Unconstrained genome targeting with near-PAMless en

Science 368, 290-296 DOI: 10.1126/science.aba8853

Citation Report

#	Article	IF	CITATIONS
1	Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 2020, 21, 6925.	1.8	11
2	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery, 2020, 19, 839-859.	21.5	218
3	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 2020, 5, 277-292.	1.8	33
4	Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. Journal of Biological Chemistry, 2020, 295, 17588-17601.	1.6	14
5	Genome editing systems across yeast species. Current Opinion in Biotechnology, 2020, 66, 255-266.	3.3	15
6	Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science Advances, 2020, 6, eaba1773.	4.7	55
7	Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nature Communications, 2020, 11, 3596.	5.8	41
8	The dawn of non-human primate models for neurodevelopmental disorders. Current Opinion in Genetics and Development, 2020, 65, 160-168.	1.5	18
9	Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs. Frontiers in Genetics, 2020, 11, 592623.	1.1	12
10	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	1.4	18
11	Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities. Horticultural Plant Journal, 2020, 6, 372-384.	2.3	18
12	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
13	β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Frontiers in Genome Editing, 2020, 2, 571239.	2.7	6
14	CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology, 2020, 10, 1387.	1.3	247
15	Current Status and Challenges of DNA Base Editing Tools. Molecular Therapy, 2020, 28, 1938-1952.	3.7	72
16	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	3.6	32
17	CRISPR-Cas9 System for Plant Genome Editing: Current Approaches and Emerging Developments. Agronomy, 2020, 10, 1033.	1.3	47
18	Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synthetic Biology, 2020, 9, 2228-2238.	1.9	14

#	Article	IF	CITATIONS
19	The Development and Application of a Base Editor in Biomedicine. BioMed Research International, 2020, 2020, 1-12.	0.9	2
20	CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Frontiers in Plant Science, 2020, 11, 584151.	1.7	66
21	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020, 21, 6240.	1.8	179
22	Fetal hemoglobin in sickle cell anemia. Blood, 2020, 136, 2392-2400.	0.6	43
23	CRISPR–Cas-mediated gene editing in lactic acid bacteria. Molecular Biology Reports, 2020, 47, 8133-8144.	1.0	9
24	Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis, 2020, 3, 813-823.	16.1	23
25	Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 148.	1.4	20
26	Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry, 2020, 295, 14473-14487.	1.6	49
27	In vivo CRISPR screening for phenotypic targets of the <i>mir-35-42</i> family in <i>C. elegans</i> . Genes and Development, 2020, 34, 1227-1238.	2.7	20
28	Programmable Gene Knockdown in Diverse Bacteria Using Mobileâ€CRISPRi. Current Protocols in Microbiology, 2020, 59, e130.	6.5	16
29	Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nature Communications, 2020, 11, 6277.	5.8	7
30	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95
31	A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nature Communications, 2020, 11, 5512.	5.8	116
32	m6A Editing: New Tool to Improve Crop Quality?. Trends in Plant Science, 2020, 25, 859-867.	4.3	23
33	Mutation-Independent Allele-Specific Editing by CRISPR-Cas9, a Novel Approach to Treat Autosomal Dominant Disease. Molecular Therapy, 2020, 28, 1846-1857.	3.7	13
34	A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 2020, 11, 2474.	5.8	77
35	An engineered ScCas9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38, 1154-1158.	9.4	93
36	Rewired Cas9s with Minimal Sequence Constraints. Trends in Pharmacological Sciences, 2020, 41, 429-431.	4.0	1

CITATION REPORT IF CITATIONS Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature 9.4 1,277 Biotechnology, 2020, 38, 824-844. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. International Journal of Molecular Sciences, 2020, 21, 3903. 1.8 PAM-less is more. Nature Methods, 2020, 17, 559-559. 9.0 10 Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends in Cardiovascular Medicine, 2021, 31, 341-348. A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical 3.7 23 Sciences, 2020, 45, 874-888. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, 2020, 9, 1608. 1.8 Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On―and Offâ€Target 1.2 9 Damage. BioEssays, 2020, 42, e2000047. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosensors and 5.3 138 Developing a baseâ \in editing system to expand the carbon source utilization spectra of <i>Shewanella oneidensis</i> MRâ€1 for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 1.7 29 CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. 1.2 British Journal of Haematology, 2021, 192, 33-49.

47	sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Letters, 2021, 500, 263-270.	3.2	29
48	CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39, 41-46.	9.4	328
49	Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends in Biotechnology, 2021, 39, 165-180.	4.9	42
50	Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes Containing Cas9 Protein and Modified sgRNAs. Molecular Therapy, 2021, 29, 191-207.	3.7	24
51	Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing. Trends in Biotechnology, 2021, 39, 262-273.	4.9	32
52	A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering, 2021, 5, 190-194.	11.6	85
53	CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 2021, 29, 207-221.	4.4	136

Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. 54 11.6 Nature Biomedical Engineering, 2021, 5, 169-178.

ARTICLE

#

37

39

41

43

44

45

2389-2400.

#	Article	IF	Citations
55	CRISPR-derived genome editing technologies for metabolic engineering. Metabolic Engineering, 2021, 63, 141-147.	3.6	23
56	Versatile detection with CRISPR/Cas system from applications to challenges. TrAC - Trends in Analytical Chemistry, 2021, 135, 116150.	5.8	74
57	CRISPR gets crunchy. Lab Animal, 2021, 50, 9-11.	0.2	1
58	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	1.6	10
59	Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. Journal of Hazardous Materials, 2021, 408, 124910.	6.5	22
60	Programmed sequential cutting endows Cas9 versatile base substitution capability in plants. Science China Life Sciences, 2021, 64, 1025-1028.	2.3	5
61	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	2.1	36
62	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	2.0	87
63	Predicting the efficiency of prime editing guide RNAs in human cells. Nature Biotechnology, 2021, 39, 198-206.	9.4	160
64	Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nature Biotechnology, 2021, 39, 84-93.	9.4	80
65	Genetic engineering in plants using CRISPRs. , 2021, , 223-233.		0
66	Choosing a nuclease, guide RNA, and repair template. , 2021, , 41-59.		0
67	Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells. International Journal of Molecular Sciences, 2021, 22, 857.	1.8	0
68	CRISPR mediated genome editing, a tool to dissect RNA modification processes. Methods in Enzymology, 2021, 658, 435-452.	0.4	0
69	Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406.	2.7	36
70	Genetic glycoengineering in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100448.	1.6	53
71	CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Frontiers in Genome Editing, 2020, 2, 606281.	2.7	22
72	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	5.5	90

