Smart Textiles for Electricity Generation

Chemical Reviews 120, 3668-3720

DOI: 10.1021/acs.chemrev.9b00821

Citation Report

#	Article	IF	CITATIONS
1	A Piezo Smartâ∈Braid Harvester and Damper for Multifunctional Fiber Reinforced Polymer Composites. Energy Technology, 2020, 8, 2000777.	1.8	6
2	Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 2020, 77, 105303.	8.2	206
3	Wireless battery-free wearable sweat sensor powered by human motion. Science Advances, 2020, 6, .	4.7	372
4	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
5	Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosensors and Bioelectronics, 2020, 169, 112567.	5.3	57
6	Smart Insole for Robust Wearable Biomechanical Energy Harvesting in Harsh Environments. ACS Nano, 2020, 14, 14126-14133.	7.3	107
7	A PEDOT:PSS and graphene-clad smart textile-based wearable electronic Joule heater with high thermal stability. Journal of Materials Chemistry C, 2020, 8, 16204-16215.	2.7	95
8	Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films. Npj Flexible Electronics, 2020, 4, .	5.1	22
9	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
10	Powering future body sensor network systems: A review of power sources. Biosensors and Bioelectronics, 2020, 166, 112410.	5.3	55
11	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	5.3	129
12	A Singleâ€Material Multiâ€Source Energy Harvester, Multifunctional Sensor, and Integrated Harvester–Sensor System—Demonstration of Concept. Energy Technology, 2020, 8, 2000461.	1.8	9
13	Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry, 2020, 8, 577327.	1.8	45
14	Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation. Beilstein Journal of Nanotechnology, 2020, 11, 1655-1662.	1.5	10
15	Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano, 2020, 14, 9282-9319.	7.3	89
16	Soft Sign Language Interpreter on Your Skin. Matter, 2020, 3, 337-338.	5.0	8
17	Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Physical Science, 2020, 1, 100142.	2.8	130
18	Low-Cost and Nature-Friendly Hierarchical Porous Carbon for Enhanced Capacitive Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 7246-7250.	2.5	22

#	Article	IF	CITATIONS
19	Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy, 2020, 78, 105148.	8.2	39
20	An elegant coupling: Freeze-casting and versatile polymer composites. Progress in Polymer Science, 2020, 109, 101289.	11.8	69
21	Multimodal Smart Eyewear for Longitudinal Eye Movement Tracking. Matter, 2020, 3, 1275-1293.	5.0	30
22	Recent Advances in Human Motion Excited Energy Harvesting Systems for Wearables. Energy Technology, 2020, 8, 2000533.	1.8	61
23	Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosensors and Bioelectronics, 2020, 168, 112569.	5.3	225
24	Anatase–Rutile Transition and Photo-Induced Conductivity of Highly Yb-Doped TiO2 Films Deposited by Acid Sol–Gel Dip-Coating Method. Journal of Electronic Materials, 2020, 49, 6369-6379.	1.0	1
25	A Machineâ€Fabricated 3D Honeycombâ€Structured Flameâ€Retardant Triboelectric Fabric for Fire Escape and Rescue. Advanced Materials, 2020, 32, e2003897.	11.1	136
26	Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting. Micromachines, 2020, 11, 1072.	1.4	7
27	Network Topology Optimization of Triboelectric Nanogenerators for Effectively Harvesting Ocean Wave Energy. IScience, 2020, 23, 101848.	1.9	29
28	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials, 2020, 32, 10296-10320.	3.2	101
29	Hollow IrCo Nanoparticles for High-Performance Overall Water Splitting in an Acidic Medium. ACS Applied Nano Materials, 2020, 3, 11916-11922.	2.4	16
30	A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy, 2020, 74, 104941.	8.2	193
31	Solution-Processed Submicron Free-Standing, Conformal, Transparent, Breathable Epidermal Electrodes. ACS Applied Materials & Amp; Interfaces, 2020, 12, 23689-23696.	4.0	35
32	Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy, 2020, 76, 104989.	8.2	28
33	Cryoâ€Transferred Ultrathin and Stretchable Epidermal Electrodes. Small, 2020, 16, e2000450.	5.2	33
34	Floating Networks of Alga-like Photoelectrodes for Highly Efficient Photoelectrochemical H ₂ Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 10564-10571.	3.2	6
35	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	13.1	513
36	Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics, 2020, 165, 112412.	5.3	153

3

#	Article	IF	CITATIONS
37	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	8.2	70
38	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	4.5	231
39	Eco-Friendly Synthesis of Self-Supported N-Doped Sb ₂ S ₃ -Carbon Fibers with High Atom Utilization and Zero Discharge for Commercial Full Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6897-6906.	2.5	51
40	Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosensors and Bioelectronics, 2020, 166, 112426.	5.3	19
41	A 1-D Yarn-Based Biobattery for Scalable Power Generation in 2-D and 3-D Structured Textiles. Journal of Microelectromechanical Systems, 2020, 29, 1064-1068.	1.7	0
42	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	7.3	88
43	Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection. Nanomaterials, 2020, 10, 727.	1.9	17
44	Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano, 2020, 14, 6067-6075.	7.3	271
45	Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting. Nano Letters, 2020, 20, 3791-3797.	4.5	154
46	Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure. Nano Energy, 2021, 80, 105571.	8.2	36
47	Poly(vinylidene fluorideâ€coâ€hexafluorpropylene)/polyaniline conductive blends: Effect of the mixing procedure on the electrical properties and electromagnetic interference shielding effectiveness. Journal of Applied Polymer Science, 2021, 138, 49705.	1.3	20
48	Understanding the interaction between heteroatom-doped carbon matrix and Sb2S3 for efficient sodium-ion battery anodes. Journal of Colloid and Interface Science, 2021, 585, 649-659.	5.0	27
49	Advances in triboelectric nanogenerators for biomedical sensing. Biosensors and Bioelectronics, 2021, 171, 112714.	5.3	159
50	Improved thermoelectric properties of doped A0.5B0.5NiSn (A, B = Ti, Zr, Hf) with a special quasirandom structure. Journal of Materials Science, 2021, 56, 4280-4290.	1.7	3
51	Horizontally structured microbial fuel cells in yarns and woven fabrics for wearable bioenergy harvesting. Journal of Power Sources, 2021, 484, 229271.	4.0	17
52	Tailoring carbon nanomaterials via a molecular scissor. Nano Today, 2021, 36, 101033.	6.2	67
53	Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 81, 105627.	8.2	86
54	Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 2021, 36, 101016.	6.2	180

#	ARTICLE	IF	Citations
55	Selfâ€Powered Smart Shoes with Tensionâ€Type Ribbon Harvesters and Sensors. Advanced Materials Technologies, 2021, 6, 2000872.	3.0	9
56	Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 100890.	1.5	64
57	Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Research, 2021, 14, 1043-1052.	5.8	46
58	Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics, 2021, 172, 112750.	5.3	167
59	A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosensors and Bioelectronics, 2021, 172, 112781.	5.3	69
60	A peanut shell-derived economical and eco-friendly biochar catalyst for electrochemical ammonia synthesis under ambient conditions: combined experimental and theoretical study. Catalysis Science and Technology, 2021, 11, 1526-1536.	2.1	8
61	Polymer Composites: Smart Synthetic Fibers Approach in Energy and Environmental Care. , 2021, , 3637-3661.		0
62	Functional and eco-friendly polymers in textile applications. , 2021, , 285-293.		0
63	Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale, 2021, 13, 2420-2428.	2.8	21
64	Wearable triboelectric nanogenerators for heart rate monitoring. Chemical Communications, 2021, 57, 5871-5879.	2.2	64
65	Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Dalton Transactions, 2021, 50, 9983-10013.	1.6	13
66	Polarized Water Driven Dynamic PN Junction-Based Direct-Current Generator. Research, 2021, 2021, 7505638.	2.8	26
67	A Poriferous Nanoflake-Assembled Flower-Like Ni ₅ P ₄ Anode for High-Performance Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	4.7	6
68	Smart textiles for personalized thermoregulation. Chemical Society Reviews, 2021, 50, 9357-9374.	18.7	184
69	Advances in self-powered chemical sensing <i>via < /i> a triboelectric nanogenerator. Nanoscale, 2021, 13, 2065-2081.</i>	2.8	81
70	Advances in Nanostructures for Highâ€Performance Triboelectric Nanogenerators. Advanced Materials Technologies, 2021, 6, 2000916.	3.0	94
71	Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. Sensors, 2021, 21, 814.	2.1	72
72	Triboelectric energy harvesting using conjugated microporous polymer nanoparticles in polyurethane films. Journal of Materials Chemistry A, 2021, 9, 12560-12565.	5.2	12

