Opportunities and Challenges for Organic Electrodes in

Chemical Reviews 120, 6490-6557 DOI: 10.1021/acs.chemrev.9b00482

Citation Report

#	Article	IF	CITATIONS
1	Design strategies for organic carbonyl materials for energy storage: Small molecules, oligomers, polymers and supramolecular structures. EcoMat, 2020, 2, e12055.	11.9	24
2	Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy and Environmental Science, 2020, 13, 3950-3992.	30.8	148
3	Design Strategies for Highâ€Performance Aqueous Zn/Organic Batteries. Angewandte Chemie - International Edition, 2020, 59, 21293-21303.	13.8	253
4	Modelling of redox flow battery electrode processes at a range of length scales: a review. Sustainable Energy and Fuels, 2020, 4, 5433-5468.	4.9	29
5	Through-Space Charge Modulation Overriding Substituent Effect: Rise of the Redox Potential at 3.35 V in a Lithium-Phenolate Stereoelectronic Isomer. Chemistry of Materials, 2020, 32, 9996-10006.	6.7	39
6	Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001658.	19.5	36
7	Design Strategies for Highâ€Performance Aqueous Zn/Organic Batteries. Angewandte Chemie, 2020, 132, 21477-21487.	2.0	29
8	A Versatile Capacity Balancer for Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001608.	19.5	18
9	A stable organic dye catholyte for long-life aqueous flow batteries. Chemical Communications, 2020, 56, 13824-13827.	4.1	14
10	Designing High Performance Organic Batteries. Accounts of Chemical Research, 2020, 53, 2636-2647.	15.6	156
11	Multi-electron redox asymmetric supercapacitors based on quinone-coupled viologen derivatives and Ti3C2Tx MXene. Materials Today Energy, 2020, 18, 100532.	4.7	27
12	Electrochemically Active In Situ Crystalline Lithium-Organic Thin Films by ALD/MLD. ACS Applied Materials & Interfaces, 2020, 12, 41557-41566.	8.0	21
13	100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Letters, 2020, 9, 1590-1603.	4.8	14
14	Emerging organic potassium-ion batteries: electrodes and electrolytes. Journal of Materials Chemistry A, 2020, 8, 15547-15574.	10.3	69
15	Investigation on the Carbonyl Redox of Polyimide Based on Bridged Dianhydride as Electrode in Lithium-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 110525.	2.9	1
16	Organic-based active electrode materials for potassium batteries: status and perspectives. Journal of Materials Chemistry A, 2020, 8, 17296-17325.	10.3	32
17	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020, 59, 18322-18333.	13.8	86
18	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie, 2020, 132, 18478-18489.	2.0	36

#	Article	IF	CITATIONS
19	Playing with the p-Doping Mechanism to Lower the Carbon Loading in n-Type Insertion Organic Electrodes: First Feasibility Study with Binder-Free Composite Electrodes. Journal of the Electrochemical Society, 2020, 167, 070540.	2.9	7
20	A perspective on organic electrode materials and technologies for next generation batteries. Journal of Power Sources, 2021, 482, 228814.	7.8	140
21	Triazole-enabled small TEMPO cathodes for lithium-organic batteries. Energy Storage Materials, 2021, 35, 122-129.	18.0	17
22	In-situ/operando characterization techniques in lithium-ion batteries and beyond. Journal of Energy Chemistry, 2021, 59, 191-211.	12.9	64
23	Research Progress of Highâ€Performance Organic Material Pyreneâ€4,5,9,10â€Tetraone in Secondary Batteries. ChemElectroChem, 2021, 8, 352-359.	3.4	25
24	Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chemical Engineering Journal, 2021, 421, 127759.	12.7	57
25	A strategy for designing low-cost, environment-friendly, high energy and power density sodium-ion full cells: Effect of extrinsic pseudocapacitance. Journal of Alloys and Compounds, 2021, 854, 157238.	5.5	13
26	Organic Electrode Materials for Non-aqueous K-Ion Batteries. Transactions of Tianjin University, 2021, 27, 1-23.	6.4	19
27	Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustainable Energy and Fuels, 2021, 5, 310-331.	4.9	14
28	Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nature Materials, 2021, 20, 665-673.	27.5	110
29	High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes. ACS Energy Letters, 2021, 6, 201-207.	17.4	37
30	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	38.1	255
31	Nitroaromatics as Highâ€Energy Organic Cathode Materials for Rechargeable Alkaliâ€Ion (Li ⁺ ,) Tj ET	Qq0 0 0 rg	gBT /Overlocl
32	High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. Journal of Materials Chemistry A, 2021, 9, 505-514.	10.3	35
33	Characterization methods of organic electrode materials. Journal of Energy Chemistry, 2021, 57, 291-303.	12.9	15
34	Organic Cathode Materials for Lithiumâ€ion Batteries: Past, Present, and Future. Advanced Energy and Sustainability Research, 2021, 2, 2000044.	5.8	61
35	Ion/Molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Materials, 2021, 34, 648-668.	18.0	37
36	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	38.1	93

#	Article	IF	CITATIONS
37	Unravelling kinetic and mass transport effects on two-electron storage in radical polymer batteries. Journal of Materials Chemistry A, 2021, 9, 13071-13079.	10.3	21
38	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	4.1	26
39	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	5.7	45
40	Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 19083-19115.	10.3	33
41	Revealing practical specific capacity and carbonyl utilization of multi-carbonyl compounds for organic cathode materials. Physical Chemistry Chemical Physics, 2021, 23, 13159-13169.	2.8	7
42	Advances in electrochemical energy storage with covalent organic frameworks. Materials Advances, 0, , .	5.4	26
43	Insight into Chemical Reduction and Charge Storage Mechanism of 2,2′-Dipyridyl Disulfide toward Stable Lithium–Organic Battery. Journal of Physical Chemistry Letters, 2021, 12, 900-906.	4.6	12
44	A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chemical Communications, 2021, 57, 10791-10794.	4.1	13
45	Ionic Charge Storage in Diketopyrrolopyrrole-Based Redox-Active Conjugated Polymers. Journal of Physical Chemistry C, 2021, 125, 4449-4457.	3.1	16
46	Redox Potential Tuning of s-Tetrazine by Substitution of Electron-Withdrawing/Donating Groups for Organic Electrode Materials. Molecules, 2021, 26, 894.	3.8	11
47	Organic Multiple Redox Semiâ€Solidâ€Liquid Suspension for Liâ€Based Hybrid Flow Battery. ChemSusChem, 2021, 14, 1913-1920.	6.8	8
48	Insights into the Solubility of Poly(vinylphenothiazine) in Carbonate-Based Battery Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 12442-12453.	8.0	23
49	Dibenzo[<i>a</i> , <i>e</i>]Cyclooctatetraeneâ€Functionalized Polymers as Potential Battery Electrode Materials. Macromolecular Rapid Communications, 2021, 42, e2000725.	3.9	9
50	General Design Methodology for Organic Eutectic Electrolytes toward Highâ€Energyâ€Density Redox Flow Batteries. Advanced Materials, 2021, 33, e2008560.	21.0	25
51	<i>m</i> -Phenylenediamine as a Building Block for Polyimide Battery Cathode Materials. ACS Applied Energy Materials, 2021, 4, 4465-4472.	5.1	21
52	Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2003054.	19.5	61
53	Synthesis and Application of Naphthalene Diimide as an Organic Molecular Electrode for Asymmetric Supercapacitors with High Energy Storage. Advanced Materials Interfaces, 2021, 8, 2002161.	3.7	25
54	Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modeling. ECS Journal of Solid State Science and Technology, 2021, 10, 037004.	1.8	16

#	Article	IF	CITATIONS
55	3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochemical Energy Reviews, 2021, 4, 269-335.	25.5	108
56	Bio Based Batteries. Advanced Energy Materials, 2021, 11, 2003713.	19.5	19
57	Facilely Tunable Redox Behaviors in Donor–Node–Acceptor Polymers toward High-Performance Ambipolar Electrode Materials. Macromolecules, 2021, 54, 3469-3477.	4.8	16
58	Molecular Regulation on Carbonyl-Based Organic Cathodes: Toward High-Rate and Long-Lifespan Potassium–Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16396-16406.	8.0	26
59	Cooperative Conformational Change of a Single Organic Molecule for Ultrafast Rechargeable Batteries. ACS Energy Letters, 2021, 6, 1659-1669.	17.4	15
60	Highâ€Energyâ€Đensity Quinoneâ€Based Electrodes with [Al(OTF)] ²⁺ Storage Mechanism for Rechargeable Aqueous Aluminum Batteries. Advanced Functional Materials, 2021, 31, 2102063.	14.9	61
61	Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 19099-19108.	8.0	27
62	Battery Materials Design Essentials. Accounts of Materials Research, 2021, 2, 319-326.	11.7	24
63	Towards practical organic batteries. Nature Materials, 2021, 20, 581-583.	27.5	7
64	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-7636.	5.1	28
65	Covalent Assembly of Twoâ€Dimensional COFâ€onâ€MXene Heterostructures Enables Fast Charging Lithium Hosts. Advanced Functional Materials, 2021, 31, 2101194.	14.9	83
66	Enhancing the understanding of the redox properties of lithium-inserted anthraquinone derivatives by regulating molecular structure. Journal of Electroanalytical Chemistry, 2021, 887, 115172.	3.8	6
67	Toward Biosourced Materials for Electrochemical Energy Storage: The Case of Tannins. ACS Sustainable Chemistry and Engineering, 2021, 9, 6079-6086.	6.7	7
68	Amine-Functionalized Carbon Cloth Host for Dendrite-Free Zn Metal Anodes. ACS Applied Energy Materials, 2021, 4, 4482-4488.	5.1	22
69	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	5.8	9
70	Supramolecular Selfâ€Assembled Multiâ€Electronâ€Acceptor Organic Molecule as Highâ€Performance Cathode Material for Liâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100330.	19.5	48
71	An Ultralow Temperature Aqueous Battery with Proton Chemistry. Angewandte Chemie, 2021, 133, 14001-14005.	2.0	20
72	An Ultralow Temperature Aqueous Battery with Proton Chemistry. Angewandte Chemie - International Edition, 2021, 60, 13882-13886.	13.8	128

