid-crystals for sensing applications. Microchemical Journal, 2022, 183, 107980.	4.5	4
235	Soft detoxification of chemical warfare agent simulants and pesticides under pressure. Organic and Biomolecular Chemistry, 2022, 20, 7604-7608.	2.8	4
236	A Combined Experimental and Computational Study on the Adsorption Sites of Zinc-Based MOFs for Efficient Ammonia Capture. Molecules, 2022, 27, 5615.	3.8	7

#	Article	IF	CITATIONS
237	Computational Exploration of a Metal(II) Catecholate-Functionalized UiO-66 Nanoporous Metal–Organic Framework for Effective NO _{<i>x</i>} Capture. ACS Applied Nano Materials, 2022, 5, 15123-15132.	5.0	5
238	Oxime-functionalized cerium-based metal–organic framework for determination of two pesticides in water and biological samples by HPLC method. Journal of Nanostructure in Chemistry, 2024, 14, 95-112.	9.1	4
239	Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter, 2022, 5, 3161-3193.	10.0	13
240	Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). Journal of Hazardous Materials, 2023, 442, 130127.	12.4	63
241	ZIF-8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of Congo red. Journal of Solid State Chemistry, 2022, 316, 123628.	2.9	6
242	Thermally responsive morphological changes of layered coordination polymers induced by disordering/ordering of flexible alkyl chains. Dalton Transactions, 2022, 51, 17967-17972.	3.3	0
243	Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. Journal of the American Chemical Society, 2022, 144, 21046-21055.	13.7	18
244	Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption. Accounts of Materials Research, 2022, 3, 1186-1200.	11.7	9
245	Enhanced cataluminescence sensing of MIL-53(Al)/Sb2SnO5 composites for isobutanol detection. Measurement Science and Technology, 0, , .	2.6	0
246	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	3.1	7
247	A Zirconium–Organic Framework Constructed from Saddle-Shaped Tetratopic Carboxylate for High-Rate and -Efficiency lodine Capture. Inorganic Chemistry, 2022, 61, 17109-17114.	4.0	7
248	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	18.8	25
249	MIP-202 catalyst-integrated solid-contact potentiometric chloride sensor for versatile multiphasic detection of a sulfur mustard simulant. Sensors and Actuators B: Chemical, 2023, 375, 132818.	7.8	4
250	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	18.8	43
251	Ionic metal–organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chemical Communications, 2022, 58, 13676-13698.	4.1	22
252	High-pressure study of spin-crossover phenomenon in two-dimensional Hoffmann-like complex [Fe(Fpz) ₂ Pt(CN) ₄]. , 2022, , .		Ο
253	In Situ Synthesis of Hierarchical Porous Zr-MOFs on Columnar Activated Carbon and Application in Toxic Gas Adsorption. Inorganic Chemistry, 2022, 61, 18355-18364.	4.0	1
254	Adsorption and Degradation of the G-Type Nerve Agent Soman and Its Simulant Dimethyl 4-Nitrophenylphosphate by Metal-Exchange-Modified MFU-4 <i>l</i> Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 19159-19168.	3.1	2

#	Article	IF	CITATIONS
255	Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites. Molecules, 2022, 27, 7847.	3.8	5
256	Gas sensing of organophosphorous compounds with Ill–V semiconductor plasmonics. Sensors and Actuators B: Chemical, 2023, 376, 132987.	7.8	5
257	A TD-DFT study of a class of D–̀–A fluorescent probes for detection of typical oxidants. Organic and Biomolecular Chemistry, 2023, 21, 315-322.	2.8	2
258	SO ₂ capture enhancement due to confined methanol within MIL-53(Al)-TDC. Dalton Transactions, 2022, 52, 16-19.	3.3	2
259	Zeolitic-imidazolate framework derived magnetic N-doped hierarchical carbons with ultrahigh indole-3-butyric acid adsorption capacities: Behavior and mechanism. Applied Surface Science, 2023, 613, 156029.	6.1	1
260	Molecular imprinting-based nanocomposite adsorbents for typical pollutants removal. Journal of Hazardous Materials Letters, 2023, 4, 100073.	3.6	3