#	Article	IF	Citations
73	Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. IScience, 2021, 24, 101934.	1.9	73
74	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	10.2	16
75	Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 2021, 46, 29230-29230.	3.8	9
76	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	15.6	178
77	A flexible in-plane p–n heterojunction nano-generator with phonon-enhanced photothermoelectric effect to harvest solar energy. Journal of Materials Chemistry A, 2021, 9, 14958-14968.	5.2	16
78	Green synthesis of nanomaterials for textile applications. , 2021, , 315-324.		3
79	Facile construction of an Ag0-doped Ag(i)-based coordination polymer via a self-photoreduction strategy for enhanced visible light driven photocatalysis. CrystEngComm, 2021, 23, 5397-5402.	1.3	11
80	Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. Reactive and Functional Polymers, 2021, 159, 104810.	2.0	49
81	Self-Powered Wearable Biosensors. Accounts of Materials Research, 2021, 2, 184-197.	5.9	118
82	Triangulated Cylinder Origami-Based Piezoelectric/Triboelectric Hybrid Generator to Harvest Coupled Axial and Rotational Motion. Research, 2021, 2021, 7248579.	2.8	25
83	Development of photoluminescent, superhydrophobic, and electrically conductive cotton fibres. Luminescence, 2021, 36, 964-976.	1.5	38
84	Paper-based triboelectric nanogenerators and their applications: a review. Beilstein Journal of Nanotechnology, 2021, 12, 151-171.	1.5	27
85	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	7.8	169
86	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
87	A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting. Energies, 2021, 14, 1120.	1.6	22
88	Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research, 2021, 2021, 9143762.	2.8	32
89	Synthesis of AgNWs Using High Molecular Weight PVP As a Capping Agent and Their Application in Conductive Thin Films. Journal of Electronic Materials, 2021, 50, 2789-2799.	1.0	9
90	Fully Organic Self-Powered Electronic Skin with Multifunctional and Highly Robust Sensing Capability. Research, 2021, 2021, 9801832.	2.8	9

#	Article	IF	CITATIONS
91	Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Materials, 2021 , 9 , .	2.2	8
92	Large-area display textiles integrated with functional systems. Nature, 2021, 591, 240-245.	13.7	550
93	Thermoelectric materials for space applications. CEAS Space Journal, 2021, 13, 325-340.	1.1	13
94	Engineering bandgap of CsPbI3 over 1.7 eV with enhanced stability and transport properties. IScience, 2021, 24, 102235.	1.9	29
95	Green Synthesis of Cellulosic Nanofiber in Enset Woven Fabric Structures via Enzyme Treatment and Mechanical Hammering. Tekstil Ve Konfeksiyon, 2021, 31, 63-72.	0.3	1
96	Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density. Journal of Electronic Materials, 2021, 50, 2879-2889.	1.0	5
97	Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Research, 2021, 14, 4204-4210.	5.8	34
98	Production and applications of flexible/wearable triboelectric nanogenerator (TENGS). Synthetic Metals, 2021, 273, 116692.	2.1	14
99	Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16876-16886.	4.0	59
100	Leveraging triboelectric nanogenerators for bioengineering. Matter, 2021, 4, 845-887.	5.0	192
101	Synergistically Boosting Thermoelectric Performance of PEDOT:PSS/SWCNT Composites <i>via</i> the Ion-Exchange Effect and Promoting SWCNT Dispersion by the Ionic Liquid. ACS Applied Materials & Interfaces, 2021, 13, 12131-12140.	4.0	65
102	Textiles for learning tactile interactions. Nature Electronics, 2021, 4, 175-176.	13.1	76
103	Wicking–Polarizationâ€Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles. Advanced Materials, 2021, 33, e2007352.	11.1	53
104	Smart polyethylene textiles for radiative and evaporative cooling. Joule, 2021, 5, 752-754.	11.7	56
105	Lead-free and electron transport layer-free perovskite yarns: Designed for knitted solar fabrics. Chemical Engineering Journal, 2021, 410, 128384.	6.6	15
106	All-in-one conformal epidermal patch for multimodal biosensing. Matter, 2021, 4, 1102-1105.	5.0	36
107	Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry, 2021, 3, 279-290.	4.4	100
108	Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research, 2021, 2021, 4689869.	2.8	21

#	Article	IF	Citations
109	Smart textiles: A toolkit to fashion the future. Journal of Applied Physics, 2021, 129, .	1.1	34
110	Advances in Wearable Chemosensors. Chemosensors, 2021, 9, 99.	1.8	6
111	MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Research, 2021, 14, 4833-4840.	5 . 8	51
112	Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. ACS Applied Materials & Description (2011), 13, 17110-17117.	4.0	61
113	Scavenging Energy Sources Using Ferroelectric Materials. Advanced Functional Materials, 2021, 31, 2100905.	7.8	28
114	Profound Impact of Zn3(OH)2(V2O7)(H2O)2 and Zn3V2O8–Zn2V2O7 in Dye Sensitized Solar Cells. Journal of Electronic Materials, 2021, 50, 4289-4302.	1.0	9
115	Self-powered wearable biosensors., 2021,,.		0
116	Sustainable wearable energy storage devices selfâ€charged by humanâ€body bioenergy. SusMat, 2021, 1, 285-302.	7.8	60
117	Sonochemical Synthesis and Characterization of Ag/ZnO Heterostructure Nanocomposites and their Photocatalytic Efficiencies. Journal of Electronic Materials, 2021, 50, 4524-4532.	1.0	5
118	Water-evaporation-induced intermolecular force for nano-wrinkled polymeric membrane. Cell Reports Physical Science, 2021, 2, 100441.	2.8	18
119	A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy, 2021, 83, 105845.	8.2	81
120	Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li–air batteries in ambient air. Nano Energy, 2021, 83, 105821.	8.2	12
121	Binary polymer blend of <scp>ArPTU</scp> / <scp>PI</scp> with advanced comprehensive dielectric properties and ultraâ€high thermally stability. Journal of Applied Polymer Science, 2021, 138, 50997.	1.3	15
122	mOptical Sensing for the Internet of Things: A Smartphone ontrolled Platform for Temperature Monitoring. Advanced Photonics Research, 2021, 2, 2000211.	1.7	28
123	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
124	Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Materials Today, 2021, 45, 54-61.	8.3	34
125	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	5.2	51
126	Review on the operation of wearable sensors through body heat harvesting based on thermoelectric devices. Applied Physics Letters, 2021, 118, .	1.5	29