#	Article	IF	CITATIONS
73	Dual Electroactivity in a Covalent Organic Network with Mechanically Interlocked Pillar[5]arenes. Chemistry - A European Journal, 2021, 27, 9589-9596.	3.3	7
74	An Ultrahigh Performance Zincâ€Organic Battery using Poly(catechol) Cathode in Zn(TFSI) ₂ â€Based Concentrated Aqueous Electrolytes. Advanced Energy Materials, 2021, 11, 2100939.	19.5	93
75	Mixed electron-ion-water transfer in macromolecular radicals for metal-free aqueous batteries. Cell Reports Physical Science, 2021, 2, 100414.	5.6	20
76	Macromolecular Engineering of Poly(catechol) Cathodes towards High-Performance Aqueous Zinc-Polymer Batteries. Polymers, 2021, 13, 1673.	4.5	11
77	Electrochemical Assessment of Indigo Carmine Dye in Lithium Metal Polymer Technology. Molecules, 2021, 26, 3079.	3.8	11
78	A review of halide charge carriers for rockingâ€chair and dualâ€ion batteries. , 2021, 3, 627-653.		24
79	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	19.5	129
80	Multiâ€Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. Chemical Record, 2021, 21, 2411-2429.	5.8	11
81	Experimental and Computational Study of Lithium Salt-/Plastic Crystal-Assisted Ionogels. Arabian Journal for Science and Engineering, 2022, 47, 935-947.	3.0	3
82	In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries. Science China Materials, 2021, 64, 2938-2948.	6.3	23
83	Influences of Cations' Solvation on Charge Storage Performance in Polyimide Anodes for Aqueous Multivalent Ion Batteries. ACS Energy Letters, 2021, 6, 2638-2644.	17.4	22
84	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782.	18.8	52
85	A Copper-Based Polycarbonyl Coordination Polymer as a Cathode for Li Ion Batteries. Crystal Growth and Design, 2021, 21, 3668-3676.	3.0	14
86	Facile Synthesis of Polyphenothiazine as a Highâ€Performance pâ€Type Cathode for Rechargeable Lithium Batteries. ChemSusChem, 2021, 14, 3174-3181.	6.8	21
87	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	5.3	125
88	A novel conjugated heterotriangulene polymer for high performance organic lithium-ion battery. Dyes and Pigments, 2021, 191, 109352.	3.7	1
89	High-Rate Activation of Organic Superlithiation Anodes. ACS Applied Energy Materials, 2021, 4, 6659-6666.	5.1	13
90	An Electrically Conducting Li-Ion Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 11641-11650.	13.7	50

#	Article	IF	CITATIONS
91	A Facile Strategy for Synthesizing Organic Tannic Metal Salts as Advanced Energy Storage Anodes. ChemElectroChem, 2021, 8, 2686-2692.	3.4	6
92	Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule, 2021, 5, 1845-1859.	24.0	42
93	Bridging the Gap between Small Molecular π-Interactions and Their Effect on Phenothiazine-Based Redox Polymers in Organic Batteries. ACS Applied Energy Materials, 2021, 4, 7622-7631.	5.1	9
94	Organic Negative Electrode Materials for Metalâ€ion and Molecularâ€ion Batteries: Progress and Challenges from a Molecular Engineering Perspective. Advanced Energy Materials, 2021, 11, 2101562.	19.5	44
95	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	17.4	31
96	Structure–Performance Relationships of Covalent Organic Framework Electrode Materials in Metal-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 8061-8071.	4.6	26
97	TEMPO Containing Radical Polymonothiocarbonate Polymers with Regio―and Stereoâ€Regularities: Synthesis, Characterization, and Electrical Conductivity Studies. Angewandte Chemie - International Edition, 2021, 60, 20734-20738.	13.8	6
98	High-Performance Flexible Asymmetric Supercapacitor Paired with Indanthrone@Graphene Heterojunctions and MXene Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 41537-41544.	8.0	36
99	Synthesis of Co-Doped Tungsten Phosphide Nanoparticles Supported on Carbon Supports as High-Efficiency HER Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 12311-12322.	6.7	26
100	TEMPO Containing Radical Polymonothiocarbonate Polymers with Regio―and Stereoâ€Regularities: Synthesis, Characterization, and Electrical Conductivity Studies. Angewandte Chemie, 2021, 133, 20902-20906.	2.0	0
101	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie - International Edition, 2021, 60, 20826-20832.	13.8	77
102	High-Performance Polymeric Lithium Salt Electrode Material from Phenol–Formaldehyde Condensation. ACS Applied Materials & Interfaces, 2021, 13, 37289-37298.	8.0	15
103	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie, 2021, 133, 20994-21000.	2.0	21
104	Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahighâ€Capacity and Highâ€Rate Organic Electrodes. Advanced Materials, 2021, 33, e2104039.	21.0	18
105	Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries. Journal of Physical Chemistry C, 2021, 125, 21352-21358.	3.1	16
106	Chemical Design for Both Molecular and Morphology Optimization toward Highâ€Performance Lithiumâ€Ion Batteries Cathode Material Based on Covalent Organic Framework. Advanced Functional Materials, 2022, 32, 2107703.	14.9	47
107	Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Science China Chemistry, 2021, 64, 1888-1907.	8.2	17
108	A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. EScience, 2021, 1, 60-68.	41.6	72

#	Article	IF	CITATIONS
109	A crystalline dihydroxyanthraquinone anodic material for proton batteries. Materials Today Energy, 2021, 22, 100872.	4.7	13
110	Conjugated Porous Polydiaminophenylsulfone–Triazine Polymer—A High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 43002-43010.	8.0	34
111	Electrode Architecture Design to Promote Chargeâ€Transport Kinetics in Highâ€Loading and Highâ€Energy Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2100518.	8.6	27
112	Conjugated Ladder-Type Polymer with Hexaazatriphenylene Units as a Cathode Material for Lithium, Sodium, and Potassium Batteries. ACS Applied Energy Materials, 2021, 4, 10423-10427.	5.1	11
113	Quaternary nitrogen redox centers for battery materials. Current Opinion in Electrochemistry, 2021, 29, 100745.	4.8	10
114	One-Step Synthesis of a Polymer Cathode Material Containing Phenoxazine with High Performance for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11787-11792.	5.1	5
115	Enhanced lithium storage performance guided by intricate-cavity hollow cobalt phosphide. Applied Surface Science, 2021, 563, 150395.	6.1	7
116	Ultra-Stable, Ultra-Long-Lifespan and Ultra-High-Rate Na-ion Batteries Using Small-Molecule Organic Cathodes. Energy Storage Materials, 2021, 41, 738-747.	18.0	40
117	1-Hydroxyethylidene-1, 1-diphosphonic acid: A multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Materials, 2021, 42, 493-501.	18.0	23
118	Pseudocapacitive and battery-type organic polymer electrodes for a 1.9ÂV hybrid supercapacitor with a record concentration of ammonium acetate. Journal of Power Sources, 2021, 511, 230434.	7.8	34
119	Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 446-453.	9.4	36
120	Radical polymer grafted graphene for high-performance Li+/Na+ organic cathodes. Journal of Power Sources, 2021, 511, 230363.	7.8	12
121	Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal, 2021, 160, 110770.	5.4	32
122	Organic batteries based on just redox polymers. Progress in Polymer Science, 2021, 122, 101449.	24.7	66
123	Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Materials, 2021, 43, 120-129.	18.0	26
124	Understanding cathode materials in aqueous zinc–organic batteries. Current Opinion in Electrochemistry, 2021, 30, 100799.	4.8	18
125	The improved cycling stability and rate capability of Nb-doped NaV3O8 cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 890, 161885.	5.5	11
126	Assembling organic–inorganic building blocks for high-capacity electrode design. Materials Horizons, 2021, 8, 1825-1834.	12.2	1