ARTICLE IF CITATIONS # In-situ generation of large numbers of genetic combinations for metabolic reprogramming via 73 5.8 44 CRISPR-guided base editing. Nature Communications, 2021, 12, 678. Convergence of human pluripotent stem cell, organoid, and genome editing technologies. 74 1.1 Experimental Biology and Medicine, 2021, 246, 861-875. Rewriting CFTR to cure cystic fibrosis. Progress in Molecular Biology and Translational Science, 2021, 75 0.9 8 182, 185-224. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biology, 2021, 22, 6. Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and 77 0.9 11 Translational Science, 2021, 181, 31-43. Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity. Pharmacogenomics, 2021, 22, 41-54. Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells. Methods in 79 0.4 1 Molecular Biology, 2021, 2312, 193-223. CRISPR/Cas9 technologies to manipulate human induced pluripotent stem cells., 2021, , 249-287. 81 CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12, 555. 5.8 148 Expanding the scope of genome editing with SpG and SpRY variants in rice. Science China Life Sciences, 2.3 2021, 64, 1784-1787. Induced mutagenesis in wheat: from ionizing radiation to site-specific gene editing. Fiziologia Rastenij I 83 0.1 1 Genetika, 2021, 53, 29-54. Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Reports, 1.1 2021, 54, 98-105. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. 85 3.9 51 Molecular Plant, 2021, 14, 352-360. History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 2022, 56, 60-68. Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants. 87 3.9 24 Molecular Plant, 2021, 14, 191-194. Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Frontiers in 2.2 Immunology, 2020, 11, 611638. Massively parallel assessment of human variants with base editor screens. Cell, 2021, 184, 89 13.5175 1064-1080.e20. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biology, 2021, 19, 34.

#	Article	IF	CITATIONS
91	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	1.0	11
92	Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nature Protocols, 2021, 16, 1511-1547.	5.5	23
93	Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Frontiers in Genetics, 2021, 12, 627714.	1.1	15
94	Functional interrogation of DNA damage response variants with base editing screens. Cell, 2021, 184, 1081-1097.e19.	13.5	145
95	Lb2Cas12a and its engineered variants mediate genome editing in human cells. FASEB Journal, 2021, 35, e21270.	0.2	5
96	High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 2021, 39, 923-927.	9.4	189
97	CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regulation, 2021, 94, 115-129.	1.8	8
98	PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 2021, 22, 101.	1.2	254
99	Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmology, 2021, 139, 319.	1.4	26
100	Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Therapy, 2022, 29, 207-216.	2.3	10
101	CRISPR-Guided Programmable Self-Assembly of Artificial Virus-Like Nucleocapsids. Nano Letters, 2021, 21, 2752-2757.	4.5	18
102	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
103	Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Molecular Therapy, 2021, 29, 937-948.	3.7	12
104	Ultra-conserved sequences in the genomes of highly diverse <i>Anopheles</i> mosquitoes, with implications for malaria vector control. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
105	Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Research, 2021, 30, 529-549.	1.3	49
106	Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Frontiers in Genome Editing, 2021, 3, 618378.	2.7	27
107	Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Medicine, 2021, 13, 41.	3.6	32
108	The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana. Scientific Reports, 2021, 11, 8087.	1.6	20

		CITATION R	EPORT	
#	Article		IF	CITATIONS
109	Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms, 2021, 9, 844.		1.6	57
110	Improved prime editors enable pathogenic allele correction and cancer modelling in ad Nature Communications, 2021, 12, 2121.	ult mice.	5.8	155
111	Plant genome editing: ever more precise and wide reaching. Plant Journal, 2021, 106, 1	.208-1218.	2.8	30
112	Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168.		1.4	0
113	Using CRISPR to understand and manipulate gene regulation. Development (Cambridg	e), 2021, 148, .	1.2	9
114	CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Current Gene Therapy, 2021, 21	, 130-148.	0.9	6
115	Parallel genetics of regulatory sequences using scalable genome editing inÂvivo. Cell R 108988.	eports, 2021, 35,	2.9	9
117	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	therapy and crop	1.3	97
118	CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell, 202	1, 33, 794-813.	3.1	54
119	Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobi graphene field-effect transistor. Nature Biomedical Engineering, 2021, 5, 713-725.	lized on a	11.6	77
120	Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglo expression. Nature Genetics, 2021, 53, 869-880.	bin	9.4	37
121	Whole-genome sequencing association analysis of quantitative red blood cell phenoty TOPMed program. American Journal of Human Genetics, 2021, 108, 874-893.	bes: The NHLBI	2.6	28
125	New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Brea 2021, 12, 723.	ist Cancer. Genes,	1.0	12
128	SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit albicans Genome. MSphere, 2021, 6, .	the Candida	1.3	10
129	Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 varia Dictyostelium discoideum. Scientific Reports, 2021, 11, 11163.	ants in	1.6	11
130	Accurate Detection of Rare Mutant Alleles by Target Base-Specific Cleavage with the Cl System. ACS Synthetic Biology, 2021, 10, 1451-1464.	RISPR/Cas9	1.9	2
131	The application of genome editing technology in fish. Marine Life Science and Technologia 326-346.	ogy, 2021, 3,	1.8	9
132	Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutar Molecular Therapy, 2021, , .	nt embryos.	3.7	5