#	Article	IF	CITATIONS
127	High performance polylactic acid/thermoplastic polyurethane blends with inâ€situ fibrillated morphology. Journal of Applied Polymer Science, 2021, 138, 51014.	1.3	6
128	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	11.1	68
129	3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy, 2021, 84, 105866.	8.2	75
130	Highly efficient long thin-film fiber-shaped dye sensitized solar cells based on a fully organic sensitizer. Solar Energy Materials and Solar Cells, 2021, 224, 110986.	3.0	15
131	Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional Materials, 2021, 31, 2102963.	7.8	63
132	A Skinâ€Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting. Macromolecular Materials and Engineering, 2021, 306, 2100147.	1.7	13
133	Effects of interfacial acid–base on the performance of contact–separation mode triboelectric nanogenerator. Materials Today Energy, 2021, 20, 100686.	2.5	8
134	Assemblyâ€Type Wireless Communication Patch for Miniaturized Flexible Wearable Sensors. Advanced Materials Technologies, 2021, 6, 2100034.	3.0	3
135	Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Research, 2022, 15, 1027-1038.	5.8	33
136	Organic borate doped carbon nanotube for enhancement of thermoelectric performance. Carbon, 2021, 182, 742-748.	5.4	11
137	The Influence of Substrate Functionalization for Enhancing the Interfacial Bonding between Graphene Oxide and Nonwoven Polyester. Fibers and Polymers, 2021, 22, 3192-3202.	1.1	17
138	Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Letters, 2021, 6, 2442-2450.	8.8	73
139	Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule, 2021, 5, 1391-1431.	11.7	261
140	Rapid water-responsive shape memory films for smart resistive bending sensors. Nano Today, 2021, 38, 101202.	6.2	31
141	Multifunctional Textiles Based on Three-Dimensional Hierarchically Structured TiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 27557-27566.	4.0	14
142	A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Research, 2021, 14, 4227-4235.	5.8	29
143	Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing. Advanced Fiber Materials, 2021, 3, 394-412.	7.9	83
144	3Dâ€Printed Underwater Superâ€Oleophobic Shark Skin toward the Electricity Generation through Lowâ€Adhesion Sliding of Magnetic Nanofluid Droplets. Advanced Functional Materials, 2021, 31, 2103776.	7.8	22

#	ARTICLE	IF	Citations
145	Flexible thermoelectric materials and devices: From materials to applications. Materials Today, 2021, 46, 62-108.	8.3	206
146	Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines, 2021, 12, 698.	1.4	33
147	Boosting alkaline water electrolysis by asymmetric temperature modulation. Applied Physics Letters, 2021, 119, .	1.5	2
148	Self-reconfigurable high-weight-per-volume-gelatin films for all-solution-processed on-skin electronics with ultra-conformal contact. Biosensors and Bioelectronics, 2021, 184, 113231.	5.3	16
149	Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy, 2021, 85, 106007.	8.2	36
150	Triboelectric Nanogenerators for Selfâ€Powered Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100975.	3.9	64
151	Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors, 2021, 11, 245.	2.3	75
152	CNT–rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes. ACS Omega, 2021, 6, 19578-19585.	1.6	13
153	Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide. ACS Omega, 2021, 6, 18458-18464.	1.6	5
154	Advanced Inorganic Nitride Nanomaterials for Renewable Energy: A Mini Review of Synthesis Methods. Frontiers in Chemistry, 2021, 9, 638216.	1.8	10
155	A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy, 2021, 85, 106021.	8.2	55
156	Preparation of Organo-Stabilized Mn3O4 Nanostructures as an Electro-Catalyst for Clean Energy Generation. Journal of Electronic Materials, 2021, 50, 5150-5160.	1.0	5
157	Mechanically Robust and Flexible Films of Ionic Liquidâ€Modulated Polymer Thermoelectric Composites. Advanced Functional Materials, 2021, 31, 2104836.	7.8	48
158	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2101262.	11.1	217
159	Wearable Electronics Based on the Gel Thermogalvanic Electrolyte for Self-Powered Human Health Monitoring. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37316-37322.	4.0	75
160	Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion. ACS Nano, 2021, 15, 19054-19069.	7.3	98
161	Allâ€Organic Flexible Ferroelectret Nanogenerator with Fabricâ€Based Electrodes for Selfâ€Powered Body Area Networks. Small, 2021, 17, e2103161.	5.2	24
162	Technology evolution from micro-scale energy harvesters to nanogenerators. Journal of Micromechanics and Microengineering, 2021, 31, 093002.	1.5	53

#	Article	IF	CITATIONS
163	Compliant three-dimensional thermoelectric generator filled with porous PDMS for power generation and solid-state cooling. Composites Communications, 2021, 26, 100793.	3.3	15
164	Ferroelectret energy harvesting with 3Dâ€printed airâ€spaced cantilever design. Nano Select, 2022, 3, 713-722.	1.9	13
165	A Feasibility Study on Smart Mattresses to Improve Sleep Quality. Journal of Healthcare Engineering, 2021, 2021, 1-12.	1.1	5
166	Optimization of a Rolling Triboelectric Nanogenerator Based on the Nano–Micro Structure for Ocean Environmental Monitoring. ACS Omega, 2021, 6, 21059-21065.	1.6	13
167	Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosensors and Bioelectronics, 2021, 186, 113290.	5.3	23
168	Functionalization of textiles by deposition of UV-cured organic thin layers with charge storage properties for electronic and environmental technology. Progress in Organic Coatings, 2021, 157, 106332.	1.9	1
169	Embroidering a Light and Foldable Photovoltaic Gauze Kerchiefs. Energy Technology, 2021, 9, 2100285.	1.8	2
170	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38
171	A non-printed integrated-circuit textile for wireless theranostics. Nature Communications, 2021, 12, 4876.	5.8	76
172	Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS Nano, 2021, 15, 12655-12686.	7. 3	77
173	A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy, 2021, 86, 106061.	8.2	63
174	Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Progress in Materials Science, 2021, 121, 100840.	16.0	160
175	Advances in Triboelectric Nanogenerators for Selfâ€Powered Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2105169.	7.8	54
176	Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications. Advanced Electronic Materials, 2022, 8, 2100578.	2.6	40
177	A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosensors and Bioelectronics, 2021, 187, 113329.	5.3	83
178	Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors, 2021, 21, 6297.	2.1	14
179	Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87, 106155.	8.2	27
180	Fully Flexible, Highly Conductive Threads Based on single walled carbon nanotube (SWCNTs) and poly (3,4 ethylenedioxy thiophene) poly(styrenesulfonate) (PEDOT:PSS). Advanced Engineering Materials, 2021, 23, 2100448.	1.6	6

#	Article	IF	CITATIONS
181	Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Applied Energy Materials, 2022, 5, 3952-3965.	2.5	39
182	Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy, 2021, 90, 106577.	8.2	50
183	Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers. Nano Energy, 2021, 87, 106131.	8.2	52
184	High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator. Nano-Micro Letters, 2021, 13, 194.	14.4	26
185	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	7.8	70
186	Triboelectric nanogenerators for self-powered drug delivery. Trends in Chemistry, 2021, 3, 765-778.	4.4	39
187	A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Materials Today Energy, 2021, 22, 100867.	2.5	19
188	Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic) Tj ETQq $1\ 1\ 0.7$	84314 rgl	BT JOverlock
189	Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding. Nano-Micro Letters, 2021, 13, 190.	14.4	28
190	Hierarchical Design of Functional, Fibrous, and Microporous Polymer Monoliths for the Molecular Recognition of Diethylstilbestrol. Analytical Chemistry, 2021, 93, 13513-13519.	3.2	5
191	Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy, 2021, 88, 106247.	8.2	66
192	Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 2021, 88, 106304.	8.2	185
193	Effect of the morphology of silver layer on electrical conductivity and electrochemical performance of silver/reduced graphene oxide/cotton fabric composite as a flexible supercapacitor electrode. Journal of Energy Storage, 2021, 42, 103042.	3.9	15
194	Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends in Biotechnology, 2021, 39, 1078-1092.	4.9	96
195	A review of low-dimensional metal halide perovskites for blue light emitting diodes. Journal of Alloys and Compounds, 2021, 883, 160727.	2.8	29
196	Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 2021, 89, 106321.	8.2	151
197	Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy, 2021, 89, 106376.	8.2	31
198	Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chemical Engineering Journal, 2021, 423, 130203.	6.6	60