#	Article	IF	CITATIONS
127	A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries. Chemical Communications, 2021, 57, 2360-2363.	4.1	12
128	Structure–property relationships in organic battery anode materials: exploring redox reactions in crystalline Na- and Li-benzene diacrylate using combined crystallography and density functional theory calculations. Materials Advances, 2021, 2, 1024-1034.	5.4	7
129	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	21.0	12
130	Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 11530-11536.	10.3	10
131	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	5.9	4
132	An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2700-2705.	10.3	58
133	In Situ Polymerized Conjugated Poly(pyreneâ€4,5,9,10â€ŧetraone)/Carbon Nanotubes Composites for Highâ€₽erformance Cathode of Sodium Batteries. Advanced Energy Materials, 2021, 11, 2002917.	19.5	69
134	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	5.6	23
135	Understanding the Synergistic Effects and Structural Evolution of Co(OH) ₂ and Co ₃ O ₄ toward Boosting Electrochemical Charge Storage. Advanced Functional Materials, 2022, 32, 2108644.	14.9	102
136	2D Molecular Sheets of Hydrogenâ€Bonded Organic Frameworks for Ultrastable Sodiumâ€Ion Storage. Advanced Materials, 2021, 33, e2106079.	21.0	55
137	Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Advanced Materials, 2022, 34, e2104150.	21.0	69
138	Pillararene/Calixarene-based systems for battery and supercapacitor applications. EScience, 2021, 1, 28-43.	41.6	97
139	Recent Progress of Hexaazatriphenylene-based Electrode Materials for Rechargeable Batteries. Catalysis Today, 2022, 400-401, 102-114.	4.4	12
140	Biredoxâ€lonic Anthraquinoneâ€Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Liâ€Organic Batteries. Advanced Science, 2022, 9, e2103632.	11.2	8
141	Investigation of Capacity Increase in Schiff-Base Networks as the Organic Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12882-12891.	5.1	16
142	Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27361-27369.	10.3	7
143	Cu–ion induced self-polymerization of Cu phthalocyanine to prepare low-cost organic cathode materials for Li-ion batteries with ultra-high voltage and ultra-fast rate capability. Journal of Materials Chemistry A, 2021, 9, 24915-24921.	10.3	5
144	Diluted Ionic Liquid Electrolyteâ€Assisted Stable Cycling of Small Molecular Organics. ChemElectroChem, 2021, 8, 4625-4632.	3.4	4

# 145	ARTICLE Structure-related electrochemical behavior of sulfur-rich polymer cathode with solid-solid conversion in lithium-sulfur batteries. Energy Storage Materials, 2022, 45, 1144-1152.	IF 18.0	Citations 30
146	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	47.7	223
147	Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochimica Acta, 2022, 401, 139525.	5.2	5
148	Phase transformation induced benzene rings activation in a metal–organic framework to boost sodium storage performance. Chemical Engineering Journal, 2022, 433, 133508.	12.7	2
149	Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage. Sustainable Chemistry, 2021, 2, 610-621.	4.7	9
150	Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications. Chinese Journal of Organic Chemistry, 2021, 41, 4167.	1.3	0
152	Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries. Electrochimica Acta, 2022, 404, 139620.	5.2	21
153	Waterâ€inâ€Polymer Salt Electrolyte for Slow Selfâ€Discharge in Organic Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	21
154	30 Li ⁺ â€Accommodating Covalent Organic Frameworks as Ultralong Cyclable Highâ€Capacity Liâ€Ion Battery Electrodes. Advanced Functional Materials, 2022, 32, 2108798.	14.9	59
155	Rapid Microwaveâ€Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2101016.	8.6	7
156	Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wideâ€Temperature Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2107226.	21.0	50
157	Polypyrrole as an ultrafast organic cathode for dual-ion batteries. EScience, 2021, 1, 186-193.	41.6	32
158	Implications of the BATTERY 2030+ Alâ€Assisted Toolkit on Future Lowâ€TRL Battery Discoveries and Chemistries. Advanced Energy Materials, 2022, 12, 2102698.	19.5	20
159	Advances of Organosulfur Materials for Rechargeable Metal Batteries. Advanced Science, 2022, 9, e2103989.	11.2	36
160	Regulating Steric Hindrance in Redoxâ€Active Porous Organic Frameworks Achieves Enhanced Sodium Storage Performance. Small, 2022, 18, e2105927.	10.0	10
161	A high-performance organic cathode customized for sulfide-based all-solid-state batteries. Energy Storage Materials, 2022, 45, 680-686.	18.0	13
162	Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C ₆₀ @porous organic cage cathode. Energy and Environmental Science, 2022, 15, 780-785.	30.8	37
163	Black Charcoal for Green and Scalable Wooden Electrodes for Supercapabatteries. Energy Technology, 2022, 10, .	3.8	1

#	Article	IF	CITATIONS
164	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2979-2988.	8.0	46
165	Regulating the radical intermediates by conjugated units in covalent organic frameworks for optimized lithium ion storage. Journal of Energy Chemistry, 2022, 69, 428-433.	12.9	29
166	A High-Voltage Organic Framework for High-Performance Na- and K-Ion Batteries. ACS Energy Letters, 2022, 7, 668-674.	17.4	34
167	Hydrated eutectic electrolytes for high-performance Mg-ion batteries. Energy and Environmental Science, 2022, 15, 1282-1292.	30.8	56
168	Performance Predictors for Organic Cathodes of Lithium-Ion Battery. ACS Applied Energy Materials, 2022, 5, 2074-2082.	5.1	8
169	Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. EScience, 2022, 2, 110-115.	41.6	58
170	A highly stable 1.3ÂV organic cathode for aqueous zinc batteries designed in-situ by solid-state electrooxidation. Energy Storage Materials, 2022, 46, 129-137.	18.0	11
171	Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life. Energy Storage Materials, 2022, 46, 252-258.	18.0	36
172	An All-Organic battery with 2.8ÂV output voltage. Chemical Engineering Journal, 2022, 434, 134651.	12.7	8
173	Green electrolyte-based organic electronic devices. , 2022, , 281-295.		5
174	Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chemical Society Reviews, 2022, 51, 1511-1528.	38.1	113
175	Interfacial Self-assembly of Organics/MXene Hybrid Cathodes Toward High-Rate-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 8036-8047.	8.0	11
176	Effect of zinc-based active sites on porous carbon and electrochemical properties in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 905, 164182.	5.5	5
177	Dual Rate-Modulation Approach for the Preparation of Crystalline Covalent Triazine Frameworks Displaying Efficient Sodium Storage. ACS Macro Letters, 2022, 11, 60-65.	4.8	12
178	Benchmarks of the density functional tight-binding method for redox, protonation and electronic properties of quinones. Physical Chemistry Chemical Physics, 2022, 24, 6742-6756.	2.8	0
179	Emerging conjugated radical polymer cathodes with ultra-long cycle life for an entire polymer rechargeable battery. Journal of Materials Chemistry A, 2022, 10, 10373-10382.	10.3	8
180	Gas-phase deposition of di- and tetra-lithium salts of 2,5-dihydroxyterephthalic acid. Dalton Transactions, 2022, 51, 4246-4251.	3.3	1
181	Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Advances, 2022,		

#	Article	IF	CITATIONS
182	Conjugated Copolymer Design in Phenothiazine-Based Battery Materials Enables High Mass Loading Electrodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 3236-3244.	6.7	15
183	Analysis of Electrode Configuration Effects on Mass Transfer and Organic Redox Flow Battery Performance. Industrial & Engineering Chemistry Research, 2022, 61, 2915-2925.	3.7	30
184	Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redoxâ€Active Sites for Highâ€Performance Aluminium Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
185	An Ultrafast, Durable, and Highâ€Loading Polymer Anode for Aqueous Zincâ€Ion Batteries and Supercapacitors. Advanced Materials, 2022, 34, e2200077.	21.0	60
186	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
187	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€ S olid Protonâ€ I on Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
188	Graphene and Polyethyleneimine Bilayer Wrapping onto Quinone Molecular Crystal Cathode Materials for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4707-4711.	5.1	6
189	Experimentally Validated Threeâ€Dimensional Modeling of Organicâ€Based Sodiumâ€Ion Battery Electrode Manufacturing. Batteries and Supercaps, 2022, 5, .	4.7	11
190	Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redoxâ€Active Sites for Highâ€Performance Aluminium Organic Batteries. Angewandte Chemie, 2022, 134, .	2.0	4
191	Challenges and Perspectives of Organic Multivalent Metalâ€ion Batteries. Advanced Materials, 2022, 34, e2200662.	21.0	46
192	Practically Accessible Allâ€Solidâ€State Batteries Enabled by Organosulfide Cathodes and Sulfide Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	15
193	Key Features of TEMPO-Containing Polymers for Energy Storage and Catalytic Systems. Energies, 2022, 15, 2699.	3.1	8
194	Redoxâ€Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. ChemPlusChem, 2022, , e202200013.	2.8	5
195	Aqueous zinc batteries: Design principles toward organic cathodes for grid applications. IScience, 2022, 25, 104204.	4.1	20
197	Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries. Journal of Power Sources, 2022, 533, 231383.	7.8	5
198	Polyimide as a durable cathode for all-solid-state Li(Na)â^'organic batteries with boosted cell-level energy density. Nano Energy, 2022, 96, 107130.	16.0	7
199	Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures. Journal of Colloid and Interface Science, 2022, 619, 123-131.	9.4	14
200	Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 826-833.	8.0	4