#	Article	IF	CITATIONS
133	Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight, 2021, 6, .	2.3	17
134	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	4.6	50
137	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1328-1337.	1.9	10
138	High-efficiency and multiplex adenine base editing in plants using new TadA variants. Molecular Plant, 2021, 14, 722-731.	3.9	69
139	STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. Npj Genomic Medicine, 2021, 6, 34.	1.7	13
141	CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes, 2021, 12, 797.	1.0	22
142	Recent advances in CRISPR technologies for genome editing. Archives of Pharmacal Research, 2021, 44, 537-552.	2.7	5
143	Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond. Annual Review of Biochemistry, 2021, 90, 221-244.	5.0	28
144	Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sensors, 2021, 6, 2497-2522.	4.0	37
145	Engineered prime editors with PAM flexibility. Molecular Therapy, 2021, 29, 2001-2007.	3.7	56
146	Evolution-aided engineering of plant specialized metabolism. ABIOTECH, 2021, 2, 240-263.	1.8	11
147	Genome editing to define the function of risk loci and variants in rheumatic disease. Nature Reviews Rheumatology, 2021, 17, 462-474.	3.5	9
149	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
150	Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus, 2021, 9, eESP00062020.	2.1	2
151	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. CRISPR Journal, 2021, 4, 400-415.	1.4	5
152	AddTag, a two-step approach with supporting software package that facilitates CRISPR/Cas-mediated precision genome editing. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
153	Delivering AAV to the Central Nervous and Sensory Systems. Trends in Pharmacological Sciences, 2021, 42, 461-474.	4.0	18
155	Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Communications Biology, 2021, 4, 771.	2.0	20

	CITATION	REPORT	
#	Article	IF	Citations
158	Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells, 2021, 10, 1492.	1.8	15
159	Efficient precise in vivo base editing in adult dystrophic mice. Nature Communications, 2021, 12, 3719.	5.8	61
160	In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Nucleic Acids Research, 2021, 49, 8785-8795.	6.5	32
161	Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nature Communications, 2021, 12, 4476.	5.8	23
162	Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation. BMC Biotechnology, 2021, 21, 45.	1.7	2
163	Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Research, 2021, 49, 8974-8986.	6.5	10
165	CRISPR-based genome editing technology and its applications in oil crops. Oil Crop Science, 2021, 6, 105-113.	0.9	9
166	Base editing-coupled survival screening enabled high-sensitive analysis of PAM compatibility and finding of the new possible off-target. IScience, 2021, 24, 102769.	1.9	2
167	Base Editing in Plants: Applications, Challenges, and Future Prospects. Frontiers in Plant Science, 2021, 12, 664997.	1.7	31
168	Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnology Journal, 2021, 19, 2428-2441.	4.1	16
169	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	4.3	76
170	A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology Advances, 2021, 49, 107732.	6.0	48
171	CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends in Biotechnology, 2021, 39, 678-691.	4.9	47
172	CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientific Reports, 2021, 11, 16186.	1.6	20
173	Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12, 4902.	5.8	28
174	CRISPR Toolbox for Genome Editing in Dictyostelium. Frontiers in Cell and Developmental Biology, 2021, 9, 721630.	1.8	5
176	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
178	Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Molecular Genetics and Metabolism, 2021, 134, 77-86.	0.5	15

CITAT	LON	DEDODT	
U.I.I.A	HON.	KEPORI	

#	Article	IF	CITATIONS
179	NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell, 2021, 184, 4268-4283.e20.	13.5	35
181	Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Frontiers in Immunology, 2021, 12, 670280.	2.2	1
182	Engineering Cas9 for human genome editing. Current Opinion in Structural Biology, 2021, 69, 86-98.	2.6	19
183	Gene drives gaining speed. Nature Reviews Genetics, 2022, 23, 5-22.	7.7	92
184	DNA interference states of the hypercompact CRISPR–CasΦ effector. Nature Structural and Molecular Biology, 2021, 28, 652-661.	3.6	50
185	CRISPR/Cas9-based directed evolution in mammalian cells. Current Opinion in Structural Biology, 2021, 69, 35-40.	2.6	6
186	The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science. Journal of Genetics and Genomics, 2021, 48, 661-670.	1.7	31
187	CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 634-655.	1.4	5
188	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	2.7	32
189	The ScCas9 ⁺⁺ variant expands the CRISPR toolbox for genome editing in plants. Journal of Integrative Plant Biology, 2021, 63, 1611-1619.	4.1	17
190	Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 2021, 12, 728520.	1.1	11
191	Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. International Journal of Molecular Sciences, 2021, 22, 10355.	1.8	24
192	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	3.7	87
195	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	4.7	172
196	Points of View on the Tools for Genome/Gene Editing. International Journal of Molecular Sciences, 2021, 22, 9872.	1.8	10
197	Functional correction of <i>CFTR</i> mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	6.5	25
198	Current Advancements and Limitations of Gene Editing in Orphan Crops. Frontiers in Plant Science, 2021, 12, 742932.	1.7	20
199	Making the cut with PAMless CRISPR-Cas enzymes. Trends in Genetics, 2021, 37, 1053-1055.	2.9	3

#	Article	IF	CITATIONS
200	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	5.8	49
201	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	1.8	2
202	Expanding the target range of base editing in plants without loss of efficiency by blocking RNAâ€silencing. Plant Biotechnology Journal, 2021, 19, 2389-2391.	4.1	4
203	A treasure trove of molecular scissors. Science, 2021, 374, 37-38.	6.0	3
204	Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells. Methods, 2021, 194, 18-29.	1.9	7
205	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	2.8	3
206	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	7.9	86
207	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	1.2	11
208	CABE-RY: A PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Molecular Therapy - Nucleic Acids, 2021, 26, 114-121.	2.3	8
209	Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Current Opinion in Genetics and Development, 2021, 71, 171-181.	1.5	6
210	Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Molecular Therapy - Nucleic Acids, 2021, 26, 502-510.	2.3	7
211	Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Current Opinion in Biotechnology, 2022, 73, 1-13.	3.3	39
212	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	3.7	8
213	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140
214	Gene and epigenetic editing in the treatment of primary ciliopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 353-401.	0.9	3
216	Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biology, 2021, 18, 1048-1062.	1.5	24
217	Plant genome editing branches out. Nature Plants, 2021, 7, 4-5.	4.7	3
218	Genetic engineering in organoids. Journal of Molecular Medicine, 2021, 99, 555-568.	1.7	33