261	Two Cd(II)-Based MOFs Constructed from Tris(3′-F-4′-carboxybiphenyl)amine: Synthesis, Crystal Structure, Luminescence Sensing towards Nitrophenols and Acetylacetone. Crystals, 2022, 12, 1708.	2.2	2
262	Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22170-22177.	13.7	12
263	A New MBH Adduct as an Efficient Ligand in the Synthesis of Metallodrugs: Characterization, Geometrical Optimization, XRD, Biological Activities, and Molecular Docking Studies. Molecules, 2022, 27, 8150.	3.8	0
264	General Synthesis of MOF Nanotubes via Hydrogen-Bonded Organic Frameworks toward Efficient Hydrogen Evolution Electrocatalysts. ACS Nano, 2022, 16, 20851-20864.	14.6	28
265	MOF-Based Materials with Sensing Potential: Pyrrolidine-Fused Chlorin at UiO-66(Hf) for Enhanced NO2 Detection. Chemosensors, 2022, 10, 511.	3.6	0
266	Nanoarchitectonics of metal–organic frameworks having hydroxy group for adsorption, catalysis, and sensing. Journal of Industrial and Engineering Chemistry, 2023, 119, 181-192.	5.8	8
267	Protection against Chemical Warfare Agents and Biological Threats Using Metal–Organic Frameworks as Active Layers. Accounts of Materials Research, 2023, 4, 168-179.	11.7	6
268	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	8.7	12
269	Multifunctional Eu ³⁺ oordination polymer for highly selective recognition of Fe ³⁺ and MnO ₄ ^{â^'} ions in water and efficient catalytic fixation of carbon dioxide. Applied Organometallic Chemistry, 0, , .	3.5	0
270	Efficient Detection of Nerve Agents through Carbon Nitride Quantum Dots: A DFT Approach. Nanomaterials, 2023, 13, 251.	4.1	13
271	MOF–Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. ACS Applied Materials & Interfaces, 2023, 15, 2933-2939.	8.0	2
272	Pore Environment Optimization of Microporous Metal–Organic Frameworks with Huddled Pyrazine Pillars for C ₂ H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2023, 15, 4208-4215.	8.0	6

#	Article	IF	CITATIONS
273	Overview of the materials design and sensing strategies of nanopore devices. Coordination Chemistry Reviews, 2023, 478, 214998.	18.8	12
274	Optimization and Synthesis of a La-TMA MOF with Some Improvements in Its Properties. ACS Omega, 2023, 8, 262-270.	3.5	2
275	ZnFe2O4/ZrO2/NaX zeolite nanocomposite catalyst: elaboration and its application for the removal of dimethyl 4-nitrophenyl phosphate (DMNP) chemical nerve agent simulant from water solution. Research on Chemical Intermediates, 0, , .	2.7	0
276	Metal–Organic Framework Materials for Production and Distribution of Ammonia. Journal of the American Chemical Society, 2023, 145, 1998-2012.	13.7	12
277	Carrier Variety Used in Immobilization of His6-OPH Extends Its Application Areas. Polymers, 2023, 15, 591.	4.5	2
278	Catalytic metal–organic framework-melamine foam composite as an efficient material for the elimination of organic pollutants. Environmental Science and Pollution Research, 2023, 30, 44266-44275.	5.3	2
279	Quantitatively Visualizing the Thermal Dehydration Process and Isotope Effect in Single HKUST-1 Metal–Organic Framework Particles. Journal of Physical Chemistry Letters, 2023, 14, 2099-2105.	4.6	2
280	Investigations of cadmium ion-doped L-histidine hydrochloride crystal growth, vibration, optical, thermal, SHC, and MTT assays for biological and optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
281	Preparation of Dâ€histidine modified zeolitic imidazolate frameworkâ€90 coated capillary column and its application in openâ€tube capillary electrochromatography enantioseparation. Journal of Separation Science, 2023, 46, .	2.5	2
282	Multifunctional Metal–Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. Journal of Agricultural and Food Chemistry, 0, , .	5.2	6
283	Ionic liquid hybrid metal–organic frameworks for efficient adsorption and selective separation of ammonia at high temperature. Chemical Engineering Journal, 2023, 464, 142728.	12.7	30