	CITATION R	EPORT	
#	Article	IF	CITATIONS
201	A Symmetric Allâ \in Organic Proton Battery in Mild Electrolyte. Angewandte Chemie, 2022, 134, .	2.0	29
202	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie - International Edition, 2022, 61, e202115180.	13.8	76
203	Graphene Acid for Lithiumâ€ion Batteries—Carboxylation Boosts Storage Capacity in Graphene. Advanced Energy Materials, 2022, 12, .	19.5	25
204	Poly(quinone-thiourea) with Improved Auxiliary Coordination Zn ²⁺ Insertion/Extraction Positive Performance for Aqueous Zinc Ion Battery Cathodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 213-223.	6.7	24
205	Interfaces and Interphases in Ca and Mg Batteries. Advanced Materials Interfaces, 2022, 9, .	3.7	22
206	Mechanistic insights into the pseudocapacitive performance of bronze-type vanadium dioxide with mono/multi-valent cations intercalation. Journal of Materials Chemistry A, 2022, 10, 10439-10451.	10.3	14
207	Thermally encapsulated phenothiazine@MWCNT cathode for aqueous zinc ion battery. Materials Advances, 2022, 3, 4310-4321.	5.4	7
208	Superior performance enabled by supramolecular interactions in metalâ^'organic cathode: the power of weak bonds. Journal of Materials Chemistry A, 2022, 10, 19671-19679.	10.3	6
210	Ultrahigh Energy Density Liâ€Organic Primary Batteries. Energy and Environmental Materials, 2022, 5, 1010-1011.	12.8	5
211	Tetraphenolphthalein Cobalt(II) Phthalocyanine Polymer Modified with Multiwalled Carbon Nanotubes as an Efficient Catalyst for the Oxygen Reduction Reaction. ACS Omega, 2022, 7, 14291-14304.	3.5	15
212	New insights into the electrochemical activity of maleic acid in lithium ion battery. Chemical Engineering Journal, 2022, 443, 136490.	12.7	3
213	Electrochemistry in Magnetic Fields. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
214	Ethynyl Functionalized Porphyrin Complex as a New Cathode for Organic Alkali Metal Batteries with Excellent Cycling Stability. SSRN Electronic Journal, 0, , .	0.4	0
215	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	13.7	23
216	pâ€Type Redoxâ€Active Organic Electrode Materials for Nextâ€Generation Rechargeable Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	35
217	Electrochemistry in Magnetic Fields. Angewandte Chemie, 2022, 134, .	2.0	6
218	Electrochemical swelling induced high material utilization of porous polymers in magnesium electrolytes. Materials Today, 2022, 55, 29-36.	14.2	13
219	Influence of Polymorphism on the Electrochemical Behavior of Dilithium (2,3-Dilithium-oxy)-terephthalate vs. Li. Inorganics, 2022, 10, 62.	2.7	2

#	Article	IF	CITATIONS
220	Recent Progress on Organic Electrode Materials for Multivalent (Zn, Al, Mg, Ca) Secondary Batteries. Batteries and Supercaps, 2022, 5, .	4.7	23
221	Bi-functional poly(vinylidene difluoride) coated Al anodes for highly rechargeable aqueous Al-ion batteries. Electrochimica Acta, 2022, 421, 140495.	5.2	9
222	Adjusting morphological properties of organic electrode material for efficient Sodium-ion batteries by isomers strategy. Journal of Colloid and Interface Science, 2022, 623, 637-645.	9.4	5
223	Organic redox polymers as electrochemical energy materials. Green Chemistry, 2022, 24, 4650-4679.	9.0	18
224	Intermolecular/intramolecular interactions for high-performance organic batteries. Scientia Sinica Chimica, 2022, 52, 1883-1895.	0.4	1
225	Aging effect of Catechol Redox Polymer Nanoparticles for Hybrid Supercapacitors. Batteries and Supercaps, 0, , .	4.7	1
226	lon storage performance of a polymer for mono-, di- and tri-valent metal ions in non-aqueous electrolytes. Chemical Communications, 2022, 58, 7821-7824.	4.1	3
227	Design Rationale and Device Configuration of Lithiumâ€ŀon Capacitors. Advanced Energy Materials, 2022, 12, .	19.5	40
228	Improving strategies for the molecular structure of organic anode/cathode materials in potassiumâ€ion batteries. EcoMat, 2022, 4, .	11.9	9
229	An Air-Rechargeable Zn/Organic Battery with Proton Storage. Journal of the American Chemical Society, 2022, 144, 10301-10308.	13.7	58
230	Nanotechnology Research for Alternative Renewable Energy. RSC Nanoscience and Nanotechnology, 2022, , 277-298.	0.2	0
231	Constructing Extended π-Conjugated Molecules with <i>o</i> -Quinone Groups as High-Energy Organic Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 27994-28003.	8.0	20
233	Insight on Cathodes Chemistry for Aqueous Zincâ€ion Batteries: From Reaction Mechanisms, Structural Engineering, and Modification Strategies. Small, 2022, 18, .	10.0	30
234	Fundamental insight into the interaction between a lithium salt and an inorganic filler for ion mobility using a synergic theoretical-experimental approach. Journal of Colloid and Interface Science, 2022, 625, 734-742.	9.4	3
235	Deciphering the Thermal and Electrochemical Behaviors of Dual Redox-Active Iron Croconate Violet Coordination Complexes. Inorganic Chemistry, 2022, 61, 9308-9317.	4.0	3
236	Nâ€Substituted Carbazole Derivate Salts as Stable Organic Electrodes for Anion Insertion. ChemNanoMat, 2022, 8, .	2.8	2
237	Functional group contributions for azo derivatives as anode materials for KIBs: A first-principles study. Materials Chemistry and Physics, 2022, 289, 126430.	4.0	1
238	Recent advances in developing organic positive electrode materials for rechargeable aluminum-ion batteries. Energy Storage Materials, 2022, 51, 63-79.	18.0	29

#	Article	IF	CITATIONS
239	A nitrogen- and carbonyl-rich conjugated small-molecule organic cathode for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 16249-16257.	10.3	6
240	A star-shaped polyimide covalent organic framework for high-voltage lithium-ion batteries. Materials Chemistry Frontiers, 2022, 6, 2545-2550.	5.9	23
241	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	1.8	5
242	Conducting polymers with redox active pendant groups: their application progress as organic electrode materials for rechargeable batteries. Journal of Materials Chemistry C, 2022, 10, 13570-13589.	5.5	5
243	Vanadium Oxide with Elevated Interlayers for Durable Aqueous Hybrid Li ⁺ /Zn ²⁺ Batteries. ACS Applied Energy Materials, 2022, 5, 9070-9078.	5.1	10
244	Preparation of D-A-D conjugated polymers based on [1,2,5]thiadiazolo[3,4-c]pyridine and thiophene derivatives and their electrochemical properties as anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129707.	4.7	8
245	Bandâ€Gap Tuned Dilithium Terephthalate from Environmentally Hazardous Material for Sustainable Lithium Storage Systems with DFT Modelling. ChemistrySelect, 2022, 7, .	1.5	3
246	Super Flexible Cathode Material with 3D Crossâ€Linking System Based on Polyvinyl Alcohol Hydrogel for Boosting Aqueous Zinc Ion Batteries. ChemElectroChem, 0, , .	3.4	0
247	Nanostructured Poly(hydroquinonyl-benzoquinonyl sulfide)/Multiwalled Carbon Nanotube Composite Cathodes: Improved Synthesis and Performance for Rechargeable Li and Mg Organic Batteries. Chemistry of Materials, 2022, 34, 6378-6388.	6.7	3
248	Micro-nano morphology regulation via electrospinning strategy enables high-performance high-voltage polymer cathodes for lithium-organic batteries. Journal of Power Sources, 2022, 542, 231824.	7.8	3
249	Boosting the energy density of organic cathode materials by designing planarized conjugated p-type polymer with multi-redox-active centers. Chemical Engineering Journal, 2022, 450, 137920.	12.7	8
250	Selfâ€Discharge in Batteries Based on Lignin and Waterâ€inâ€Polymer Salt Electrolyte. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	4
251	Iterative Synthesis of Contorted Macromolecular Ladders for Fast-Charging and Long-Life Lithium Batteries. Journal of the American Chemical Society, 2022, 144, 13973-13980.	13.7	25
252	A universal small-molecule organic cathode for high-performance Li/Na/K-ion batteries. Energy Storage Materials, 2022, 52, 61-68.	18.0	25
253	A Monocrystalline Coordination Polymer with Multiple Redox Centers as a Highâ€Performance Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	0
254	Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration, 2022, 2, .	11.0	20
255	Symmetric sodium-ion batteries—materials, mechanisms, and prospects. Materials Today Energy, 2022, 29, 101115.	4.7	10
256	Biosourced quinones for high-performance environmentally benign electrochemical capacitors via interface engineering. Communications Chemistry, 2022, 5, .	4.5	12

# 257	ARTICLE Ethynyl functionalized porphyrin complex as a new cathode for organic alkali metal batteries with	IF 12.7	Citations
258	excellent cycling stability. Chemical Engineering Journal, 2023, 451, 138734. Advances in Microfluidic Technologies for Energy Storage and Release Systems. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	2
259	Design of bipolar polymer electrodes for symmetric Li-dual-ion batteries. Chemical Engineering Journal, 2023, 451, 138773.	12.7	14
260	Construction of Fluorine―and Piperazineâ€Engineered Covalent Triazine Frameworks Towards Enhanced Dual―on Positive Electrode Performance. ChemSusChem, 2023, 16, .	6.8	5
261	In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals. Macromolecules, 2022, 55, 7294-7302.	4.8	2
262	A Monocrystalline Coordination Polymer with Multiple Redox Centers as a Highâ€Performance Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
263	Na ion batteries: An India centric review. Heliyon, 2022, 8, e10013.	3.2	3
264	The Mechanism of Modification of Poly(anthraquinonylsulfide) Organic Electrode Materials. ChemistrySelect, 2022, 7, .	1.5	1
265	Novel organic anode based on o-benzene active material for high-performance lithium ion batteries. Journal of Power Sources, 2022, 546, 231992.	7.8	7
266	In-situ induced self-solidification and activation of ultra-high energy density organic cathode. Energy Storage Materials, 2022, 52, 465-472.	18.0	5
267	Pyrazine and crown ethers: functional covalent organic polymers for (solar-assisted) high capacity and rate performance lithium-organic battery. Materials Today Chemistry, 2022, 26, 101082.	3.5	3
268	Towards Highâ€Performance Aqueous Zinc Batteries via a Semi onductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie, 2022, 134, .	2.0	2
269	A versatile LiTFSI-like anchor for constructing robust interfacial layers with tailored structures for silicon anodes. Energy Storage Materials, 2022, 52, 646-654.	18.0	17
270	Synthesis of stack plate covalent organic framework nanotubes using a self-assembled acid as a soft template. Chemical Communications, 2022, 58, 9148-9151.	4.1	7
271	Molecular structure design of planar zwitterionic polymer electrode materials for all-organic symmetric batteries. Chemical Science, 2022, 13, 11614-11622.	7.4	6
272	Electrochemical deoxygenative reduction of ketones. Chemical Communications, 2022, 58, 11155-11158.	4.1	9
273	Caffeine as an Energy Storage Material for Next-Generation Lithium Batteries. SSRN Electronic Journal, O, , .	0.4	0
274	Synthetic Control of Electronic Property and Porosity in Anthraquinone-Based Conjugated Polymer Cathodes for High-Rate and Long-Cycle-Life Na–Organic Batteries. ACS Nano, 2022, 16, 14590-14599.	14.6	15