#	Article	IF	CITATIONS
219	Engineered dual selection for directed evolution of SpCas9 PAM specificity. Nature Communications, 2021, 12, 349.	5.8	10
220	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.1	15
221	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
222	SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power. Trends in Genetics, 2020, 36, 546-548.	2.9	18
223	Efficient CRISPR-mediated base editing in <i>Agrobacterium</i> spp Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
224	CRISPR-Cas "Non-Target―Sites Inhibit On-Target Cutting Rates. CRISPR Journal, 2020, 3, 550-561.	1.4	17
233	A most formidable arsenal: genetic technologies for building a better mouse. Genes and Development, 2020, 34, 1256-1286.	2.7	24
234	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty Reviews, 2020, 9, 20.	1.7	8
235	Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing. Life, 2020, 10, 366.	1.1	32
236	Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. Biodesign Research, 2020, 2020, .	0.8	34
237	Human cell based directed evolution of adenine base editors with improved efficiency. Nature Communications, 2021, 12, 5897.	5.8	15
238	Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR Journal, 2021, 4, 710-727.	1.4	1
239	A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Molecular Plant, 2022, 15, 243-257.	3.9	22
240	Advances and Opportunities of CRISPR/Cas Technology in Bioengineering Non-conventional Yeasts. Frontiers in Bioengineering and Biotechnology, 2021, 9, 765396.	2.0	13
241	Precise genomic deletions using paired prime editing. Nature Biotechnology, 2022, 40, 218-226.	9.4	117
242	Efficient Multi-Sites Genome Editing and Plant Regeneration via Somatic Embryogenesis in Picea glauca. Frontiers in Plant Science, 2021, 12, 751891.	1.7	15
245	Automated design of CRISPR prime editors for 56,000 human pathogenic variants. IScience, 2021, 24, 103380.	1.9	11
246	A utilização da técnica de CRISPR-CAS9 na Terapia Gênica. Research, Society and Development, 2021, 10, e75101421778.	0.0	0

#	Article	IF	Citations
247	Imagine CRISPR cures. Molecular Therapy, 2021, 29, 3103-3106.	3.7	9
248	Genome Engineering in Plant Using an Efficient CRISPR-xCas9 Toolset With an Expanded PAM Compatibility. Frontiers in Genome Editing, 2020, 2, 618385.	2.7	4
250	Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology, 2021, 17, e10512.	3.2	13
257	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 761709.	1.8	20
258	Defining genome-wide CRISPR–Cas genome-editing nuclease activity with GUIDE-seq. Nature Protocols, 2021, 16, 5592-5615.	5.5	27
259	Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communications, 2021, 12, 6916.	5.8	17
260	Prime Editing for Inherited Retinal Diseases. Frontiers in Genome Editing, 2021, 3, 775330.	2.7	17
261	A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines. Scientific Reports, 2021, 11, 22154.	1.6	19
262	Current technological interventions and applications of CRISPR/Cas for crop improvement. Molecular Biology Reports, 2022, 49, 5751-5770.	1.0	6
263	Applications of CRISPR-Cas System in Tumor Biology. Oncologie, 2021, 23, 463-492.	0.2	1
264	Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biology, 2022, 23, 16.	3.8	16
265	PhieABEs: a PAMâ€less/free highâ€efficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnology Journal, 2022, 20, 934-943.	4.1	40
266	Toward Integrated Genomic Diagnosis in Routine Diagnostic Pathology by the World Health Organization Classification of Acute Myeloid Leukemia. , 2020, 1, .		1
268	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	2.3	39
269	Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors. Frontiers in Plant Science, 2021, 12, 815946.	1.7	13
270	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	1.8	16
272	Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Progress in Retinal and Eye Research, 2022, 90, 101038.	7.3	11
273	CRISPR/Cas-Based Genome Editing for Human Gut Commensal <i>Bacteroides</i> Species. ACS Synthetic Biology, 2022, 11, 464-472.	1.9	30

	CITATION	Report	
#	Article	IF	CITATIONS
274	CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.	4.5	90
275	CRISPR–Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiology, 2022, 188, 1811-1824.	2.3	21
276	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	0.9	11
277	Highly efficient A-to-G base editing by ABE8.17 in rabbits. Molecular Therapy - Nucleic Acids, 2022, 27, 1156-1163.	2.3	4
278	Gradients in gene essentiality reshape antibacterial research. FEMS Microbiology Reviews, 2022, 46, .	3.9	11
280	Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in Plant Science, 2022, 27, 890-907.	4.3	27
282	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	7.9	85
283	Saturation variant interpretation using CRISPR prime editing. Nature Biotechnology, 2022, 40, 885-895.	9.4	86
284	Development of Whole Genomeâ€Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in <i>Shewanella oneidensis</i> MRâ€1. Advanced Biology, 2022, 6, e2101296.	1.4	6
285	CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics, 2022, 19, 931-941.	2.1	17
286	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
287	Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52.	1.4	1
288	Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170.	6.5	13
289	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	1.6	19
290	Mutation-specific reporter for optimization and enrichment of prime editing. Nature Communications, 2022, 13, 1028.	5.8	16
291	Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 2022, 9, 859930.	1.2	21
292	Improving the specificity of nucleic acid detection with endonuclease-actuated degradation. Communications Biology, 2022, 5, 290.	2.0	3
293	A Taxonomic and Phylogenetic Classification of Diverse Base Editors. CRISPR Journal, 2022, , .	1.4	1