#	Article	IF	CITATIONS
199	Hybrid energy harvesting system based on Stirling engine towards next-generation heat recovery system in industrial fields. Nano Energy, 2021, 90, 106508.	8.2	12
200	All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127535.	2.3	5
201	Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chemical Engineering Journal, 2021, 426, 130870.	6.6	31
202	Recent progress of self-powered respiration monitoring systems. Biosensors and Bioelectronics, 2021, 194, 113609.	5.3	33
203	Self-powered fault diagnosis of rolling bearings based on triboelectric effect. Mechanical Systems and Signal Processing, 2022, 166, 108382.	4.4	34
204	Design strategy and innovation in piezo- and pyroelectric nanogenerators., 2021,, 555-585.		1
205	Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. Journal of Materials Chemistry A, 2021, 9, 17292-17299.	5.2	31
206	High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications. Journal of Materials Chemistry C, 2021, 9, 10193-10215.	2.7	31
207	Synthesis of highly luminescent Mn-doped CsPbCl3 nanoplatelets for light-emitting diodes. CrystEngComm, 2021, 23, 793-803.	1.3	11
208	Effect of Crystalline Microstructure Evolution on Thermoelectric Performance of PEDOT : PSS Films. Energy Material Advances, 2021, 2021, .	4.7	30
209	Synthesis of fluorinated polyimide towards a transparent triboelectric nanogenerator applied on screen surface. Journal of Materials Chemistry A, 2021, 9, 6583-6590.	5.2	32
210	High output direct-current power fabrics based on the air breakdown effect. Energy and Environmental Science, 2021, 14, 2460-2471.	15.6	58
211	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
212	Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosensors and Bioelectronics, 2020, 164, 112318.	5.3	19
213	Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter, 2021, 4, 3725-3740.	5.0	94
214	A Highly Sensitive Mercury Ion Sensor Based on Solid-Liquid Contact Electrification. ECS Journal of Solid State Science and Technology, 2020, 9, 115029.	0.9	11
215	Smart textiles and wearable technologies $\hat{a}\in$ opportunities offered in the fight against pandemics in relation to current COVID-19 state. Reviews on Advanced Materials Science, 2020, 59, 487-505.	1.4	39
216	Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation. Research, 2020, 2020, 7158953.	2.8	67

#	Article	IF	Citations
217	Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. Materials Horizons, 2021, 8, 3187-3200.	6.4	5
218	Organic Ï€â€Conjugated Molecules: From Nature to Artificial Applications. Where are the Boundaries?. Israel Journal of Chemistry, 2022, 62, .	1.0	5
220	Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy, 2022, 91, 106656.	8.2	26
221	Preparation of Multifunctional Plasma Cured Cellulose Fibers Coated with Photo-Induced Nanocomposite toward Self-Cleaning and Antibacterial Textiles. Polymers, 2021, 13, 3664.	2.0	5
222	Allâ€Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Advanced Energy Materials, 2021, 11, 2102219.	10.2	52
223	Schiff Bases and Their Complexes in Organic Light Emitting Diode Application. Journal of Electronic Materials, 2021, 50, 6708-6723.	1.0	20
224	Synthesis and Characterization of Eco-Friendly CMC/Maghemite Nanocomposite Films. Journal of Electronic Materials, 2021, 50, 7098-7109.	1.0	6
225	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	11.1	78
226	High-performance thermoelectric fabric based on PEDOT:Tosylate/Cul. Applied Materials Today, 2021, 25, 101180.	2.3	9
227	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5.3	50
228	A stretchable electrode for single enzymatic biofuel cells. Materials Today Energy, 2021, 22, 100886.	2.5	5
229	Recent Progress in the Energy Harvesting Technologyâ€"From Self-Powered Sensors to Self-Sustained loT, and New Applications. Nanomaterials, 2021, 11, 2975.	1.9	60
230	Thermoelectric converter: Strategies from materials to device application. Nano Energy, 2022, 91, 106692.	8.2	127
232	Graphene-enabled wearable sensors for healthcare monitoring. Biosensors and Bioelectronics, 2022, 197, 113777.	5.3	82
233	Wearable Ultrahigh Current Power Source Based on Giant Magnetoelastic Effect in Soft Elastomer System. ACS Nano, 2021, 15, 20582-20589.	7.3	43
234	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	1.4	7
235	Cellulose for Sustainable Triboelectric Nanogenerators. Advanced Energy and Sustainability Research, 2022, 3, 2100161.	2.8	38
236	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing. Small Methods, 2022, 6, e2101051.	4.6	61

#	Article	IF	CITATIONS
237	Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55656-55665.	4.0	10
238	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	5.8	150
239	From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Advanced Science, 2022, 9, e2103981.	5.6	40
240	Bioinspired Nanocomposites with Selfâ€Adaptive Stress Dispersion for Superâ€Foldable Electrodes. Advanced Science, 2022, 9, e2103714.	5.6	49
241	Highly reliable triboelectric bicycle tire as self-powered bicycle safety light and pressure sensor. Nano Energy, 2022, 93, 106797.	8.2	27
243	Construction of a cement–rebar nanoarchitecture for a solutionâ€processed and flexible film of a Bi ₂ Te ₃ /CNT hybrid toward low thermal conductivity and high thermoelectric performance. , 2022, 4, 115-128.		21
244	All-Day Uninterrupted Power Generator: Harvesting Energy from the Sun and Cold Space. SSRN Electronic Journal, $0, \dots$	0.4	1
245	Moisture Assisted Photo-Engineered Textiles for Visible and Self-Adaptive Infrared Dual Camouflage. SSRN Electronic Journal, 0, , .	0.4	0
246	Effect of Electrical Contact Mode on the Arc-Erosion Behavior of Titanium Diboride-Nickel Co-reinforced and Nickel-Enhanced Silver-Based Electrical Contact Materials. Journal of Electronic Materials, 2022, 51, 1137-1147.	1.0	3
247	Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy, 2022, 93, 106855.	8.2	31
248	Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy, 2022, 93, 106835.	8.2	55
249	Preparation of polycrystalline tungsten nanofibers by needleless electrospinning. Journal of Alloys and Compounds, 2022, 900, 163542.	2.8	9
250	All-organic flexible ferroelectret nanogenerator for wearable electronics. , 2020, , .		1
251	Highly flexible and conductive stainless-steel thread based piezoelectric coaxial yarn nanogenerators via solution coating and touch-spun nanofibers coating methods. Smart Materials and Structures, 2022, 31, 035028.	1.8	6
252	Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	124
253	Perspective on the development of high performance flexible piezoelectric energy harvesters. Journal of Materials Chemistry C, 2022, 10, 2905-2924.	2.7	23
254	Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics. Applied Sciences (Switzerland), 2022, 12, 941.	1.3	3
255	Functionalization of Fiber Devices: Materials, Preparations and Applications. Advanced Fiber Materials, 2022, 4, 324-341.	7.9	29

#	Article	IF	CITATIONS
256	Fabrication of functionalized nanomaterial-based electrochemical sensors' platforms. , 2022, , 445-486.		2
257	AC/DC Convertible Pillarâ€√ype Triboelectric Nanogenerator with Output Current Amplified by the Design of the Moving Electrode. Advanced Energy Materials, 2022, 12, .	10.2	10
258	Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy and Environmental Science, 2022, 15, 82-101.	15.6	48
259	Microfluidic fabrication of <scp>βâ€phase</scp> enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor. Journal of Polymer Science, 2022, 60, 1718-1726.	2.0	3
260	Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Science and Technology of Advanced Materials, 2022, 23, 1-16.	2.8	32
261	Optical Printing of Conductive Silver on Ultrasmooth Nanocellulose Paper for Flexible Electronics. Advanced Engineering Materials, 2022, 24, .	1.6	8
262	Applications of nanotechnology in smart textile industry: A critical review. Journal of Advanced Research, 2022, 38, 55-75.	4.4	98
263	High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	45
264	Solution-Synthesized Cu2O As a Hole Transport Layer for a ZnO-Based Planar Heterojunction Perovskite Solar Cell Fabricated at Room Temperature. Journal of Electronic Materials, 2022, 51, 1692-1699.	1.0	6
265	Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy, 2022, 95, 106988.	8.2	29
266	A large-area versatile textile for radiative warming and biomechanical energy harvesting. Nano Energy, 2022, 95, 106996.	8.2	20
267	The fabrication and properties of a flexible sensor based on polyvinylidene fluoride fiber. Textile Reseach Journal, 2022, 92, 3443-3450.	1.1	1
268	Ultrathin Eardrumâ€Inspired Selfâ€Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning. Small, 2022, 18, e2106960.	5.2	43
269	Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted \hat{l}^2 -phase PVDF. Sensors and Actuators A: Physical, 2022, 337, 113415.	2.0	29
270	Solid-state intrinsically-superstretchable multifunctional nanogenerator fiber for biomechanical and ambient electromagnetic energy harvesting and self-powered sensing. Nano Energy, 2022, 95, 107035.	8.2	12
271	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
272	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
273	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	18.7	145