#	Article	IF	CITATIONS
275	Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. Electrochemical Energy Reviews, 2022, 5, .	25.5	29
276	Organic batteries for a greener rechargeable world. Nature Reviews Materials, 2023, 8, 54-70.	48.7	109
277	Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 40784-40792.	8.0	11
278	Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44330-44337.	8.0	14
279	The key role of molecular aggregation in rechargeable organic cathodes. Matter, 2022, 5, 4467-4479.	10.0	7
280	Towards Highâ€Performance Aqueous Zinc Batteries via a Semiâ€Conductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
281	Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage. Journal of the American Chemical Society, 2022, 144, 17198-17208.	13.7	23
282	Building oxygen-vacancy in Co3O4â^'x nanocrystal towards ultrahigh pseudocapacitance. Journal of Alloys and Compounds, 2022, 929, 167299.	5.5	1
283	Designing and tuning the components of random terpolymers toward Ampere-hour-scale organic lithium batteries. Journal of Materials Chemistry A, 2022, 10, 23562-23569.	10.3	1
284	Room Temperature Halideâ€Eutectic Solid Electrolytes with Viscous Feature and Ultrahigh Ionic Conductivity. Advanced Science, 2022, 9, .	11.2	14
285	Coupling influences of electrode and flow field geometry on species transport behavior and battery performance for organic redox flow battery. International Journal of Low-Carbon Technologies, 2022, 17, 1341-1352.	2.6	2
286	Unique Mechanisms of Ion Storage in Polyaniline Electrodes for Pseudocapacitive Energy Storage Devices Unraveled by EQCM-D Analysis. ACS Applied Materials & Interfaces, 2022, 14, 47066-47074.	8.0	3
287	Organicsâ€MXene Composites as Electrode Materials for Energy Storage. Batteries and Supercaps, 2023, 6, .	4.7	12
288	Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries. Molecules, 2022, 27, 6805.	3.8	1
289	A Fastâ€Charging and Highâ€Temperature Allâ€Organic Rechargeable Potassium Battery. Advanced Science, 2022, 9, .	11.2	8
290	Fe-based frameworks in situ derived 3D Ni-Co-Fe nanocage TMO anode for LIB batteries. Ionics, 2022, 28, 5489-5498.	2.4	1
291	Cyclohexanehexone-assisted one-step ball-milling of graphite to graphene composites as cathodes for lithium-ion batteries. Electrochimica Acta, 2022, 436, 141449.	5.2	1
292	Redox of anionic and cationic radical intermediates in a bipolar polyimide COF for high-performance dual-ion organic batteries. Chemical Engineering Journal, 2023, 454, 139877.	12.7	14

#	ARTICLE	IF	CITATIONS
293	Ultra-long cycle life organic-sodium batteries enabled by thiophene-based porphyrin in-situ electropolymerization. Chemical Engineering Journal, 2023, 453, 139951.	12.7	5
294	Bis-imidazole ring-containing bipolar organic small molecule cathodes for high-voltage and ultrastable lithium-ion batteries. Journal of Materials Chemistry A, 2022, 11, 108-117.	10.3	8
295	Evaluation and degradation mechanism of phthalimide derivatives as anolytes for non-aqueous organic static batteries. New Journal of Chemistry, 2022, 46, 22593-22601.	2.8	1
296	Employing cationic kraft lignin as electrolyte additive to enhance the electrochemical performance of rechargeable aqueous zinc-ion battery. Fuel, 2023, 333, 126450.	6.4	5
297	Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. Electrochemical Energy Reviews, 2022, 5, .	25.5	22
298	Phenothiazineâ€Based Donor–Acceptor Polymers as Multifunctional Materials for Charge Storage and Solar Energy Conversion. Macromolecular Rapid Communications, 2024, 45, .	3.9	5
299	Designing modern aqueous batteries. Nature Reviews Materials, 2023, 8, 109-122.	48.7	153
300	Highâ€resolution mass spectroscopy for revealing the charge storage mechanism in batteries: Oxamide materials as an example. Energy and Environmental Materials, 0, , .	12.8	1
301	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe3N Sponge. Angewandte Chemie, 0, , .	2.0	0
302	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe ₃ N Sponge. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
303	Imine-linked triazine-based conjugated microporous polymers/carbon nanotube composites as organic anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130496.	4.7	2
304	Flexible ultracapacitor device fabricated with an organic electrode material- naphthalene diimide nitrile/reduced graphene oxide. Journal of Energy Storage, 2022, 56, 106036.	8.1	6
305	Crystalline Anions Based on Classical Nâ€Heterocyclic Carbenes. Angewandte Chemie, 0, , .	2.0	0
306	Crystalline Anions Based on Classical Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
307	Conjugated polycopper phthalocyanine as the anode-active material with high specific capacity for lithium-organic batteries. Materials Letters, 2023, 333, 133682.	2.6	1
308	Donor–Node–Acceptor Ambipolar Conducting Polymer Electrode Materials for Wide-Voltage and High-Stability Supercapacitors. ACS Sustainable Chemistry and Engineering, 2022, 10, 15978-15986.	6.7	5
309	Molecular Engineering of Metalloporphyrins for Highâ€Performance Energy Storage: Central Metal Matters. ChemSusChem, 2023, 16, .	6.8	5
310	Rational Integration of Carbon Nanotubes into Chainâ€Engineered Bipolar Polyimides as Coreâ€5hell Heterostructured Electrodes for Polymerâ€Based Symmetrical Full Batteries. Advanced Functional Materials, 2023, 33, .	14.9	4

#	Article	IF	CITATIONS
311	Phenoxazine Polymerâ€based pâ€ŧype Positive Electrode for Aluminumâ€ion Batteries with Ultraâ€long Cycle Life. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
312	Synthesis of D-A-Type Polymers Containing Thieno[3,2-b]thiophene Unit, Their Composites with Carbon, and Lithium Storage Performance as Anode Materials. Coatings, 2022, 12, 1912.	2.6	2
313	Aqueous Electrolyte Asymmetric Supercapacitors Based on the 5-Hydroxyindole Molecule Electrode and MXene with Efficient Energy Storage. ACS Applied Energy Materials, 2023, 6, 68-78.	5.1	7
314	Isomeric Triptycene Triquinones as Universal Cathode Materials for High Energy Alkali Metal Batteries. Batteries and Supercaps, 2023, 6, .	4.7	1
315	Evaluating the Polymer Backbone – Vinylene versus Styrene – of Anisylâ€substituted Phenothiazines as Battery Electrode Materials. Batteries and Supercaps, 2023, 6, .	4.7	2
316	Interwoven Poly(Anthraquinonyl Sulfide) Nanosheetsâ€Decorated Carbon Nanotubes as Core–Sheath Heteroarchitectured Cathodes for Polymerâ€Based Asymmetrical Full Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	0
317	Electrical Stimuli-Responsive Decomposition of Layer-by-Layer Films Composed of Polycations and TEMPO-Modified Poly(acrylic acid). Polymers, 2022, 14, 5349.	4.5	1
318	Phenoxazine Polymerâ€based pâ€type Positive Electrode for Aluminumâ€ion Batteries with Ultraâ€long Cycle Life. Angewandte Chemie, 2023, 135, .	2.0	Ο
319	Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. Materials, 2023, 16, 177.	2.9	11
320	Folic acid-based supramolecules for enhanced stability in potassium ion batteries. Chinese Chemical Letters, 2023, 34, 108095.	9.0	0
321	βâ€Ketoenamineâ€Linked Covalent Organic Framework with Co Intercalation: Improved Lithiumâ€Storage Properties and Mechanism for Highâ€Performance Lithiumâ€Organic Batteries. Batteries and Supercaps, 2023, 6, .	4.7	39
322	Azo-functionalised metal–organic framework for charge storage in sodium-ion batteries. Chemical Communications, 2023, 59, 1321-1324.	4.1	2
323	High-capacity proton battery based on π-conjugated N-containing organic compound. Electrochimica Acta, 2023, 442, 141870.	5.2	4
324	Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries. Journal of the American Chemical Society, 2023, 145, 1564-1571.	13.7	23
325	Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Materials, 2023, 56, 267-299.	18.0	41
326	Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries. Materials Horizons, 2023, 10, 967-976.	12.2	6
327	A metal-free all-organic ammonium-ion battery with low-temperature applications. Journal of Materials Chemistry A, 2023, 11, 2814-2825.	10.3	4
328	Caffeine as an energy storage material for next-generation lithium batteries. Energy Storage Materials, 2023, 56, 13-24.	18.0	2