#	Article	IF	CITATIONS
294	Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nature Communications, 2022, 13, 1318.	5.8	25
295	Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG. CRISPR Journal, 2022, 5, 187-202.	1.4	12
298	Rapid production of SaCas9 in plantâ€based cellâ€free lysate for activity testing. Biotechnology Journal, 2022, 17, e2100564.	1.8	3
299	Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase–nCas9 Fusions. CRISPR Journal, 2022, 5, 389-396.	1.4	12
300	Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications In Vitro and In Vivo. Frontiers in Cell and Developmental Biology, 2022, 10, 809922.	1.8	2
302	Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. Frontiers in Plant Science, 2022, 13, 847169.	1.7	8
303	An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40, 1394-1402.	9.4	89
305	The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biology, 2022, 22, 142.	1.6	18
306	Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Frontiers in Plant Science, 2022, 13, 860281.	1.7	12
307	Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022, 12, 759.	1.3	5
308	NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Communications Biology, 2022, 5, 265.	2.0	16
310	Genome Editing Technology and Its Application to Metabolic Engineering in Rice. Rice, 2022, 15, 21.	1.7	7
311	Structure of the type V-C CRISPR-Cas effector enzyme. Molecular Cell, 2022, 82, 1865-1877.e4.	4.5	12
312	From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sciences, 2022, 295, 120409.	2.0	5
313	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.	1.8	10
314	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	1.8	3
315	Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. ELife, 2022, 11, .	2.8	12
316	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology Letters, 2022, 245, 18-28.	1.1	5

#	Article	IF	CITATIONS
317	A design optimized prime editor with expanded scope and capability in plants. Nature Plants, 2022, 8, 45-52.	4.7	51
318	Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. Planta, 2022, 255, 28.	1.6	10
319	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e2104789.	5.6	13
320	Mechanistic insights into the versatile class II CRISPR toolbox. Trends in Biochemical Sciences, 2022, 47, 433-450.	3.7	11
321	Recent Progress and Future Prospective in HBV Cure by CRISPR/Cas. Viruses, 2022, 14, 4.	1.5	18
322	The use of base editing technology to characterize single nucleotide variants. Computational and Structural Biotechnology Journal, 2022, 20, 1670-1680.	1.9	4
323	Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biology, 2022, 23, 92.	3.8	13
324	Efficient multi-nucleotide deletions using deaminase-Cas9 fusions in human cells. Journal of Genetics and Genomics, 2022, , .	1.7	0
326	High-throughput functional evaluation of human cancer-associated mutations using base editors. Nature Biotechnology, 2022, 40, 874-884.	9.4	32
327	Expanding PAM recognition and enhancing base editing activity of Cas9 variants with nonâ€PI domain mutations derived from xCas9. FEBS Journal, 2022, 289, 5899-5913.	2.2	4
331	Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities. Nature Communications, 2022, 13, 2219.	5.8	8
332	CRISPR/Cas genome editing in grapevine: recent advances, challenges and future prospects. Fruit Research, 2022, 2, 1-9.	0.9	10
333	Recent advances in CRISPRâ€based systems for the detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3010-3029.	5.9	23
335	Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Molecular Therapy - Nucleic Acids, 2022, 28, 732-742.	2.3	8
336	Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature Communications, 2022, 13, 2601.	5.8	24
337	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	3.9	8
338	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€ŧarget effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	4.1	23
340	Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants, 2022, 11, 1297.	1.6	10

#	Article	IF	CITATIONS
341	CRISPR-Cas Assisted Shotgun Mutagenesis Method for Evolutionary Genome Engineering. ACS Synthetic Biology, 2022, 11, 1958-1970.	1.9	3
343	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology, 2022, 159, 110056.	1.6	4
344	Decrypting the mechanistic basis of CRISPR/Cas9 protein. Progress in Biophysics and Molecular Biology, 2022, 172, 60-76.	1.4	5
345	Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13, 2771.	5.8	30
346	Can SpRY recognize any PAM in human cells?. Journal of Zhejiang University: Science B, 2022, 23, 382-391.	1.3	1
347	Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein System for Resistance Against Plant Viruses: Applications and Perspectives. Frontiers in Plant Science, 2022, 13, .	1.7	4
348	Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.	4.7	60
349	Programmable Nucleic Acid-Binding Proteins-Based Nucleic Acid Detection and Biosensing Technologies. , 2022, , .		0
351	PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Molecular Therapy - Methods and Clinical Development, 2022, 26, 26-37.	1.8	1
352	Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation(China), 2022, 3, 100264.	5.2	7
353	Harnessing stepping-stone hosts to engineer, select, and reboot synthetic bacteriophages in one pot. Cell Reports Methods, 2022, 2, 100217.	1.4	8
354	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. Frontiers in Plant Science, 2022, 13, .	1.7	4
355	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
356	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	1.8	12
358	Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Molecular Therapy, 2022, 30, 2664-2679.	3.7	20
359	Exploring the genetic space of the <scp>DNA</scp> damage response for cancer therapy through <scp>CRISPR</scp> â€based screens. Molecular Oncology, 2022, 16, 3778-3791.	2.1	5
360	Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 2022, 13, .	5.8	20
362	SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nature Communications, 2022, 13, .	5.8	15