#	Article	IF	CITATIONS
274	Wearable physical sensors. , 2022, , 183-218.		0
275	Lanthanides for the new generation of optical sensing and Internet of Things. Fundamental Theories of Physics, 2022, , 31-128.	0.1	9
276	Smart Multi-Responsive Aramid Aerogel Fiber Enabled Self-Powered Fabrics. SSRN Electronic Journal, 0, , .	0.4	0
277	Stretchable thermoelectric materials/devices for low-grade thermal energy harvesting., 2022, , 11-40.		1
278	Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. Journal of Materials Chemistry C, 2022, 10, 13789-13796.	2.7	19
279	Fluorescence detection of milk allergen \hat{l}^2 -lactoglobulin based on aptamers and WS ₂ nanosheets. Journal of Materials Chemistry B, 2022, 10, 6752-6757.	2.9	10
280	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	8.5	102
281	Melt coated flexible stainless-steel thread based co-axial triboelectric yarn nanogenerators. Materials Technology, 2022, 37, 2465-2479.	1.5	2
282	Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategiesâ€"A comprehensive study. PLoS ONE, 2022, 17, e0264205.	1.1	7
284	A Deepâ€Learningâ€Assisted Onâ€Mask Sensor Network for Adaptive Respiratory Monitoring. Advanced Materials, 2022, 34, e2200252.	11.1	72
285	Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small, 2022, 18, e2200679.	5.2	25
286	Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. Advanced Science, 2022, 9, e2105368.	5.6	46
287	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	13.1	307
288	High-throughput optimization and fabrication of Bi2Te2.7Se0.3-based artificially tilted multilayer thermoelectric devices. Journal of the European Ceramic Society, 2022, 42, 3913-3919.	2.8	2
289	An Ionic Hydrogel-Based Antifreezing Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2022, 4, 1930-1938.	2.0	21
290	Recent innovations in solar energy education and research towards sustainable energy development. Acta Innovations, 2022, , 27-49.	0.4	7
291	Multifunctional Wearable Thermoelectrics for Personal Thermal Management. Advanced Functional Materials, 2022, 32, .	7.8	75
292	Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature, 2022, 603, 616-623.	13.7	147

#	Article	IF	CITATIONS
293	Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS Nano, 2022, 16, 4415-4425.	7. 3	54
294	Printing of Carbon Nanotube-Based Temperature and Bending Sensors for High-Temperature-Resistant Intelligent Textiles. ACS Applied Electronic Materials, 2022, 4, 1949-1957.	2.0	6
295	Decoupling the trade-off between thermoelectric and mechanical performances for polymer composites via interfacial regulation. Composites Science and Technology, 2022, 222, 109373.	3.8	14
296	Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy, 2022, 96, 107067.	8.2	30
297	Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy, 2022, 97, 107199.	8.2	56
298	ZnO-MWCNT @ Fe3O4 as a novel catalyst for methanol and ethanol oxidation. Journal of Physics and Chemistry of Solids, 2022, 165, 110688.	1.9	18
299	Self-assembly defect-regulating superstructured carbon. Energy Storage Materials, 2022, 48, 164-171.	9.5	31
300	Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel cell. Chemical Engineering Journal, 2022, 440, 135719.	6.6	13
301	Lead-free, high-current output piezoelectric nanogenerators using three-dimensional interdigitated electrodes. Chemical Engineering Journal, 2022, 442, 136241.	6.6	14
302	Transforming wood as nextâ€generation structural and functional materials for a sustainable future. EcoMat, 2022, 4, .	6.8	40
303	Wearable Bioelectronics for Chronic Wound Management. Advanced Functional Materials, 2022, 32, .	7.8	64
304	Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing. Small, 2022, 18, e2104706.	5.2	15
305	Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano, 2021, 15, 18633-18646.	7.3	53
306	Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomaterials Science and Engineering, 2023, 9, 2087-2102.	2.6	16
307	Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials, 2021, 14, 7813.	1.3	13
308	Perspectives on self-powered respiration sensor based on triboelectric nanogenerator. Applied Physics Letters, $2021,119,\ldots$	1.5	7
309	Ultrafine Transition Metal Phosphide Nanoparticles Semiembedded in Nitrogen-Doped Carbon Nanotubes for Efficient Counter Electrode Materials in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 13952-13962.	2.5	14
310	Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core–Shell Wires. ACS Applied Materials & Interfaces, 2022, 14, 18690-18696.	4.0	7

#	ARTICLE	IF	Citations
311	Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chemical Engineering Journal, 2022, 444, 136481.	6.6	14
312	Robust Memristive Fiber for Woven Textile Memristor. Advanced Functional Materials, 2022, 32, .	7.8	23
313	Highâ€Efficiency Poly(Vinylidene Fluorideâ€Coâ€Hexafluoropropylene) Loaded 3D Marigold Flowerâ€Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications. Small, 2022, 18, e2200822.	5.2	10
314	Flexible Prussian Blueâ€Au Fibers as Robust Peroxidase – Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. Electroanalysis, 2022, 34, 1763-1771.	1.5	10
315	An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals, 2022, 12, 555.	1.0	6
316	Piezoelectric Fibers: Processing and Challenges. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16961-16982.	4.0	24
317	Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98, 107282.	8.2	56
318	Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy & Storage Applications. Energy & Storage Applications. Energy & Storage Applications.	2.5	10
319	Surface Wettability for Skinâ€Interfaced Sensors and Devices. Advanced Functional Materials, 2022, 32, .	7.8	67
320	Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.	1.3	33
321	Exploring Nextâ€Generation Functional Organic Phase Change Composites. Advanced Functional Materials, 2022, 32, .	7.8	42
322	Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter, 2022, 5, 1342-1345.	5.0	29
323	Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22497-22509.	4.0	11
324	From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors, 2022, 12, 323.	2.3	15
325	Knittable Composite Fiber Allows Constant and Tremendous Selfâ€Powering Based on the Transpirationâ€Driven Electrokinetic Effect. Advanced Functional Materials, 2022, 32, .	7.8	17
326	Stretchable inkjet-printed electronics on mechanically compliant island-bridge architectures covalently bonded to elastomeric substrates. Flexible and Printed Electronics, 2022, 7, 025007.	1.5	2
327	Stretchable <scp>fiberâ€shaped</scp> aqueous aluminum ion batteries. EcoMat, 2022, 4, .	6.8	14
328	Triboelectrification-Induced Electricity in Self-Healing Hydrogel for Mechanical Energy Harvesting and Ultra-sensitive Pressure Monitoring. ACS Omega, 2022, 7, 18816-18825.	1.6	5