#	Article	IF	CITATIONS
329	Noncovalent interactions engineering construct the fast-kinetics organic cathode for room/low-temperature aqueous zinc-ion battery. Chemical Engineering Journal, 2023, 458, 141336.	12.7	12
330	Solidâ€Electrolyte Interphase for Ultraâ€5table Aqueous Dualâ€Ion Storage. Advanced Energy Materials, 2023, 13, .	19.5	3
331	Supramolecule-Based Excluded-Volume Electrolytes and Conjugated Sulfonamide Cathodes for High-Voltage and Long-Cycling Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2023, 8, 762-771.	17.4	17
332	Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chemical Communications, 2023, 59, 3175-3192.	4.1	9
333	An Ultrafast, High‣oading, and Durable Poly(pâ€aminoazobenzene)/Reduced Graphene Oxide Composite Electrode for Supercapacitors. Advanced Functional Materials, 2023, 33, .	14.9	6
334	Solidâ€State Batteries Based on Organic Cathode Materials. Batteries and Supercaps, 2023, 6, .	4.7	3
335	Immobilizing Poly(vinylphenothiazine) in Ketjenblackâ€Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material. Advanced Functional Materials, 2023, 33, .	14.9	4
336	The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nature Materials, 2023, 22, 495-502.	27.5	17
337	Anionâ€Dependent Redox Chemistry of pâ€Type Poly(vinyldimethylphenazine) Cathode Materials. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
338	Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. Journal of Power Sources, 2023, 567, 232963.	7.8	2
339	Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method. Energy, 2023, 271, 127100.	8.8	33
340	Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy, 2023, 110, 108364.	16.0	10
341	Porous V2O3/C composite electrodes derived from V-MOF with advanced performance for Zn-ion battery. Materials Letters, 2023, 341, 134232.	2.6	0
342	A case study on storage and capacity fading mechanism of poly(perylene diimides) cathode in aqueous zinc ion battery. Electrochimica Acta, 2023, 453, 142321.	5.2	6
343	Building stable small molecule imide cathodes toward ultralong-life aqueous zinc-organic batteries. Chemical Engineering Journal, 2023, 465, 142824.	12.7	6
344	Thionin as a Bipolar Organic Cathode Material for Aqueous Rechargeable Zinc Batteries. Batteries and Supercaps, 2023, 6, .	4.7	3
345	Predicting the Solubility of Organic Energy Storage Materials Based on Functional Group Identity and Substitution Pattern. Journal of Physical Chemistry Letters, 2023, 14, 1318-1325.	4.6	3
346	Mixed Ionic–Electronic Conduction Increases the Rate Capability of Polynaphthalenediimide for Energy Storage. ACS Polymers Au, 2023, 3, 267-275.	4.1	3

#	Article	IF	CITATIONS
347	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	47.7	57
348	Validating the reversible redox of alkali-ion disulfonyl-methanide as organic positive electrode materials. Materials Today Chemistry, 2023, 28, 101379.	3.5	2
349	Cathode Electrolyte Interphase (CEI) Endows Mo ₆ S ₈ with Fast Interfacial Magnesiumâ€lon Transfer Kinetics. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
350	Cathode Electrolyte Interphase (CEI) Endows Mo ₆ S ₈ with Fast Interfacial Magnesiumâ€lon Transfer Kinetics. Angewandte Chemie, 2023, 135, .	2.0	4
351	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	47.7	40
352	Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chemical Reviews, 2023, 123, 1262-1326.	47.7	45
353	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	18.8	9
354	Covalent organic frameworks as electrode materials for rechargeable metalâ€ion batteries. , 2023, 2, 231-259.		14
355	Effects of molecular structure and functional groups on the performance of carbonyl organic compounds as cathodes for aluminum batteries. Chemical Engineering Journal, 2023, 461, 142045.	12.7	2
356	High Active Material Loading in Organic Electrodes Enabled by an inâ€situ Electropolymerized ï€â€€onjugated Tetrakis (4â€Aminophenyl) Porphyrin. Batteries and Supercaps, 2023, 6, .	4.7	3
357	Superhydrophilic Allâ€pHâ€Adaptable Redox Conjugated Porous Polymers as Universal and Ultrarobust Ion Hosts for Diverse Energy Storage with Chemical Selfâ€Chargeability. Advanced Functional Materials, 2023, 33, .	14.9	1
358	Multiple stable redox states and tunable ground states <i>via</i> the marriage of viologens and Chichibabin's hydrocarbon. Chemical Science, 2023, 14, 3548-3553.	7.4	5
359	A critical review on the properties and energy storage applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes. Journal of Power Sources, 2023, 564, 232870.	7.8	16
360	Stabilizing Redoxâ€Active Hexaazatriphenylene in a 2D Conductive Metal–Organic Framework for Improved Lithium Storage Performance. Advanced Functional Materials, 2023, 33, .	14.9	14
361	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free anodes. Chinese Chemical Letters, 2023, 34, 108307.	9.0	9
362	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	4.5	12
363	Fusing Thiadiazole and Terephthalate: A Concept to Promote the Electrochemical Performance of Conjugated Dicarboxylates. ChemSusChem, 2023, 16, .	6.8	2
364	Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors. Nature Communications, 2023, 14, .	12.8	8

#	Article	IF	CITATIONS
365	Mass Transfer Behaviors and Battery Performance of a Ferrocyanide-Based Organic Redox Flow Battery with Different Electrode Shapes. Energies, 2023, 16, 2846.	3.1	1
366	A bipolar porphyrin molecule for stable dual-ion symmetric batteries with high potential. Chemical Communications, 2023, 59, 4962-4965.	4.1	1
367	A Recyclable and Scalable Highâ \in Capacity Organic Battery. Angewandte Chemie, 2023, 135, .	2.0	1
368	Metal Phosphates/Phosphonates for Supercapacitor Applications. Engineering Materials, 2023, , 245-266.	0.6	0
369	A Recyclable and Scalable High apacity Organic Battery. Angewandte Chemie - International Edition, 2023, 62, .	13.8	22
370	A self-charging salt water battery for antitumor therapy. Science Advances, 2023, 9, .	10.3	13
371	Organic Electrode Materials and Engineering for Electrochemical Energy Storage. Batteries and Supercaps, 2023, 6, .	4.7	4
372	All-organic aqueous batteries consisting of quinone-hydroquinone derivatives with proton/aluminum-ion co-insertion mechanism. Applied Surface Science, 2023, 625, 157174.	6.1	3
373	Diviologen-Functionalized Poly(arylene ether ketone)s with Improved Stability and Rate Performance for Polymer Batteries. ACS Applied Energy Materials, 2023, 6, 4475-4486.	5.1	1
374	Electrochemical deoxygenative arylation of aldehydes and ketones. Chemical Communications, 2023, 59, 5587-5590.	4.1	2
375	Anionâ€Dependent Redox Chemistry of pâ€īype Poly(vinyldimethylphenazine) Cathode Materials. Angewandte Chemie, 2023, 135, .	2.0	0
376	Reconstruction of helmholtz plane to stabilize zinc metal anode/electrolyte interface. Energy Storage Materials, 2023, 59, 102774.	18.0	12
377	High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics. Joule, 2023, 7, 986-1002.	24.0	8
378	Modulating Entropic Driving Forces to Promote High Lithium Mobility in Solid Organic Electrolytes. Chemistry of Materials, 0, , .	6.7	1
379	Lithium Ferrocyanide Catholyte for Highâ€Energy and Lowâ€cost Aqueous Redox Flow Batteries**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
380	Lithium Ferrocyanide Catholyte for Highâ€Energy and Lowâ€cost Aqueous Redox Flow Batteries. Angewandte Chemie, 0, , .	2.0	0
381	Recent Progress on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chinese Journal of Organic Chemistry, 2022, 42, 4169.	1.3	7
382	Redoxâ€Bipolar Polyimide Twoâ€Dimensional Covalent Organic Framework Cathodes for Durable Aluminium Batteries. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
383	Redoxâ€Bipolar Polyimide Twoâ€Dimensional Covalent Organic Framework Cathodes for Durable Aluminium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
384	Disodium naphthalene dicarboxylate based negative electrode engineering for organic-inorganic hybrid sodium batteries. Sustainable Materials and Technologies, 2023, 36, e00639.	3.3	0
385	Recent progress in rechargeable calcium-ion batteries for high-efficiency energy storage. Energy Storage Materials, 2023, 60, 102822.	18.0	2
386	Towards high-performance anthraquinone-derived cathode material for lithium-ion batteries through rational molecular design. Chemical Engineering Journal, 2023, 466, 143316.	12.7	2
387	Coordinationâ€Modulated Metal Tetrathiafulvalene Octacarboxylate Frameworks for Highâ€Performance Lithiumâ€Ion Battery Anodes. Angewandte Chemie, 2023, 135, .	2.0	0
388	Coordinationâ€Modulated Metal Tetrathiafulvalene Octacarboxylate Frameworks for Highâ€Performance Lithiumâ€Ion Battery Anodes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
389	Designing organic pseudocapacitors through molecular hybridization. Joule, 2023, 7, 858-860.	24.0	2
390	Molecular Tailoring of p–type Organics for Zinc Batteries with High Energy Density. Angewandte Chemie, 2023, 135, .	2.0	0
391	Bioactive small-molecule-based aqueous zinc-organic battery enables long-life and fast-charge performance. Science China Materials, 2023, 66, 3104-3112.	6.3	1
392	Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte. Electrochimica Acta, 2023, 462, 142702.	5.2	6
393	Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 187-216.	6.8	5
394	Progress of Photocapacitors. Chemical Reviews, 2023, 123, 9327-9355.	47.7	11
395	Highâ€Performance Poly(1â€naphthylamine)/Mesoporous Carbon Cathode for Lithiumâ€Ion Batteries with Ultralong Cycle Life of 45000 Cycles at â€15°C. Advanced Science, 2023, 10, .	11.2	6
396	Ï€-Extended Benzo[<i>b</i>]phenazine-Based Polymer Cathode Materials for High-Voltage and Stable Organic Batteries. ACS Applied Energy Materials, 2023, 6, 6834-6841.	5.1	0
397	A Lowâ€Strain Cathode by <i>sp</i> arbon Induced Conversion in Multiâ€Level Structure of Graphdiyne. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
398	A Lowâ€Strain Cathode by <i>sp</i> â€Carbon Induced Conversion in Multiâ€Level Structure of Graphdiyne. Angewandte Chemie, 2023, 135, .	2.0	0
399	Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2023, , 108715.	9.0	2
400	Graphene-sandwiched nitrogen-enriched π-conjugated molecules as redox-active cathodes for Li-ion batteries. Materials Advances, 0, , .	5.4	0