#	Article	IF	CITATIONS
363	The application of CRISPR/Cas technologies to Brassica crops: current progress and future perspectives. ABIOTECH, 2022, 3, 146-161.	1.8	9
365	DNA base editing in nuclear and organellar genomes. Trends in Genetics, 2022, 38, 1147-1169.	2.9	14
366	Template-independent genome editing in the Pcdh15 mouse, a model of human DFNB23 nonsyndromic deafness. Cell Reports, 2022, 40, 111061.	2.9	12
367	Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. Journal of Applied Microbiology, 2022, 133, 2280-2298.	1.4	7
368	Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis. Cell and Bioscience, 2022, 12, .	2.1	1
369	CRISPR/Cas system-guided plasmid mutagenesis without sequence restriction. Fundamental Research, 2022, , .	1.6	0
370	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	1.8	25
371	Cytoplasmic Injection of Zygotes to Genome Edit Naturally Occurring Sequence Variants Into Bovine Embryos. Frontiers in Genetics, 0, 13, .	1.1	1
372	Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnology Journal, 2022, 17, .	1.8	2
374	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	2.7	5
375	Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Reports, 2022, 40, 111090.	2.9	7
376	CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes, 2022, 13, 1327.	1.0	5
377	The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy. Current Opinion in Cardiology, 2022, 37, 413-418.	0.8	2
378	New Hope for Genome Editing in Cultivated Grasses: CRISPR Variants and Application. Frontiers in Genetics, 0, 13, .	1.1	7
379	CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Frontiers in Genetics, 0, 13, .	1.1	29
381	Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System. Applied and Environmental Microbiology, 2022, 88, .	1.4	9
382	Recursive Editing improves homology-directed repair through retargeting of undesired outcomes. Nature Communications, 2022, 13, .	5.8	7
383	Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Molecular Biotechnology, 0, , .	1.3	0

		CITATION REP	ORT	
#	Article		IF	CITATIONS
384	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .		2.8	13
385	Gene therapy of brain cancer by drug delivery nanocapsules. Matter, 2022, 5, 2502-2504		5.0	Ο
387	Non-coding RNA: Chief architects of drought-resilient roots. Rhizosphere, 2022, 23, 1005	72.	1.4	4
388	Engineering an adenine base editor in human embryonic stem cells with minimal DNA and off-target activities. Molecular Therapy - Nucleic Acids, 2022, 29, 502-510.	RNA	2.3	6
389	High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nature Biotechnology, 2023, 41, 96-107.		9.4	36
390	Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient CRISPR-Cas-based technology. Stem Cell Research and Therapy, 2022, 13, .	through	2.4	0
391	CRISPR/Cas9 Technology and Its Utility for Crop Improvement. International Journal of Mo Sciences, 2022, 23, 10442.	olecular	1.8	12
392	A review on CRISPR/Cas-based epigenetic regulation in plants. International Journal of Bic Macromolecules, 2022, 219, 1261-1271.	logical	3.6	23
393	Genome Editing Tools for Potato Improvement. , 2022, , 393-427.			0
394	Genome Editing Is Revolutionizing Crop Improvement. , 2022, , 3-41.			0
395	Allele-specific silencing of the gain-of-function mutation in Huntington's disease using JCI Insight, 2022, 7, .	g CRISPR/Cas9.	2.3	9
396	How to Completely Squeeze a Fungus—Advanced Genome Mining Tools for Novel Bioa Substances. Pharmaceutics, 2022, 14, 1837.	tive	2.0	9
398	Prime Editing: An All-Rounder for Genome Editing. International Journal of Molecular Scier 23, 9862.	ıces, 2022,	1.8	13
400	Functional Phosphoproteomics in Cancer Chemoresistance Using CRISPRâ€Mediated Bas Advanced Science, 2022, 9, .	e Editors.	5.6	6
401	Approaches for bacteriophage genome engineering. Trends in Biotechnology, 2023, 41, 6	69-685.	4.9	27
402	Base editor enables rational genome-scale functional screening for enhanced industrial pl <i>Corynebacterium glutamicum</i> . Science Advances, 2022, 8, .	nenotypes in	4.7	11
403	Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierard Diverse CRISPR/Cas Systems in Human Cells. ACS Synthetic Biology, 2022, 11, 3239-325	hies among).	1.9	9
404	Development of Base Editors for Simultaneously Editing Multiple Loci in <i>Lactococcus ACS Synthetic Biology, 2022, 11, 3644-3656.</i>	actis.	1.9	5

#	Article	IF	CITATIONS
405	Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9. PLoS ONE, 2022, 17, e0271011.	1.1	1
406	Advances in CRISPR/Cas9. BioMed Research International, 2022, 2022, 1-13.	0.9	14
407	Highly efficient base editing in rabbit by using near-PAMless engineered CRISPR/Cas9 variants. Science China Life Sciences, 0, , .	2.3	0
408	Robust genome editing via modRNA-based Cas9 or base editor in human pluripotent stem cells. Cell Reports Methods, 2022, 2, 100290.	1.4	4
409	CRISPRactivation-SMS, a message for PAM sequence independent gene up-regulation in <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 10772-10784.	6.5	9
410	Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Research, 2022, 50, 10756-10771.	6.5	2
412	Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Molecular Therapy - Nucleic Acids, 2022, 30, 272-285.	2.3	13
413	Unbiased prediction of offâ€ŧarget sites in genomeâ€edited rice using SITE‣eq analysis on a webâ€based platform. Genes To Cells, 0, , .	0.5	1
414	Precise DNA cleavage using CRISPR-SpRYgests. Nature Biotechnology, 2023, 41, 409-416.	9.4	18
415	Expanded precision genome-editing toolbox for human disease modeling in zebrafish. Lab Animal, 2022, 51, 287-289.	0.2	0
416	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
417	Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nature Communications, 2022, 13, .	5.8	6
418	Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects. Molecular Biology Reports, 2023, 50, 739-747.	1.0	6
420	In vivo application of base and prime editing to treat inherited retinal diseases. Progress in Retinal and Eye Research, 2023, 94, 101132.	7.3	3
421	Using Staphylococcus aureus Cas9 to Expand the Scope of Potential Gene Targets for Genome Editing in Soybean. International Journal of Molecular Sciences, 2022, 23, 12789.	1.8	2
422	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	1.7	5
423	Contribution of CRISPRable DNA to human complex traits. Communications Biology, 2022, 5, .	2.0	2
424	Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8