#	Article	IF	CITATIONS
329	Overview of Human Kinetic Energy Harvesting and Application. ACS Applied Energy Materials, 2022, 5, 7091-7114.	2.5	18
330	Self-Powered and Flexible Gas Sensor Using Defect-Engineered Ws2/G Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
331	Enhanced Piezoelectric Performance of Electrospun Pvdf-Trfe by Polydopamine-Assisted Attachment of Zno Nanowires for Impact Force Sensing. SSRN Electronic Journal, 0, , .	0.4	0
332	Hydrochromic Cspbbr3-Kbr Microcrystals for Flexible Anti-Counterfeiting and Wearable Self-Powered Biomechanical Monitoring. SSRN Electronic Journal, 0, , .	0.4	0
333	Porous Pyroelectric Ceramic with Carbon Nanotubes for High-Performance Thermal to Electrical Energy Conversion. SSRN Electronic Journal, 0, , .	0.4	0
334	Simple Preparation of Multifunctional Luminescent Textile for Smart Packaging. ACS Omega, 2022, 7, 19454-19464.	1.6	10
335	Inhalationâ€Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gasâ€Maskâ€Integrated Selfâ€Powered Multifunctional System. Advanced Energy Materials, 2022, 12, .	10.2	9
336	Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors., 2022, 1, 100013.		11
337	Composite film with hollow hierarchical silica/perfluoropolyether filler and surface etching for performance enhanced triboelectric nanogenerators. Chemical Engineering Journal, 2022, 446, 137263.	6.6	25
338	Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Advanced Functional Materials, 2022, 32, .	7.8	51
339	Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing. Chemical Engineering Journal, 2022, 450, 137491.	6.6	15
340	Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nature Communications, 2022, 13, .	5.8	27
341	Enhanced Output of Onâ€Body Directâ€Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .	10.2	23
342	Performance investigation of a portable liquid cooling garment using thermoelectric cooling. Applied Thermal Engineering, 2022, 214, 118830.	3.0	11
343	All-day continuous electrical power generator by solar heating and radiative cooling from the sky. Applied Energy, 2022, 322, 119403.	5.1	16
344	Fibrous triboelectric nanogenerators: fabrication, integration, and application. Journal of Materials Chemistry A, 2022, 10, 15881-15905.	5.2	13
345	One-Step Fabrication of Sandwiched Film Based Triboelectric Nanogenerator for Large-Area Energy Harvester and Precise Self-Powered Sensor. SSRN Electronic Journal, 0, , .	0.4	0
346	Human body IoT systems based on the triboelectrification effect: energy harvesting, sensing, interfacing and communication. Energy and Environmental Science, 2022, 15, 3688-3721.	15.6	93

#	Article	IF	CITATIONS
347	Ultrahigh Performance Triboelectric Nanogenerator Enabled by Charge Transmission in Interfacial Lubrication and Potential Decentralization Design. Research, 2022, 2022, .	2.8	22
348	Effect of humidity on the performance of polyvinyl chloride based triboelectric nanogenerator. Materials Today: Proceedings, 2022, 66, 2468-2473.	0.9	4
349	Materials for evaporationâ€driven hydrovoltaic technology. , 2022, 1, 449-470.		16
350	Visibly Transparent and Infrared Reflective Coatings for Personal Thermal Management and Thermal Camouflage. Advanced Functional Materials, 2022, 32, .	7.8	40
351	Toward Precision Recognition of Complex Hand Motions: Wearable Thermoelectrics by Synergistic 2D Nanostructure Confinement and Controlled Reduction. Advanced Functional Materials, 2022, 32, .	7.8	32
352	Cotton fabrics treated with acylhydrazone-based polyviologen to create innovative multi-stimulus responsive textiles. Arabian Journal of Chemistry, 2022, 15, 104077.	2.3	4
353	Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics. Nano Energy, 2022, 101, 107559.	8.2	40
354	Theory and shape optimization of acoustic driven triboelectric nanogenerators. Materials Today Physics, 2022, 27, 100784.	2.9	4
355	A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy, 2022, 101, 107572.	8.2	21
356	Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics. Biosensors and Bioelectronics, 2022, 214, 114547.	5.3	7
357	Poly(phthalazinone ether ketone) – Poly(3,4-ethylenedioxythiophene) fiber for thermoelectric and hydroelectric energy harvesting. Chemical Engineering Journal, 2022, 450, 138093.	6.6	4
358	Sonication-assisted synthesis of Ag@AgCl and Ag@AgCl-GO and their photocatalytic performances. Journal of Molecular Structure, 2022, 1269, 133756.	1.8	11
359	Highly aligned growth of carbon nanotube forests with in-situ catalyst generation: A route to multifunctional basalt fibres. Composites Part B: Engineering, 2022, 243, 110136.	5.9	10
360	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
361	A 3D porphyrinic metal-organic framework with fsc topology for efficient visible-light-driven photocatalytic degradation. Polyhedron, 2022, 226, 116091.	1.0	11
362	Fiber Solar Cells from High Performances Towards Real Applications. Advanced Fiber Materials, 2022, 4, 1293-1303.	7.9	17
363	Smart E-Textiles: Overview of Components and Outlook. Sensors, 2022, 22, 6055.	2.1	18
364	Smart Textiles for Healthcare and Sustainability. ACS Nano, 2022, 16, 13301-13313.	7.3	61

#	Article	IF	CITATIONS
365	Electromagnetic energy harvesters based on natural leaves for constructing self-powered systems. Materials Today Energy, 2022, 29, 101131.	2.5	4
366	Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Advanced Science, 2022, 9, .	5.6	28
367	A comprehensive review of organic-inorganic composites based piezoelectric nanogenerators through material structure design. Journal Physics D: Applied Physics, 2022, 55, 423003.	1.3	4
368	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41
369	Thermoelectric Clothing for Body Heat Harvesting and Personal Cooling: Design and Fabrication of a Textileâ€Integrated Flexible and Vertical Device. Energy Technology, 0, , 2200528.	1.8	1
370	Logic-enabled textiles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35
371	Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS Nano, 2022, 16, 12635-12644.	7.3	15
372	A Dualâ€Function Sensor for Highly Sensitive Detection of Flame and Humidity. Small, 2022, 18, .	5.2	16
373	A programmable magnetoelastic sensor array for self-powered human–machine interface. Applied Physics Reviews, 2022, 9, .	5.5	32
374	Porous pyroelectric ceramic with carbon nanotubes for high-performance thermal to electrical energy conversion. Nano Energy, 2022, 102, 107703.	8.2	9
375	A PEDOT:PSS thermoelectric fiber generator. Nano Energy, 2022, 102, 107678.	8.2	43
376	Self-powered and flexible gas sensor using defect-engineered WS2/G heterostructure. Sensors and Actuators B: Chemical, 2022, 371, 132523.	4.0	17
377	Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors. Carbon, 2022, 200, 38-46.	5.4	24
378	Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today, 2022, 29, 101612.	2.3	13
379	Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustainable Energy Technologies and Assessments, 2022, 53, 102745.	1.7	7
380	Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy, 2022, 102, 107745.	8.2	15
381	High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy, 2022, 103, 107810.	8.2	14
382	Thermoelectric generators as an alternative for reliable powering of wearable devices with wasted heat. Journal of Solid State Chemistry, 2022, 316, 123543.	1.4	6

#	Article	IF	CITATIONS
383	One-step fabrication of sandwiched film based triboelectric nanogenerator for large-area energy harvester and precise self-powered sensor. Nano Energy, 2022, 103, 107771.	8.2	12
384	A novel smart composite: from self-powered sensors to multi-responsive shape memory actuators. Journal of Materials Chemistry A, 2022, 10, 22205-22213.	5.2	6
385	Semantic-driven Efficient Service Network towards Smart Healthcare System in Intelligent Fabric. IEEE Transactions on Network Science and Engineering, 2022, , 1-10.	4.1	0
386	Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics. Journal of Materials Chemistry C, 2022, 10, 14027-14052.	2.7	16
387	Influence of surface functionalization on the contact electrification of fabrics. New Journal of Chemistry, 2022, 46, 15645-15656.	1.4	1
388	A facile frequency tuning strategy to realize vibrationâ€based hybridized piezoelectricâ€triboelectric nanogenerators. EcoMat, 2023, 5, .	6.8	7
389	Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Applied Electronic Materials, 2022, 4, 4212-4230.	2.0	7
390	Emerging Development of Auto-Charging Sensors for Respiration Monitoring. International Journal of Biomaterials, 2022, 2022, 1-12.	1.1	1
391	Appearance and conductivity of weft-knitted unibody positioning flexible sensor. International Journal of Clothing Science and Technology, 2022, ahead-of-print, .	0.5	0
392	Electronic Features of Cotton Fabric e-Textiles Prepared with Aqueous Carbon Nanofiber Inks., 2023, 1, 122-131.		4
393	A largeâ€scalable sprayingâ€spinning process for multifunctional electronic yarns. SmartMat, 2023, 4, .	6.4	11
394	Selfâ€Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods, 2022, 6, .	4.6	20
395	Coreâ€Shell ZnO@Microporous Organic Polymer Nanospheres as Enhanced Piezoâ€Triboelectric Energy Harvesting Materials. Angewandte Chemie, 0, , .	1.6	0
396	Coreâ€Shell ZnO@Microporous Organic Polymer Nanospheres as Enhanced Piezoâ€Triboelectric Energy Harvesting Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
397	Flexible Biofuel Cellâ€Inâ€Aâ€Tube (i <i>ez</i> Tube): An Entirely Selfâ€Contained Biofuel Cell for Wearable Green Bioâ€energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	14
398	Harvesting Electrical Energy from High Temperature Environment by Aerogel Nano overed Triboelectric Yarns. Advanced Functional Materials, 2022, 32, .	7.8	26
399	Topological Nanofibers Enhanced Piezoelectric Membranes for Soft Bioelectronics. Advanced Functional Materials, 2022, 32, .	7.8	15
400	A soft haptic interface for programmable patterns of touch. Matter, 2022, 5, 2590-2593.	5.0	2