#	Article	IF	Citations
401	Revealing the reversible solid-state electrochemistry of lithium-containing conjugated oximates for organic batteries. Science Advances, 2023, 9, .	10.3	6
402	Polymer-derived carbon materials for energy storage devices: A mini review. Carbon, 2023, 210, 118066.	10.3	14
403	In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy. Nano Research, 2024, 17, 245-252.	10.4	1
404	Molecular Tailoring of p–type Organics for Zinc Batteries with High Energy Density. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
405	An Intelligent Innovation of Electrochemical Energy Based Smart Industrial Automation. , 2023, , .		0
406	Polyimides as Promising Cathodes for Metal–Organic Batteries: A Comparison between Divalent (Ca ²⁺ , Mg ²⁺) and Monovalent (Li ⁺ , Na ⁺) Cations. ACS Applied Energy Materials, 2023, 6, 7250-7257.	5.1	3
407	Molecular engineered A–D–A–D–A organic electrode system for efficient supercapacitor applications. Materials Advances, 2023, 4, 3061-3072.	5.4	1
408	Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries. Chemical Engineering Journal, 2023, 471, 144158.	12.7	1
409	A bifunctional electrolyte for activating Mg–Li hybrid batteries. Journal of Materials Chemistry A, 2023, 11, 15724-15731.	10.3	2
410	自å…å¾®å"èšå•̂物在电åŒ−å¦èf½æºè½¬åŒ−åŠå,¨å~ä的应用. Chinese Science Bulletin, 2023, , .	0.7	1
411	Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity. ACS Nano, 2023, 17, 13961-13973.	14.6	3
412	In Situ Electrochemical Activation of Hydroxyl Polymer Cathode for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 0, , .	2.0	1
413	In Situ Electrochemical Activation of Hydroxyl Polymer Cathode for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
414	Progress towards sustainable energy storage: A concise review. Engineering Reports, 2023, 5, .	1.7	1
416	Organic electrode materials and carbon/small-sulfur composites for affordable, lightweight and sustainable batteries. Chemical Communications, 2023, 59, 9803-9817.	4.1	1
417	Unleashing recent electrolyte materials for next-generation supercapacitor applications: A comprehensive review. Journal of Energy Storage, 2023, 72, 108352.	8.1	13
418	Interaction Mechanism between Cyanoâ€Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries. Small Methods, 0, , .	8.6	0
419	Modulation of Radical Intermediates in Rechargeable Organic Batteries. Advanced Materials, 0, , .	21.0	3

#	Article	IF	CITATIONS
420	Challenging metal-ion rocking-chair and zinc-ion mechanisms in mild acidic to neutral aqueous electrolytes. Electrochemistry Communications, 2023, 154, 107559.	4.7	2
421	Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries. ACS Applied Materials & Interfaces, 0, , .	8.0	1
422	Advances and prospects of porphyrin derivatives in the energy field. RSC Advances, 2023, 13, 24699-24730.	3.6	0
423	Universality of Benzoquinone-based Anodes toward Various Metal Cations in Aqueous Rechargeable Batteries. ACS Applied Materials & Interfaces, 0, , .	8.0	0
424	Structural design of organic battery electrode materials: from DFT to artificial intelligence. Rare Metals, 2023, 42, 3269-3303.	7.1	1
425	Small-molecule organic electrode materials for rechargeable batteries. Science China Chemistry, 2023, 66, 3070-3104.	8.2	6
426	Bimetallic Anionic Organic Frameworks with Solid‣tate Cation Conduction for Charge Storage Applications. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
427	Bimetallic Anionic Organic Frameworks with Solidâ€State Cation Conduction for Charge Storage Applications. Angewandte Chemie, 0, , .	2.0	0
428	One-step MXene selenization-conversion into carbon-scaffold-anchored TiSe2 nanosheets enabling interlayer- and vacancy-mediated ion transport mechanisms for fast lithium-ion storage. Chemical Engineering Journal, 2023, 473, 145183.	12.7	3
429	Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metalâ€lon Batteries. Small Methods, 2023, 7, .	8.6	3
430	Multidentate Chelation Enables Highâ€Efficiency Mn ²⁺ Storage in Polyimide Covalent Organic Framework for Aqueous All Mnâ€ion Battery. Advanced Energy Materials, 2023, 13, .	19.5	2
431	Sustainable stretchable batteries for next-generation wearables. Journal of Materials Chemistry A, 0, ,	10.3	0
432	Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chemical Society Reviews, 2023, 52, 6715-6753.	38.1	26
433	Influence of Backbone on the Performance of Pendant Polymer Electrode Materials in Li-ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 45345-45353.	8.0	1
434	Coulombic Efficiency for Practical Zinc Metal Batteries: Critical Analysis and Perspectives. Small Methods, 2024, 8, .	8.6	1
435	Construction of g-C3N4-based photoelectrodes towards photoelectrochemical water splitting: A review. Journal of Alloys and Compounds, 2023, 969, 172302.	5.5	2
436	Rational Molecular Design Strategy of a Carbonyl Cathode for Better Aluminum Organic Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 11406-11414.	6.7	0
437	On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochemical Energy Reviews, 2023, 6, .	25.5	7

#	Article	IF	CITATIONS
438	Assessing nâ€ŧype organic materials for lithium batteries: A technoâ€economic review. InformaÄnÃ- Materiály, 2023, 5, .	17.3	5
439	Influence of alkali metal ions (Li+, Na+, and K+) on the redox thermodynamics and kinetics of organic electrode materials for rechargeable batteries. Energy Storage Materials, 2023, 63, 102956.	18.0	2
440	Gallic Acid Resin as an Efficient Lithium Storage Anode Material for 3.6 V Li-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 7826-7836.	5.1	0
441	Organic photo-battery with high operating voltage using a multi-junction organic solar cell and an organic redox-polymer-based battery. Energy and Environmental Science, 2023, 16, 5255-5264.	30.8	2
442	Mobile energy storage technologies for boosting carbon neutrality. Innovation(China), 2023, 4, 100518.	9.1	4
443	Small Molecule Azaacene as an Anode Material for Lithium-Ion Batteries. Energy & Fuels, 2023, 37, 13397-13404.	5.1	1
444	Modulating electron distributions by integrating ligands with metal molecules in THF. Journal of Molecular Liquids, 2023, 391, 123290.	4.9	0
445	Linear Polymer Comprising Dual Functionalities with Hierarchical Pores for Lithium Ion Batteries. ChemElectroChem, 2023, 10, .	3.4	0
446	High-voltage (4.1 V) organic electrode material with an oxygen redox center. Journal of Materials Chemistry A, 2023, 11, 22441-22448.	10.3	0
447	From Squaric Acid Amides (SQAs) to Quinoxaline-Based SQAs─Evolution of a Redox-Active Cathode Material for Organic Polymer Batteries. Journal of the American Chemical Society, 2023, 145, 23334-23345.	13.7	3
448	A π onjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteries. Batteries and Supercaps, 2023, 6, .	4.7	1
449	Toward Conductive Additive Free Organic Electrode for Lithiumâ€lon Battery Using Supramolecular Columnar Organization. Small, 2024, 20, .	10.0	0
450	Engineering cyano groups into hydrogen-bonded organic supramolecules with multi redox centers for high-performance Li-ion battery cathode. Energy Storage Materials, 2023, 63, 102993.	18.0	1
451	Two-dimensional Ni-MOF as a high performance anode material for lithium ion batteries. Inorganic Chemistry Communication, 2023, 158, 111511.	3.9	0
452	Quinoxaline derivatives as cathode for aqueous zinc battery. Journal of Solid State Electrochemistry, 0, , .	2.5	0
453	Tuning the electrochemical performance of covalent organic framework cathodes for Li- and Mg-based batteries: the influence of electrolyte and binder. Journal of Materials Chemistry A, 2023, 11, 21553-21560.	10.3	2
454	Bio-Based Polyhydroxyanthraquinones as High-Voltage Organic Electrode Materials for Batteries. ACS Applied Polymer Materials, 0, , .	4.4	0
455	Corn Starch Derived Capacitive Carbon Prepared by One-Step K ₂ CO ₃ Carbonization for Supercapacitors. Journal of Materials Science and Chemical Engineering, 2023, 11, 1-7.	0.4	0