#	Article	IF	CITATIONS
425	Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	3.6	6
426	Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles. Acta Biomaterialia, 2022, , .	4.1	1
428	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13, .	5.8	10
430	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	4.5	13
431	Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta, 2022, 256, .	1.6	11
432	Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology, 2023, 41, 663-672.	9.4	50
433	Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants. ACS Synthetic Biology, 2022, 11, 4103-4112.	1.9	6
434	Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24, 161-177.	7.7	134
435	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	0.3	6
436	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
437	Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient. Genes, 2022, 13, 2103.	1.0	2
438	Transcription factor antagonism regulates heterogeneity in embryonic stem cell states. Molecular Cell, 2022, 82, 4410-4427.e12.	4.5	5
440	Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange. STAR Protocols, 2022, 3, 101838.	0.5	5
441	A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Molecular Therapy - Nucleic Acids, 2023, 31, 78-87.	2.3	1
442	Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Molecular Therapy - Methods and Clinical Development, 2023, 28, 40-50.	1.8	8
443	Genome editing. Scientific Reports, 2022, 12, .	1.6	1
444	Versatile and efficient genome editing with Neisseria cinerea Cas9. Communications Biology, 2022, 5, .	2.0	2
445	Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies. Molecular Therapy, 2023, 31, 744-759.	3.7	6

ARTICLE IF CITATIONS # Automated high-throughput genome editing platform with an AI learning in situ prediction model. 5.8 6 446 Nature Communications, 2022, 13, . LMNA Co-Regulated Gene Expression as a Suitable Readout after Precise Gene Correction. International 447 1.8 Journal of Molecular Sciences, 2022, 23, 15525. 448 Genome editing in plants. Gene and Genome Editing, 2022, 3-4, 100020. 2 1.3 Optimization of <scp>CRISPRâ€"Cas</scp> system for clinical cancer therapy. Bioengineering and 449 3.9 Translational Medicine, 2023, 8, . Plant Genome Editing., 2022, , 205-216. 450 0 Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. 0.8 Advances in Experimental Medicine and Biology, 2023, , 315-339. Maximizing the Efficacy of CRISPR/Cas Homology-Directed Repair Gene Targeting., 0, , . 454 0 CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: 1.8 16 Advances, Limitations, and Future Perspectives. Cells, 2022, 11, 3928. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nature Genetics, 2023, 456 9.4 28 55, 34-43. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy 1.8 for Inherited Retinal Disorders. International Journal of Molecular Sciences, 2022, 23, 15276. Direct in situ protein tagging in Chlamydomonas reinhardtii utilizing TIM, a method for 460 1.1 1 CRISPR/Cas9-based targeted insertional mutagenesis. PLoS ONE, 2022, 17, e0278972. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and 461 limits. Frontiers in Plant Science, 0, 13, . Plant base editing and prime editing: The current status and future perspectives. Journal of Integrative 462 4.1 23 Plant Biology, 2023, 65, 444-467. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors 464 1.8 Implicated in Lifestyle Versatility. MBio, 2022, 13, . Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR Journal, 2022, 5, 465 1.4 0 746-768. <scp>Nonâ€synonymous</scp>, synonymous, and <scp>nonâ€coding</scp> nucleotide variants contribute 466 to recurrently altered biological processes during retinoblastoma progression. Genes Chromosomes and Cancer, 2023, 62, 275-289. Adenine base editor–mediated correction of the common and severe IVS1-110 (G>A) Î²-thalassemia 467 0.6 11 mutation. Blood, 2023, 141, 1169-1179. Applications and challenges of harnessing genome editing in oilseed crops. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 751-772.

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	ARTICLE	IF	CITATIONS
469	Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Frontiers in Genome Editing, 0, 4, .	2.7	2
470	Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. MBio, 2023, 14, .	1.8	8
471	Gene Editing Corrects <i>In Vitro</i> a G > A <i>GLB1</i> Transition from a GM1 Gangliosidosis Patient. CRISPR Journal, 2023, 6, 17-31.	1.4	1
472	Therapeutic adenine base editing of human hematopoietic stem cells. Nature Communications, 2023, 14,	5.8	16
473	Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Communications Biology, 2023, 6, .	2.0	5
474	CRISPR-Cas9 base editors and their current role in human therapeutics. Cytotherapy, 2023, 25, 270-276.	0.3	4
475	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	4.8	2
476	Evolution of CRISPR-associated endonucleases as inferred from resurrected proteins. Nature Microbiology, 2023, 8, 77-90.	5.9	10
477	Making headway toward enduring changes: perspectives on breeding tree crops through genome editing. Tree Genetics and Genomes, 2023, 19, .	0.6	0
478	Functional Analysis of Variants in BRCA1 Using CRISPR Base Editors. Methods in Molecular Biology, 2023, , 73-85.	0.4	0
479	Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science, 2023, 379, 179-185.	6.0	37
480	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
481	Predicting prime editing efficiency and product purity by deep learning. Nature Biotechnology, 2023, 41, 1151-1159.	9.4	31
482	Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Computational and Structural Biotechnology Journal, 2023, 21, 856-868.	1.9	3
484	Accelerating wood domestication in forest trees through genome editing: Advances and prospects. Current Opinion in Plant Biology, 2023, 71, 102329.	3.5	8
485	Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS Omega, 2023, 8, 1817-1837.	1.6	2
486	A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos. Scientific Reports, 2022, 12, .	1.6	0
487	Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases. International Journal of Molecular Sciences, 2023, 24, 397.	1.8	2