#	Article	IF	Citations
401	Immobilization of strontium aluminate nanoparticles onto plasma-pretreated nonwoven polypropylene fibers by screen-printing toward photochromic textiles. Journal of Materials Research and Technology, 2022, 20, 3146-3157.	2.6	6
402	Preparation of Photochromic and Photoluminescent Nonwoven Fibrous Mat from Recycled Polyester Waste. Journal of Polymers and the Environment, 2022, 30, 5239-5251.	2.4	30
403	Development of novel photoluminescent fibers from recycled polyester waste using plasma-assisted dyeing toward ultraviolet sensing and protective textiles. Journal of Materials Research and Technology, 2022, 21, 1630-1642.	2.6	9
404	Harvesting Hydropower via a Magnetoelastic Generator for Sustainable Water Splitting. ACS Nano, 2022, 16, 16816-16823.	7.3	13
405	Advances in Bioinspired Triboelectric Nanogenerators. Advanced Electronic Materials, 2022, 8, .	2.6	18
406	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
407	An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy, 2022, 104, 107935.	8.2	3
408	Advances in Photoplethysmography for Personalized Cardiovascular Monitoring. Biosensors, 2022, 12, 863.	2.3	6
409	Advanced Fiber Materials for Wearable Electronics. Advanced Fiber Materials, 2023, 5, 12-35.	7.9	81
410	Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Molecules, 2022, 27, 6932.	1.7	5
411	An artificial remote tactile device with 3D depth-of-field sensation. Science Advances, 2022, 8, .	4.7	9
412	Intrinsically Stretchable Microbattery with Ultrahigh Deformability for Self-Powering Wearable Electronics., 2022, 4, 2401-2408.		5
413	3D Printing Technology for Smart Clothing: A Topic Review. Materials, 2022, 15, 7391.	1.3	7
414	Wearable respiratory sensors for COVIDâ€19 monitoring. View, 2022, 3, .	2.7	10
415	Hierarchically Assembled Counter Electrode for Fiber Solar Cell Showing Record Power Conversion Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	17
416	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	2.2	22
417	Flexible film and thermoelectric device of single-walled carbon nanotube@conductive metal-organic framework composite. Materials Today Nano, 2022, 20, 100276.	2.3	4
418	Energy Harvesting and Sensing Integrated Woven Structure Kneepad Based on Triboelectric Nanogenerators. Advanced Materials Technologies, 2023, 8, .	3.0	3

#	Article	IF	CITATIONS
419	Fabric computing: Concepts, opportunities, and challenges. Innovation(China), 2022, 3, 100340.	5.2	12
420	Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor. Applied Energy, 2022, 327, 120092.	5.1	29
421	Coupled thermo-electric-mechanical modeling of hybrid thermoelectric-piezoelectric energy harvester. Sustainable Energy Technologies and Assessments, 2022, 54, 102845.	1.7	1
422	Mechanical durability of screen-printed flexible silver traces for wearable devices. Sensing and Bio-Sensing Research, 2022, 38, 100537.	2.2	4
423	High-performance piezoelectric composites via \hat{l}^2 phase programming. Nature Communications, 2022, 13, .	5.8	131
424	Self-powered multifunctional flexible sensor for wearable biomonitoring. Sensors and Actuators B: Chemical, 2023, 377, 132996.	4.0	24
425	Thermoelectric Properties of N-Type Poly (Ether Ether Ketone)/Carbon Nanofiber Melt-Processed Composites. Polymers, 2022, 14, 4803.	2.0	4
426	Ultraviolet-Sensitive Photoluminescent Spray-Coated Textile. Coatings, 2022, 12, 1686.	1.2	3
427	Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science, 2022, 26, 101042.	5.6	18
428	Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy, 2023, 105, 108024.	8.2	21
429	n-Eicosane-Impregnated nonwoven phase change mats of electrospun Poly(ethylene oxide)/Poly(methyl) Tj ETQq	0 <u>9.8</u> rgBT	Qverlock 10
430	Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosensors and Bioelectronics, 2023, 222, 114999.	5. 3	60
431	Preparation and structure dependent thermoelectric properties of flexible N-type nanostructured silver(I) selenide/multi-walled carbon nanotube composite film. Applied Surface Science, 2023, 613, 156150.	3.1	8
432	Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications. Progress in Materials Science, 2023, 133, 101054.	16.0	42
433	Smart Fabric Textiles: Recent Advances and Challenges. Textiles, 2022, 2, 582-605.	1.8	27
435	Triboelectric nanogenerators for clinical diagnosis and therapy: A report of recent progress. Medicine in Novel Technology and Devices, 2022, 16, 100195.	0.9	6
436	A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators. Applied Mechanics Reviews, 2024, 76, .	4.5	10
437	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21

#	ARTICLE	IF	CITATIONS
438	Model Development of a Hybrid Battery–Piezoelectric Fiber System Based on a New Control Method. Polymers, 2022, 14, 5428.	2.0	1
439	Thermoelectric energy harvesting for personalized healthcare. , 2022, 1, .		6
440	Improving Relative Permittivity and Suppressing Dielectric Loss of Triboelectric Layers for High-Performance Wearable Electricity Generation. ACS Nano, 2022, 16, 20251-20262.	7.3	20
441	Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications. Sustainability, 2022, 14, 16931.	1.6	5
442	Recent progress in the fabrication and processing of triboelectric yarns., 2023, 2, 63-89.		1
443	Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. International Journal of Biological Macromolecules, 2023, 234, 122903.	3.6	6
444	Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional Materials, 2023, 33, .	7.8	24
445	An Environmentalâ€Inert and Highly Selfâ€Healable Elastomer Obtained via Doubleâ€Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. Advanced Science, 2023, 10, .	5.6	8
446	Smart Fibers for Self-Powered Electronic Skins. Advanced Fiber Materials, 2023, 5, 401-428.	7.9	49
447	Polystyrene-Based Triboelectric Nanogenerators for Self-Powered Multifunctional Human Activity Monitoring. ACS Applied Energy Materials, 2022, 5, 15881-15889.	2.5	3
448	Wearable Eâ€Skin Microgrid with Batteryâ€Based, Selfâ€Regulated Bioenergy Module for Epidermal Sweat Sensing. Advanced Energy Materials, 2023, 13, .	10.2	10
449	MXene/Fluoropolymerâ€Derived Laserâ€Carbonaceous Allâ€Fibrous Nanohybrid Patch for Soft Wearable Bioelectronics. Advanced Functional Materials, 2023, 33, .	7.8	8
450	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25
451	Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Materials Horizons, 2023, 10, 842-851.	6.4	71
452	Paper-Based Triboelectric Nanogenerators., 2023,, 1-22.		0
453	Performance enhancement strategies of fibrous solar cells for wearable hybrid energy systems. Journal of Materials Chemistry A, 2023, 11, 3210-3244.	5.2	5
454	Piezoelectricity of strain-induced overall water splitting of Ni(OH) ₂ /MoS ₂ heterostructure. Journal of Materials Chemistry A, 2023, 11, 3481-3492.	5.2	11
455	Wearable power management system enables uninterrupted battery-free data-intensive sensing and transmission. Nano Energy, 2023, 107, 108107.	8.2	6