#	Article	IF	CITATIONS
456	High-Output-Voltage and -Energy-Density All-Organic Dual-Ion Battery Using Molecular Thianthrene. ACS Energy Letters, 0, , 4597-4607.	17.4	0
457	Machine Learning Prediction of the Redox Activity of Quinones. Materials, 2023, 16, 6687.	2.9	0
459	Strongly Hydrogen-Bonded Networks Formed by Sulfate and Bisulfate Salts of Benzenetetramines. Crystal Growth and Design, 0, , .	3.0	1
460	Refreshing the Legacy of Rudolf Nietzki: Benzene-1,2,4,5-tetramine and Related Compounds. Journal of Organic Chemistry, 2023, 88, 16302-16314.	3.2	1
461	Expanding the horizons of porphyrin metal–organic frameworks <i>via</i> catecholate coordination: exploring structural diversity, material stability and redox properties. Journal of Materials Chemistry A, 2023, 11, 25465-25483.	10.3	0
462	Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries. Polymers, 2023, 15, 4395.	4.5	0
463	A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors. Materials Horizons, 2024, 11, 688-699.	12.2	0
464	Charge Transfer in Spatially Defined Organic Radical Polymers. Chemistry of Materials, 2023, 35, 9346-9351.	6.7	0
465	Tailoring Electrochemical Redox Properties of Trioxotriangulene Organic Cathodes by a Heteroatom-Doped Strategy. ACS Applied Energy Materials, 0, , .	5.1	0
466	Suppressing Shuttle Effect with a Size-Selective Covalent Organic Framework Based Bilayer Membrane. ACS Energy Letters, 2023, 8, 5032-5040.	17.4	2
467	In Situ Electropolymerization in Mesoporous Carbon: A Universal Method for Improving the Electrochemical Performance of Polymer Electrode Materials. ACS Applied Energy Materials, 0, , .	5.1	0
468	Ultraâ€Thin Hydrogenâ€Organicâ€Framework (HOF) Nanosheets for Ultraâ€Stable Alkali Ions Battery Storage. Small, 0, , .	10.0	3
469	Impact of the Microstructure on Electrochemical Performances of Dilithium Benzoquinone Dioximate as a Positive Material for a Li-Ion Battery. ACS Applied Polymer Materials, 2023, 5, 9865-9875.	4.4	0
470	Diluents Effect on Inhibiting Dissolution of Organic Electrode for Highly Reversible Liâ€lon Batteries. Advanced Energy Materials, 0, , .	19.5	0
471	Hypercrosslinked Phenothiazine Polymer as a Low-Cost and Durable Organic Cathode for Rechargeable Lithium Batteries. ACS Applied Polymer Materials, 0, , .	4.4	0
472	Paving the way for future Ca metal batteries through comprehensive electrochemical testing of organic polymer cathodes. Materials Advances, 0, , .	5.4	0
473	High-performance intercalated composite solid electrolytes for lithium metal battery. Energy Storage Materials, 2024, 65, 103109.	18.0	1
474	A carbonyl-rich conjugated organic compound for aqueous rechargeable Na+ storage with wide voltage window workability. Journal of Colloid and Interface Science, 2024, 658, 678-687.	9.4	2

#	Article	IF	CITATIONS
475	Regulating Electrostatic Interaction between Hydrofluoroethers and Carbonyl Cathodes toward Highly Stable Lithium–Organic Batteries. Journal of the American Chemical Society, 2024, 146, 1100-1108.	13.7	0
476	Phenazine-Integrated Conjugated Microporous Polymers for Modulating the Mechanics of Supercapacitor Electrodes. Materials Advances, 0, , .	5.4	Ο
477	Organic cathode materials for rechargeable magnesium-ion batteries: Fundamentals, recent advances, and approaches to optimization. Journal of Magnesium and Alloys, 2023, 11, 4359-4389.	11.9	1
478	Reversible and high-density energy storage with polymers populated with bistable redox sites. Polymer Journal, 2024, 56, 127-144.	2.7	0
479	Ï€-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2024, 12, 3967-3976.	10.3	1
480	Practical organic batteries: Concepts to realize high mass loading with high performance. ChemSusChem, 2024, 17, .	6.8	0
481	Interface Engineering on Constructing Physical and Chemical Stable <scp>Solidâ€State</scp> Electrolyte Toward Practical Lithium Batteries. Energy and Environmental Materials, 0, , .	12.8	1
482	Breaking boundaries: advancements in solid-state redox mediators for decoupled water electrolysis. Journal of Materials Chemistry A, 2024, 12, 4363-4382.	10.3	0
483	Challenge and Design Strategies of Polymer Organic Electrodes for Lithiumâ€Ion Batteries. Macromolecular Chemistry and Physics, 2024, 225, .	2.2	0
484	Lithium Bis(fluorosulfonyl)imide for Stabilized Interphases on Conjugated Dicarboxylate Electrode. ACS Applied Materials & Interfaces, 0, , .	8.0	0
485	Trilithium salt of tetrahydroxyanthraquinone: A high-voltage and stable organic cathode material for rechargeable lithium metal and lithium-ion batteries. Chemical Engineering Journal, 2024, 481, 148447.	12.7	0
486	Molecular Engineering of Nâ€heteroaromatic Organic Cathode for Highâ€Voltage and Highly Stable Zinc Batteries. Advanced Functional Materials, 0, , .	14.9	0
487	A redox acceptor–acceptor nitro functionalized naphthalene diimide/rGO anode for sustainable lithium-ion batteries. Energy Advances, 2024, 3, 574-583.	3.3	0
488	Organic Cathodes, a Path toward Future Sustainable Batteries: Mirage or Realistic Future?. Chemistry of Materials, 2024, 36, 1025-1040.	6.7	1
489	Design and Synthesis of Viologenâ€based Copolymers for High Performance Liâ€Dualâ€Ion Batteries. ChemSusChem, 2024, 17, .	6.8	0
490	A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries. ACS Central Science, 2024, 10, 569-578.	11.3	2
491	Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Accounts of Chemical Research, 2024, 57, 375-385.	15.6	0
492	Intermolecular π-π stacking of oligomeric naphthalene cathodes facilitate high performance aluminum ion battery. Chemical Engineering Journal, 2024, 482, 148806.	12.7	0

#	Article	IF	Citations
493	Precise synthesis of BN embedded perylene diimide oligomers for fast-charging and long-life potassium–organic batteries. Chemical Science, 2024, 15, 3323-3329.	7.4	0
494	Ferrocene Appended Porphyrinâ€Based Bipolar Electrode Material for Highâ€Performance Energy Storage. ChemSusChem, 0, , .	6.8	0
495	Electrospun perylene dianhydride electrodes with fine micro-nanostructures for high-performance lithium-organic batteries. New Journal of Chemistry, 2024, 48, 5120-5126.	2.8	0
496	A rechargeable, non-aqueous manganese metal battery enabled by electrolyte regulation. Joule, 2024, 8, 780-798.	24.0	2
497	Unraveling the potential of Al2CO bilayer as anode material in magnesium ion battery and unsuitability for lithium ion battery. Journal of Alloys and Compounds, 2024, 981, 173697.	5.5	0
498	Exploring Organic Cathode Materials for Lithium-Ion Batteries through Fragment Bonding and Discharge Simulation. Journal of Physical Chemistry C, 2024, 128, 2304-2310.	3.1	0
499	An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents. Journal of the American Chemical Society, 2024, 146, 3854-3860.	13.7	0
500	Phenothiazine Derivatives as Smallâ€Molecule Organic Cathodes with Adjustable Dropout Voltage and Cycle Performance. Advanced Materials, 0, , .	21.0	0
502	Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 2024, 67, 103261.	18.0	0
503	Architectural design of anode materials for superior alkali-ion (Li/Na/K) batteries storage. Scientific Reports, 2024, 14, .	3.3	0
504	An electrospun three-layer nanofibrous membrane-based <i>in situ</i> gel separator for efficient lithium-organic batteries. Chemical Communications, 2024, 60, 3198-3201.	4.1	0
505	Constructing Structural Isomers to Reveal and Enhance Lithium Storage in a Conducting Polymer. Advanced Energy Materials, 2024, 14, .	19.5	0
506	Scalable Synthesis and Characterisation of a Liquid 2,3,5,6-tetraallylbenzene-1,4-diol Quinone. Journal of the Electrochemical Society, 2024, 171, 035501.	2.9	0
511	Building ultra-stable and low-temperature aqueous zinc–organic batteries via noncovalent supramolecular self-assembly strategy. Chemical Engineering Journal, 2024, 487, 150527.	12.7	0
512	Carbonyl and imine conjugated frameworks for aqueous Organo-Aluminum batteries with high specific capacity and low dissolution. Journal of Colloid and Interface Science, 2024, 665, 181-187.	9.4	0
513	Conformal Deposition of Lithium Metal on Electroactive Organic Materials. Advanced Energy Materials, 0, , .	19.5	0
514	Redox active viologen derivatives for aqueous and non-aqueous organic redox flow batteries applications. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
515	A Crossâ€linked nâ€Type Conjugated Polymer with Polar Side Chains Enables Ultrafast Pseudocapacitive Energy Storage. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
516	Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating transition metal single atoms. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
517	Current Trends and Perspectives of Polymers in Batteries. Macromolecules, 2024, 57, 3013-3025.	4.8	0