284	Boosting temperature sensing capacity within isoreticular zinc(II) metal-organic frameworks luminescent thermometers. Journal of Solid State Chemistry, 2023, 322, 124002.	2.9	1
285	Recent Advances in Metalâ€Organicâ€Frameworkâ€Based Composites for Efficient Sequestration of Organophosphorus Pesticides (OPPs). ChemistrySelect, 2023, 8, .	1.5	2
286	A rapid self-healing glassy polymer/metal–organic-framework hybrid membrane at room temperature. Dalton Transactions, 2023, 52, 3148-3157.	3.3	0
287	Rational construction of noble metal-free Cu(I) anchored Zr-MOF for efficient fixation of CO2 from dilute gas at ambient conditions. Microporous and Mesoporous Materials, 2023, 351, 112494.	4.4	7
288	Nanoporous semi-cycloaliphatic polyaminal networks for capture of SO ₂ , NH ₃ , and I ₂ . Journal of Materials Chemistry A, 2023, 11, 6329-6335.	10.3	11
289	Recent advances and emerging applications of membrane contactors. Chemical Engineering Journal, 2023, 461, 141948.	12.7	13
290	Spontaneously super-hygroscopic MOF-gel microreactors for efficient detoxification of nerve agent simulant in atmospheric environments. Applied Catalysis B: Environmental, 2023, 328, 122516.	20.2	7

#	Article	IF	CITATIONS
291	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	14.7	14
292	Zirconium-Based Metal–Organic Frameworks as Reusable Antibacterial Peroxide Carriers for Protective Textiles. Chemistry of Materials, 2023, 35, 2342-2352.	6.7	6
293	<scp>MOFs</scp> for desulfurization of fuel oil: Recent advances and future insights. Journal of the Chinese Chemical Society, 2023, 70, 789-824.	1.4	3
295	Aptamer-modified Zr-MOFs to construct nanocatalysts with engineered specificity toward paraoxon. Chemical Communications, 2023, 59, 4388-4391.	4.1	0
296	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	47.7	79
297	Design and Preparation of Porous Meta-Aramid Fibers Filled with Highly Exposed Activated Carbon for Chemical Hazard Protection Fabrics. ACS Applied Polymer Materials, 2023, 5, 2716-2726.	4.4	1
298	Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks. Communications Chemistry, 2023, 6, .	4.5	7
299	Single copper sites dispersed on metal-organic frameworks boost the degradation of nerve agent simulants. Science China Materials, 0, , .	6.3	0
300	Closer Look at Adsorption of Sarin and Simulants on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2023, 15, 18559-18567.	8.0	9
301	Putting forward a Ni-metallosalphen-based porous organic polymer for detoxification of sulfur mustard gas simulant. Chemical Communications, 2023, 59, 5067-5070.	4.1	6
302	Weak Bonds, Strong Effects: Enhancing the Separation Performance of UiO-66 toward Chlorobenzenes via Halogen Bonding. , 2023, 5, 1340-1349.		4
303	Modulation of Uptake and Reactivity of Nitrogen Dioxide in Metalâ€Organic Framework Materials. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
304	Competitive adsorption and selectivity of water vapor/R134a on activated carbon for indoor air purification. Separation and Purification Technology, 2023, 317, 123741.	7.9	8
305	MODULATION OF UPTAKE AND REACTIVITY OF NITROGEN DIOXIDE IN METALâ€ORGANIC FRAMEWORK MATERIALS. Angewandte Chemie, 0, , .	2.0	0
306	Modeling of multi-temperature IV and V-type water vapor adsorption isotherms on activated carbons for chemical protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131486.	4.7	8
307	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
308	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	2.0	0
309	Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. Journal of the American Chemical Society, 2023, 145, 10227-10235.	13.7	5

# 310	ARTICLE Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant. Dalton Transactions, 2023, 52,	IF 3.3	Citations
311	6899-6905. Efficient SO2 capture at ultra-low concentration using a hybrid absorbent of deep eutectic solvent and ethylene glycol. Journal of Molecular Liquids, 2023, 382, 121945.	4.9	0