#	ARTICLE	IF	CITATIONS
456	Dual-Mode Coupled Triboelectric Nanogenerator for Harvesting Random Vibration Energy. ACS Omega, 2023, 8, 3842-3849.	1.6	5
457	Enhanced Piezoelectric Performance of Electrospun PVDFâ€√rFE by Polydopamineâ€Assisted Attachment of ZnO Nanowires for Impact Force Sensing. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
458	Constructing Flexible Film Electrode with Porous Layered Structure by MXene/SWCNTs/PANI Ternary Composite for Efficient Lowâ€Grade Thermal Energy Harvest. Advanced Functional Materials, 2023, 33, .	7.8	17
459	Stretchable and Skinâ€Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. Advanced Science, 2023, 10, .	5.6	15
460	Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator. Nano Energy, 2023, 109, 108231.	8.2	15
461	Characteristics of Electrical Heating and Sensing Properties for CNTs/GNs Polyester-Knitted Fabrics Based on Network Structure. Fibers and Polymers, 2023, 24, 1139-1148.	1.1	4
462	Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Materials Today, 2023, 65, 26-36.	8.3	16
463	Threadlike Piezoelectric Sensors Based on Ferroelectrets and Their Application in Washable and Breathable Smart Clothing. Advanced Materials Technologies, 2023, 8, .	3.0	2
464	Polymeric phase change material networks based on multi-telechelic polyethylene glycol-derived multimer structures for thermal energy storage. Chemical Engineering Journal, 2023, 462, 142164.	6.6	5
465	Multigram preparation of tungsten microfibers via needle-less electrospinning of phosphotungstic acid. International Journal of Refractory Metals and Hard Materials, 2023, 112, 106121.	1.7	0
466	An Artificial Motion and Tactile Receptor Constructed by Hyperelastic Double Physically Crossâ€Linked Silk Fibroin Ionoelastomer. Advanced Functional Materials, 2023, 33, .	7.8	6
467	Benzothiadiazole-based materials for organic solar cells. Chinese Chemical Letters, 2024, 35, 108438.	4.8	1
468	Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy, 2023, 109, 108298.	8.2	5
469	3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles. Nano Energy, 2023, 109, 108312.	8.2	9
470	Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy, 2023, 109, 108304.	8.2	6
471	Flexible phase change organogel with visualization function for human heat harvesting. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107540.	3.8	0
472	Electrospun cellulose acetate nanofibrous composites for multi-responsive shape memory actuators and self-powered pressure sensors. Carbohydrate Polymers, 2023, 313, 120868.	5.1	14
473	A wearable electrochemical fabric for cytokine monitoring. Biosensors and Bioelectronics, 2023, 232, 115301.	5.3	5

#	Article	IF	CITATIONS
474	Emerging ultrasonic bioelectronics for personalized healthcare. Progress in Materials Science, 2023, 136, 101110.	16.0	10
475	PEDOT/CNT/Bi ₂ Te ₃ coated porous thermoelectric yarns for textile based wearable thermoelectric generator. Smart Materials and Structures, 2023, 32, 035036.	1.8	2
476	Introductory Chapter: An Overview to the Internet of Things. , 0, , .		2
477	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
478	Implantable Triboelectric Nanogenerators for Selfâ€Powered Cardiovascular Healthcare. Small, 2023, 19, .	5.2	17
479	Production of biologically active nonâ€woven textiles from recycled polyethylene terephthalate. Luminescence, 2023, 38, 350-359.	1.5	1
480	All-Solution-Processed Polythiophene/Carbon Nanotube Nanocomposites Integrated on Biocompatible Silk Fibroin Substrates for Wearable Thermoelectric Generators. ACS Applied Energy Materials, 2023, 6, 2602-2610.	2.5	3
481	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 1-39.		O
482	All-Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor. Advanced Fiber Materials, 2023, 5, 1025-1036.	7.9	6
483	Ultrastretchable MXene Microsupercapacitors. Small, 2023, 19, .	5.2	14
484	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	7.8	31
485	Recent advances in piezoelectric textile materials: A brief literature review. Journal of Engineered Fibers and Fabrics, 2023, 18, 155892502311512.	0.5	0
486	Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy, 2023, 109, 108291.	8.2	14
487	PET/Graphene Nanocomposite Fibers Obtained by Dry-Jet Wet-Spinning for Conductive Textiles. Polymers, 2023, 15, 1245.	2.0	5
488	Ultrastretchable and Compact Zn-MnO ₂ Rechargeable Battery., 2023, 5, 955-961.		7
489	A flexible and stretchable triboelectric nanogenerator based on a medical conductive hydrogel for biomechanical energy harvesting and electronic switches. Nanoscale, 2023, 15, 6812-6821.	2.8	2
490	Recycled Polypropylene Waste as Abundant Source for Antimicrobial, Superhydrophobic and Electroconductive Nonwoven Fabrics Comprising Polyaniline/Silver Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1306-1316.	1.9	4
491	Sustainability Assessment of Energy Storage Technologies Based on Commercialization Viability: MCDM Model. Sustainability, 2023, 15, 4707.	1.6	8

#	Article	IF	CITATIONS
492	Imparting cotton textiles glow-in-the-dark property along with other functional properties: photochromism, flame-retardant, water-repellency, and antimicrobial activity. Cellulose, 2023, 30, 4041-4055.	2.4	21
493	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	1.8	19
494	Energy Harvesting Through Thermoelectric Generators. , 2023, , 32-66.		0
495	Power supplies for cardiovascular implantable electronic devices. EcoMat, 2023, 5, .	6.8	9
496	Additive Engineering Enables Ionic-Liquid Electrolyte-Based Supercapacitors To Deliver Simultaneously High Energy and Power Density. ACS Sustainable Chemistry and Engineering, 2023, 11, 5685-5695.	3.2	11
497	Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Research, 2023, 16, 9379-9386.	5.8	8
498	Copper-Coordinated Cellulose Fibers for Electric Devices with Motion Sensitivity and Flame Retardance. ACS Applied Materials & Samp; Interfaces, 2023, 15, 18272-18280.	4.0	8
499	Synergetic H-Bonding and C-T Interaction-Mediated Self-Assembled Structure Results in a Room-Temperature Ferroelectric Material Exhibiting Electric Field-Induced Dipole Switching and Piezo- and Pyroelectric Energy Conversion. Chemistry of Materials, 2023, 35, 3316-3328.	3.2	3
500	Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Switzerland), 2023, 11, 1115.	1.0	3
501	Evolution of Micro-Nano Energy Harvesting Technology—Scavenging Energy from Diverse Sources towards Self-Sustained Micro/Nano Systems. Nanoenergy Advances, 2023, 3, 101-125.	3.6	7
502	Skin-Friendly and Wearable Iontronic Touch Panel for Virtual-Real Handwriting Interaction. ACS Nano, 2023, 17, 8293-8302.	7.3	30
503	Solid composite electrolyte based on oxygen vacancy effect of Lix(CoCrFeMnNi)O4-y high entropy oxides. Electrochimica Acta, 2023, 456, 142459.	2.6	6
504	Preparation of green colorimetric pH sensor using <scp><i>Humulus lupulus</i></scp> L. (common) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 Tf 5
526	Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications. Nano Research, 0 , , .	5.8	0
534	Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. Journal of Materials Chemistry A, 2023, 11, 17336-17372.	5.2	11
540	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
543	Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Research, 2024, 17, 445-461.	5.8	3
544	Sustainable electronic textiles towards scalable commercialization. Nature Materials, 2023, 22, 1294-1303.	13.3	15

#	ARTICLE	IF	CITATIONS
545	Applications of fluoropolymer nanocomposites in textile industry., 2023,, 719-754.		0
548	Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Advances, 2023, 13, 22973-22997.	1.7	3
555	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	18.7	12
561	Paper-Based Triboelectric Nanogenerators. , 2023, , 891-912.		0
579	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 851-889.		0
587	In-ear electrophysichochemical sensing. Nature Biomedical Engineering, 2023, 7, 1207-1209.	11.6	2