#	Article	IF	CITATIONS
488	CRISPR engineering in organoids for gene repair and disease modelling. , 2023, 1, 32-45.		11
489	Functional Assessment of a New PBX1 Variant in a 46,XY Fetus with Severe Syndromic Difference of Sexual Development through CRISPR-Cas9 Gene Editing. Genes, 2023, 14, 273.	1.0	0
490	The Emerging field of epigenetic editing: implication for translational purposes for diseases with developmental origin. , 2023, , 355-375.		0
493	TargetedÂmutagenesis with sequenceâ€specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. Plant Genome, 2023, 16, .	1.6	5
494	Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines, 2023, 11, 385.	1.4	3
495	Involvement of CRISPR-Cas Systems in <i>Salmonella</i> Immune Response, Genome Editing, and Pathogen Typing in Diagnosis and Surveillance. , 0, , .		0
496	<i>De novo</i> PAM generation to reach initially inaccessible target sites for base editing. Development (Cambridge), 2023, 150, .	1.2	1
497	Seven technologies to watch in 2023. Nature, 2023, 613, 794-797.	13.7	26
498	A high-content flow cytometry and dual CRISPR-Cas9 based platform to quantify genetic interactions. Methods in Cell Biology, 2024, , 299-312.	0.5	0
499	Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Molecular Biomedicine, 2023, 4, .	1.7	3
500	CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379, .	6.0	233
501	Challenges of Gene Editing Therapies for Genodermatoses. International Journal of Molecular Sciences, 2023, 24, 2298.	1.8	6
502	Genome editing with natural and engineered CjCas9 orthologs. Molecular Therapy, 2023, 31, 1177-1187.	3.7	2
503	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	2.3	10
504	Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. Journal of Experimental Medicine, 2023, 220, .	4.2	24
505	The PROTECTOR strategy employs dCas orthologs to sterically shield off-target sites from CRISPR/Cas activity. Scientific Reports, 2023, 13, .	1.6	2
506	CRISPR-based nucleic acid diagnostics for pathogens. TrAC - Trends in Analytical Chemistry, 2023, 160, 116980.	5.8	7
507	Eye on genome editing. Journal of Experimental Medicine, 2023, 220, .	4.2	1

#	ARTICLE	IF	CITATIONS
508	delivery of adenine base editors. Molecular Therapy, 2023, 31, 1159-1166.	3.7	4
509	Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nature Medicine, 2023, 29, 401-411.	15.2	48
510	Structural snapshots of R-loop formation by a type I-C CRISPR Cascade. Molecular Cell, 2023, 83, 746-758.e5.	4.5	5
511	Cas9â€orthologueâ€mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences. Biotechnology Journal, 2023, 18, .	1.8	0
512	Editorial: Genetic engineering in farm animals. Frontiers in Genetics, 0, 14, .	1.1	0
514	Strengthening microbial cell factories for efficient production of bioactive molecules. Biotechnology and Genetic Engineering Reviews, 0, , 1-34.	2.4	0
515	Application of Nicotinamide to Culture Medium Improves the Efficiency of Genome Editing in Hexaploid Wheat. International Journal of Molecular Sciences, 2023, 24, 4416.	1.8	3
516	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
517	CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. TrAC - Trends in Analytical Chemistry, 2023, 161, 117000.	5.8	11
519	High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Frontiers in Genome Editing, 0, 5, .	2.7	2
520	Tuning plant phenotypes by precise, graded downregulation of gene expression. Nature Biotechnology, 2023, 41, 1758-1764.	9.4	27
521	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1
522	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
523	Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta, 2023, 257, .	1.6	3
524	Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi (Basel, Switzerland), 2023, 9, 362.	1.5	9
526	Craspase: A novel CRISPR/Cas dual gene editor. Functional and Integrative Genomics, 2023, 23, .	1.4	4
527	Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 0, 14, .	2.2	5
528	Base editing rescue of spinal muscular atrophy in cells and in mice. Science, 2023, 380, .	6.0	46

	CHARLON			
# 529	ARTICLE PAM-Less CRISPR-SpRY Genome Editing in Plants. Methods in Molecular Biology, 2023, , 3-19.	IF 0.4	Citations	
530	The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection. Genes, 2023, 14, 850.	1.0	5	
531	The Design and Application of DNA-Editing Enzymes as Base Editors. Annual Review of Biochemistry, 2023, 92, 43-79.	5.0	7	
532	Genome engineering in bacteria: Current and prospective applications. Methods in Microbiology, 2023, , 35-76.	0.4	1	
533	An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional and Integrative Genomics, 2023, 23, .	1.4	14	
534	Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nature Communications, 2023, 14, .	5.8	17	
535	In the business of base editors: Evolution from bench to bedside. PLoS Biology, 2023, 21, e3002071.	2.6	10	
539	PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cells. Communications Medicine, 2023, 3, .	1.9	5	
540	Decoding CRISPR–Cas PAM recognition with UniDesign. Briefings in Bioinformatics, 2023, 24, .	3.2	2	
541	Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in Drosophila cells. ELife, 0, 12, .	2.8	2	
542	Vector enabled CRISPR gene editing – A revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	9.5	0	
543	Genome-scale CRISPRi screening: A powerful tool in engineering microbiology. Engineering Microbiology, 2023, 3, 100089.	2.2	7	
544	CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding. Nature Protocols, 2023, 18, 1760-1794.	5.5	5	
546	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	1.2	13	
552	Nucleic Acid Therapeutics. , 2022, , 350-402.		0	
560	Expanding the RNA and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 1-35.		0	
565	When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophysical Reviews, 2023, 15, 355-366.	1.5	3	
567	Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Diseases. BioDrugs, 2023, 37, 453-462.	2.2	3	

#	Article	IF	CITATIONS
601	Expanding the RNA- and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 2361-2395.		0
617	Genome Editing: Mechanism and Utilization in Plant Breeding. , 2023, , 457-488.		Ο
670	Methods and Techniques to Select Efficient Guides for CRISPR-Mediated Genome Editing in Plants. , 2024, , 89-117.		0
685	CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Therapy, 0, , .	2.3	1
689	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199.	0.8	0
692	CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. , 2024, 2, .		0
695	Base editing effectively prevents early-onset severe cardiomyopathy in Mybpc3 mutant mice. Cell Research, 2024, 34, 327-330.	5.7	0
697	Gene Editing Approaches for Haematological Disorders. , 2024, , .		0
709	CRISPR-based precision breeding of fruits, vegetables, and ornamental plants. , 2024, , 191-216.		0
712	CRISPR-Cas: A History of Discovery and Innovation. , 2024, , 1-16.		0