312	A solution processible single-crystal porous organic polymer. , 2023, 2, 873-879.		7
313	A Terbium(III)â^'Organic Framework for High Catalytic Performance on Cycloaddition of CO2 with Epoxides Under Mild Condition. Catalysis Letters, 2024, 154, 974-981.	2.6	1
314	Exclusive Recognition of CO ₂ from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities. Journal of the American Chemical Society, 2023, 145, 11643-11649.	13.7	18
315	Investigating the Increased CO ₂ Capture Performance of Amino Acid Functionalized Nanoporous Materials from First-Principles and Grand Canonical Monte Carlo Simulations. Journal of Physical Chemistry Letters, 2023, 14, 5069-5076.	4.6	3
316	A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker. Chemical Communications, 2023, 59, 7803-7806.	4.1	2
317	Rational design of stable functional metal–organic frameworks. Materials Horizons, 2023, 10, 3257-3268.	12.2	13
318	Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66. Nanomaterials, 2023, 13, 1793.	4.1	2
319	3D water stable Eu(III)-organic framework as recyclable multi-responsive luminescent sensor for efficient detection of lead ion, permanganate anion and para-nitrophenol in aqueous medium. Journal of Molecular Structure, 2023, 1290, 135970.	3.6	2
320	Acidic protic ionic liquidâ€based deep eutectic solvents capturing <scp>SO₂</scp> with low enthalpy changes. AICHE Journal, 2023, 69, .	3.6	4
321	Turning precious metal-loaded e-waste to useful catalysts: Investigation into supercilious recovery and catalyst viability for peroxymonosulfate activation. Chemosphere, 2023, 336, 139170.	8.2	4
322	Immobilization of the Polar Group into an Ultramicroporous Metal–Organic Framework Enabling Benchmark Inverse Selective CO ₂ /C ₂ H ₂ Separation with Record C ₂ H ₂ Production. Journal of the American Chemical Society, 2023, 145, 13901-13911	13.7	30
323	Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants. ACS Applied Materials & amp; Interfaces, 2023, 15, 30360-30371.	8.0	5
324	MOF-Assimilated High-Sensitive Organic Field-Effect Transistors for Rapid Detection of a Chemical Warfare Agent. ACS Applied Materials & Interfaces, 2023, 15, 30580-30590.	8.0	2
325	pH-stable MOFs: Design principles and applications. Coordination Chemistry Reviews, 2023, 493, 215301.	18.8	18
326	Advances in the adsorption and degradation of chemical warfare agents and simulants by Metal-organic frameworks. Coordination Chemistry Reviews, 2023, 493, 215289.	18.8	2
327	A self-supported aZIF-UC-4 glass membrane for gas separation. Journal of Membrane Science, 2023, 683, 121873.	8.2	2

#	Article	IF	CITATIONS
328	Scalable and Depurative Zirconium Metal–Organic Framework for Deep Flue-Gas Desulfurization and SO ₂ Recovery. Journal of the American Chemical Society, 2023, 145, 14354-14364.	13.7	13
329	Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO2 and C2H2. Nature Communications, 2023, 14, .	12.8	8
330	Study on the essential features for MOFs to reversible adsorption of H2S at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674, 131914.	4.7	2
331	Molecular adsorption and self-diffusion of NO ₂ , SO ₂ , and their binary mixture in MIL-47(V) material. RSC Advances, 2023, 13, 19207-19219.	3.6	0
332	Metal-organic frameworks as superior adsorbents for pesticide removal from water: The cutting-edge in characterization, tailoring, and application potentials. Coordination Chemistry Reviews, 2023, 493, 215303.	18.8	11
333	Coordination polymers based on di-9,10-(pyridine-4-yl)-anthracene: selective adsorption of CO ₂ and fluorescent properties. CrystEngComm, 2023, 25, 3278-3283.	2.6	1
334	Chemical binding mechanisms for gas storage and separation. Science Bulletin, 2023, 68, 1223-1224.	9.0	0
