Measurement and ab initio Investigation of Structural, Properties of Sputtered Aluminum Nitride Thin Films

Frontiers in Physics 8, DOI: 10.3389/fphy.2020.00115

Citation Report

#	Article	IF	CITATIONS
1	Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Results in Physics, 2020, 19, 103463.	4.1	31
2	Defective Titanium Dioxide-supported Ultrasmall Au Clusters for Photocatalytic Hydrogen Production. Frontiers in Physics, 2020, 8, .	2.1	2
3	Optical and structural properties of aluminium nitride thin-films synthesized by DC-magnetron sputtering technique at different sputtering pressures. Microsystem Technologies, 2021, 27, 3149-3159.	2.0	10
4	Synthesis and structural, crystallographic, electronic, chemical and optical characterizations of alpha-diisopropylammonium bromide (α-DIPAB) thin films. Optik, 2021, 241, 167014.	2.9	5
5	Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	25
6	Electrochemical degradation of methyl red in zinc hydroxide and zinc oxide thin films, physical and chemical activation. Materials Chemistry and Physics, 2022, 280, 125793.	4.0	12
7	Correlation of Electrical, Thermal, and Crystal Parameters of Complex Composite Films Based on Polyethylene Oxide (Peo) Doped by Copper Sulfate (Cuso4). SSRN Electronic Journal, 0, , .	0.4	0
8	Impact of B-doping on topological Hall resistivity in (111)- and (110)-oriented Mn4N single layers with the non-collinear spin structure. Journal of Applied Physics, 2022, 131, .	2.5	12
9	Optical, chemical, electrical, and morphological properties of PEO–Nb-doped KMnO4 thin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 10585-10595.	2.2	2
10	Ion Beam Effect on the Structural and Optical Properties of AlN:Er. Journal of Composites Science, 2022, 6, 110.	3.0	0
11	Review on nitride compounds and its polymer composites: a multifunctional material. Journal of Materials Research and Technology, 2022, 18, 2175-2193.	5.8	34
12	Optical, electrical and morphological properties of (PANI/CSA-PEO)/(AgNPs-AgNO3) nanocomposite films. Physica B: Condensed Matter, 2022, 634, 413636.	2.7	4
13	Electrical and structural comparison of (100) and (002) oriented AlN thin films deposited by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2022, 33, 12271-12280.	2.2	5
14	Investigation of the doping mechanism and electron transition bands of PEO/KMnO4 complex composite films. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	4
15	Optical, electronic, and structural properties of different nanostructured ZnO morphologies. European Physical Journal Plus, 2022, 137, .	2.6	2
16	Electrical and thermal characterizations of synthesized composite films based on polyethylene oxide (PEO) doped by aluminium chloride (AlCl3). Polymer Bulletin, 2023, 80, 5433-5446.	3.3	8
17	The structural, optical, thermal, and electrical properties of synthesized PEO/GO thin films. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	9
18	Correlation of electrical, thermal, and crystal parameters of complex composite films based on polyethylene oxide (PEO) doped by copper sulfate (CuSO4). Physica B: Condensed Matter, 2022, 645, 414224.	2.7	9

CITATION REPORT

#	Article	IF	CITATIONS
19	Optical, electrical and chemical properties of PEO:I2 complex composite films. Polymer Bulletin, 2023, 80, 9611-9625.	3.3	4
20	Effect of DC power on opto-thermal properties of AlN thin films. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	Ο
21	Dielectric relaxation, optical and structural characterizations of complex composite films based on polyethylene oxide doped by low concentration of iodine. Physica B: Condensed Matter, 2023, 654, 414649.	2.7	6
22	Revisiting Optical Material Platforms for Efficient Linear and Nonlinear Dielectric Metasurfaces in the Ultraviolet, Visible, and Infrared. ACS Photonics, 2023, 10, 307-321.	6.6	13
24	Electronic structure, thermodynamics, and thermoelectric properties of Y Al1â^'N semiconductor alloys for new promising optoelectronics and energy conversion: Ab Initio study. Materials Science in Semiconductor Processing, 2023, 163, 107571.	4.0	1
25	Nitrogen flow rate dependent atomic coordination, phonon vibration and surface analysis of DC magnetron sputtered nitrogen rich-AlN thin films. Physica B: Condensed Matter, 2023, 666, 415141.	2.7	1
26	Plasma power effect on crystallinity and density of AlN films deposited by plasma enhanced atomic layer deposition. Journal of Materials Research and Technology, 2023, 27, 4213-4223.	5.8	0
27	Influence of argon/nitrogen sputtering gas and molybdenum/titanium seed layer on aluminium nitride âŸ`100⟩ thin film growth using ceramic target. Journal of Materials Research and Technology, 2024, 29, 2248-2257.	5.8	0
28	Nucleation of highly uniform AlN thin films by high volume batch ALD on 200 mm platform. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42, .	2.1	0