335	Designing multivariate porphyrin-based metal-organic frameworks with Ni/Co dual-metal atom sites for cooperative NO2 capture and NO retention. Separation and Purification Technology, 2023, 320, 124080.	7.9	4
336	Reducing defect density in UiO-68–CHO is key for its efficient and reliable post-synthetic modification. Molecular Systems Design and Engineering, 0, , .	3.4	0
337	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	47.7	31
338	A new dual-ligand DUT-52-type metal–organic framework for ratiometric luminescence detection of aqueous-phase Cu ²⁺ and Cr ₂ O ₇ ^{2â^`} . Dalton Transactions, 2023, 52, 10584-10593.	3.3	1
339	Machine learning assisted high-throughput computational screening of MOFs for the capture of chemical warfare agents from the air. Separation and Purification Technology, 2023, 325, 124546.	7.9	4
340	Unraveling the Optimal Cerium Content for Boosting the Photoresponse Activity of Mixed-Metal Zr/Ce-Based Metal–Organic Frameworks through a Photodynamic and Photocurrent Correlation: Implications on Water Splitting Efficiency. ACS Applied Materials & Interfaces, 0, , .	8.0	0
341	Multidirectional Solvent-Induced Structural Transformation in Designing a Series of Polycatenated Cobalt(II) Coordination Polymers: Impact on Carbon Dioxide and Hydrogen Uptake. Inorganic Chemistry, 2023, 62, 12403-12412.	4.0	0
342	Advances in Metal–Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms. Nanomaterials, 2023, 13, 2178.	4.1	0
343	Acetic acid-conditioned synthesis and characterization of semi-amorphous Ti-BDC with enhanced photocatalytic performance. Materials Research Bulletin, 2023, 168, 112462.	5.2	0
344	Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nature Communications, 2023, 14, .	12.8	6
345	Design of porphyrin-based frameworks for efficient visible light-promoted reduction of CO2 from dilute gas: Combined experimental and theoretical investigation. Journal of Colloid and Interface Science, 2023, 652, 480-489.	9.4	0

#	Article	IF	Citations
346	Metal–organic frameworks and metal–organic framework-derived materials for denitrogenation of liquid fuel via adsorption and catalysis. Coordination Chemistry Reviews, 2023, 495, 215382.	18.8	4
347	Multilength Scale Hierarchy in Metalâ€Organic Frameworks: Synthesis, Characterization and the Impact on Applications. Advanced Functional Materials, 0, , .	14.9	0
348	Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants. Dalton Transactions, 2023, 52, 12143-12151.	3.3	3
349	Preparation and Characterization of Fe-Gallic acid MOF for determination of antiviral Molnupiravir as inhibitor for RNA Corona virus replication. Microchemical Journal, 2023, 194, 109297.	4.5	1
350	Potential applications of MOF composites as selective membranes for separation of gases. Coordination Chemistry Reviews, 2023, 496, 215413.	18.8	4
351	Superhydrophobic MOF based materials and their applications for oil-water separation. Journal of Cleaner Production, 2023, 420, 138347.	9.3	8
352	Triazineâ€based multicomponent metallacages with tunable structures for SO ₂ selective capture and conversion. Aggregate, 2024, 5, .	9.9	1
353	Hierarchical porous tannic-acid-modified MOFs/alginate particles with synergized adsorption-photocatalysis for water remediation. Separation and Purification Technology, 2024, 330, 125435.	7.9	5
354	Recent advances in Porphyrin-based metal organic frameworks and composites for photocatalytic hydrogen evolution and water treatment. Chemical Engineering Research and Design, 2023, 199, 620-638.	5.6	1
355	Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants. Nanoscale Advances, 0, , .	4.6	Ο
356	Dynamic adsorption behavior of 1.1.1.2-tetrafluoroethane (R134a) on activated carbon beds under different humidity and moisture levels. Separation and Purification Technology, 2024, 329, 124851.	7.9	1
357	Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. Journal of Colloid and Interface Science, 2023, 652, 1156-1169.	9.4	2
358	Activity regulation and applications of metal–organic framework-based nanozymes. Rare Metals, 2024, 43, 900-914.	7.1	2
359	Metalâ€Organic Frameworks for Air Pollution Purification and Detection. Advanced Functional Materials, 0, , .	14.9	1
360	Balancing chemical warfare agent degradation and permeability in a zirconium-based metal-organic framework fiber composite. Cell Reports Physical Science, 2023, 4, 101608.	5.6	1
361	MOF-808 on Polyacrylonitrile Nanofibers for Degradation of Chemical Warfare Agents. ACS Applied Nano Materials, 2023, 6, 18437-18445.	5.0	2
362	Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels, 2023, 9, 815.	4.5	0
363	Partialâ€Interpenetrationâ€Controlled UiOâ€Type Metalâ€Organic Framework and its Catalytic Activity. Small, 2024, 20, .	10.0	0

#	Article	IF	Citations
364	Fundamentals of metal–organic frameworks. , 2024, , 25-34.		0
365	Structural modified metal-organic frameworks by hierarchical layer-by-layer method for efficient CO2 capture enhancement. Journal of CO2 Utilization, 2023, 77, 102603.	6.8	0
366	2D → 3D polycatenated Zn(II) metal-organic framework with good chemical stability as the fluorescent sensor toward salicylaldehyde, acetylacetone and H ₂ PO ₄ ⁻ . CrystEngComm, 0, , .	2.6	1
367	Enhanced earlyâ€stage adsorption of chemical warfare agent simulant by <scp>MIL</scp> â€68â€{ <scp>X</scp> % <scp>OH</scp>). Bulletin of the Korean Chemical Society, 2024, 45, 67-73.	1.9	0
368	A water-stable Y(III)-MOF as multi-responsive luminescent sensor for high-efficiency detection of Fe3+, Cu2+, and MnO4- ions in aqueous solutions. Journal of Molecular Structure, 2024, 1298, 136975.	3.6	0
369	Isoreticular Chemistry and Applications of Supramolecularly Assembled Copper–Adenine Porous Materials. Inorganic Chemistry, 2023, 62, 18496-18509.	4.0	1
370	Metal- and covalent-organic framework mixed matrix membranes for CO2 separation: A perspective on stability and scalability. Journal of Membrane Science, 2024, 691, 122258.	8.2	4
371	Quasi-open Cu(i) sites for efficient CO separation with high O2/H2O tolerance. Nature Materials, 2024, 23, 116-123.	27.5	2
372	Amorphous porous Fe-BTC prepared <i>via</i> the post-synthetic metal-ion metathesis of HKUST-1. Journal of Materials Chemistry A, 2023, 11, 24591-24597.	10.3	0
373	Metal-organic framework boosts heterogeneous electron donor–acceptor catalysis. Nature Communications, 2023, 14, .	12.8	2
374	Humidity Enhances the Solid-Phase Catalytic Ability of a Bulk MOF-808 Metal–Organic Gel toward a Chemical Warfare Agent Simulant. ACS Applied Materials & Interfaces, 2023, 15, 54582-54589.	8.0	0
375	Selective and efficient removal of ciprofloxacin from water by bimetallic MOF beads: Mechanism quantitative analysis and dynamic adsorption. Separation and Purification Technology, 2024, 332, 125832.	7.9	2
376	ZIRCONIUM-METAL-ORGANIC FRAMEWORK@ACTIVATED CARBON COMPOSITES FOR PREVENTION OF SECOND EMISSION OF NERVE AGENTS. Journal of Materials Chemistry A, 0, , .	10.3	0
377	Polyphenol oxidase inactivation from apple juice by Al-based metal–organic frameworks: New anti-browning strategy in fruits and vegetables. Food Chemistry, 2024, 439, 138178.	8.2	1
378	A Nanocavitation Approach to Understanding Water Capture, Water Release, and Framework Physical Stability in Hierarchically Porous MOFs. Journal of the American Chemical Society, 0, , .	13.7	0
379	High Capacity Adsorption and Degradation of a Nerve Agent Simulant and a Pesticide by a Nickel Pyrazolate Metal–Organic Framework. ACS Applied Materials & Interfaces, 2023, 15, 55877-55884.	8.0	0
380	Rapid Oxidative Detoxification of Mustard Simulant by the Multisite Synergistic Catalytic Action of {PMo ^{VI} ₁₁ Mo ^V O ₄₀ Cu ^I ₈ } Units. Inorganic Chemistry, 0, , .	4.0	0
381	Lithium-Ion Doping for Enhanced Hydrogen Sulfide Adsorption on Metal–Organic Frameworks: Grand Canonical Monte Carlo and Density Functional Theory Simulations. Journal of Physical Chemistry C, O,	3.1	0

#	Article	IF	CITATIONS
382	Separation of High-Purity C ₂ H ₂ from Binary C ₂ H ₂ /CO ₂ Using Robust Al-Based MOFs Comprising Nitrogen-Containing Heterocyclic Dicarboxylate. ACS Applied Materials & Interfaces, 0, , .	8.0	0
383	Starfruitâ€shapedÂZirconium Metalâ^'Organic Frameworks: From 3D intermediates to 2D Nanosheet Petals with Enhanced Catalytic Activity. Chemistry - A European Journal, 0, , .	3.3	0
384	Self-Healing Hydrogen-Bonded Organic Frameworks for Low-Concentration Ammonia Capture. Journal of the American Chemical Society, 2024, 146, 627-634.	13.7	2
387	A triple tandem reaction for the upcycling of products from poorly selective CO2 photoreduction systems. , 2024, 3, 406-418.		1
388	Multiscale Coâ€Assembly to Mesoâ€Macroporous Foamed Singleâ€Crystal Metal–Organic Frameworks for the Supported Capture of Sulfur Dioxide. Advanced Functional Materials, 2024, 34, .	14.9	0
389	Sunlight assisted highly efficient desorption of ammonia by redox graphene hybrid metal–organic framework photothermal conversion adsorbents. Separation and Purification Technology, 2024, 336, 126348.	7.9	0
390	Modeling of multi-temperature Type I and II benzene/ammonia adsorption isotherms: Dual LF model and linearized DR model. Separation and Purification Technology, 2024, 338, 126246.	7.9	0
392	First-Principles Study on the Selective Separation of Toxic Gases by Mg-MOF-74. ACS Omega, 2024, 9, 4849-4856.	3.5	0
393	Applications of Emerging Metal and Covalent Organic Frameworks in Perovskite Photovoltaics: Materials and Devices. Advanced Energy Materials, 2024, 14, .	19.5	0
394	Zr-MOF-Based Enzyme Mimic Catalytic Membrane for Removal of Organophosphorus Pesticides. ACS Applied Nano Materials, 0, , .	5.0	0
395	Long-Range Epitaxial MOF Electronics for Continuous Monitoring of Human Breath Ammonia. Journal of the American Chemical Society, 2024, 146, 4036-4044.	13.7	0
396	Thermodynamic Insights into Phosphonate Binding in Metal–Azolate Frameworks. Journal of the American Chemical Society, 2024, 146, 5661-5668.	13.7	0
397	Removal of bisphenol a from wastewater by adsorption and membrane separation: Performances and mechanisms. Chemical Engineering Journal, 2024, 484, 149414.	12.7	2
398	Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation. ACS Applied Materials & Interfaces, 2024, 16, 9900-9907.	8.0	0
399	Trace SO ₂ capture within the engineered pore space using a highly stable SnF ₆ ^{2â^'} -pillared MOF. Materials Horizons, 2024, 11, 1889-1898.	12.2	0
400	Adsorption of BBR dye by ZIF-67 and C@ZIF-67. AIP Conference Proceedings, 2024, , .	0.4	0
401	Coupling physical adsorption and photocatalysis over CdS/UiO-66-NH2 for efficient removal of hydrogen sulfide. Separation and Purification Technology, 2024, 341, 126956.	7.9	0
402	Systematic study of the structure-property relationship of C24N24 nanoclusters for the detection and electrochemical sensing of chemical warfare agents: Molecular modelling at DFT level. Journal of Molecular Structure, 2024, 1307, 137905.	3.6	0

#	Article	IF	CITATIONS
403	A robust Zr(IV)-based metal-organic framework featuring high-density free carboxylic groups for efficient uranium recovery. Chemical Engineering Journal, 2024, 486, 150251.	12.7	0
404	Development of green and sustainable ammonia sensor from xanthohumol extract-immobilized polylactic acid nanofibers. Journal of Molecular Liquids, 2024, 400, 124494.	4.9	0
405	Ionic hyper-cross-linked porous polymer networks with achiral and chiral pyridinium-type segments. European Polymer Journal, 2024, 210, 112971.	5.4	0
406	Solution Blow Spinning Ultrafine Fiber Sponge-Loaded MOF-808 for Effective Adsorption and Degradation of Mustard Gas. ACS Applied Materials & Interfaces, 2024, 16, 15298-15307.	8.0	0