Artificial Intelligence in the Intensive Care Unit

Critical Care 24, 101 DOI: 10.1186/s13054-020-2785-y

Citation Report

#	Article	IF	CITATION
1	The future of AI in critical care is augmented, not artificial, intelligence. Critical Care, 2020, 24, 673.	5.8	7
2	Artificial Intelligence: What Is It and How Can It Expand theÂUltrasound Potential in the Future?. Ultraschall in Der Medizin, 2020, 41, 356-360.	1.5	8
3	What Can COVID-19 Teach Us about Using AI in Pandemics?. Healthcare (Switzerland), 2020, 8, 527.	2.0	13
4	How machine learning could be used in clinical practice during an epidemic. Critical Care, 2020, 24, 265.	5.8	12
5	Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation. International Journal of Medical Informatics, 2021, 145, 104312.	3.3	29
6	Trends, Technologies, and Key Challenges in Smart and Connected Healthcare. IEEE Access, 2021, 9, 74044-74067.	4.2	21
7	Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies. Journal of International Medical Research, 2021, 49, 030006052110001.	1.0	55
8	Patient–Ventilator Interaction Testing Using the Electromechanical Lung Simulator xPULM™ during V/A-C and PSV Ventilation Mode. Applied Sciences (Switzerland), 2021, 11, 3745.	2.5	2
9	Methods and measures to quantify ICU patient heterogeneity. Journal of Biomedical Informatics, 2021, 117, 103768.	4.3	3
10	A Comprehensive Study of Artificial Intelligence and Machine Learning Approaches in Confronting the Coronavirus (COVID-19) Pandemic. International Journal of Health Services, 2021, 51, 446-461.	2.5	27
11	Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Medicine, 2021, 47, 750-760.	8.2	101
12	Optimization of critical care pharmacy clinical services: A gap analysis approach. American Journal of Health-System Pharmacy, 2021, 78, 2077-2085.	1.0	30
13	Utilizing Artificial Intelligence in Critical Care: Adding A Handy Tool to Our Armamentarium. Cureus, 2021, 13, e15531.	0.5	1
15	An exploratory data quality analysis of time series physiologic signals using a large-scale intensive care unit database. JAMIA Open, 2021, 4, ooab057.	2.0	7
16	Predicting in-hospital mortality in adult non-traumatic emergency department patients: a retrospective comparison of the Modified Early Warning Score (MEWS) and machine learning approach. PeerJ, 2021, 9, e11988.	2.0	7
17	Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens, 2021, 10, 1048.	2.8	45
18	The Dutch Data Warehouse, a multicenter and full-admission electronic health records database for critically ill COVID-19 patients. Critical Care, 2021, 25, 304.	5.8	22
19	Machine learning model to predict hypotension after starting continuous renal replacement therapy. Scientific Reports, 2021, 11, 17169.	3.3	14

TATION REDO

#	Article	IF	CITATIONS
20	Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning. Journal of Clinical Medicine, 2021, 10, 3824.	2.4	19
21	Accuracy of Algorithms and Visual Inspection for Detection of Trigger Asynchrony in Critical Patients : A Systematic Review. Critical Care Research and Practice, 2021, 2021, 1-5.	1.1	0
22	Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools. Clinical Nutrition, 2021, 40, 5249-5251.	5.0	11
23	Network Data Acquisition and Monitoring System for Intensive Care Mechanical Ventilation Treatment. IEEE Access, 2021, 9, 91859-91873.	4.2	18
24	Applications of Artificial Intelligence and Molecular Immune Pathogenesis, Ongoing Diagnosis and Treatments for COVID-19. Studies in Systems, Decision and Control, 2021, , 521-549.	1.0	0
25	Pandemic Management Using Artificial Intelligence-Based Safety Measures. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 86-110.	0.3	2
26	Hidden behind the screen: seeing the life and death boundary in an intensive care unit. The Digital Scholar Philosopher S Lab, 2021, 4, 104-125.	0.1	0
27	Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. Current Opinion in Critical Care, 2020, 26, 563-573.	3.2	10
29	The future of antimicrobial dosing in the ICU: an opportunity for data science. Intensive Care Medicine, 2021, 47, 1481-1483.	8.2	5
30	Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems. Sensors, 2021, 21, 7125.	3.8	15
32	Event Prediction Model Considering Time and Input Error Using Electronic Medical Records in the Intensive Care Unit: Retrospective Study. JMIR Medical Informatics, 2021, 9, e26426.	2.6	6
33	A Research Agenda for Diagnostic Excellence in Critical Care Medicine. Critical Care Clinics, 2022, 38, 141-157.	2.6	0
34	How can we discover the most valuable types of big data and artificial intelligence-based solutions? A methodology for the efficient development of the underlying analytics that improve care. BMC Medical Informatics and Decision Making, 2021, 21, 336.	3.0	2
35	ENVISION – Improve intensive care of COVID-19 patients with artificial intelligence. Finnish Journal of EHealth and EWelfare, 2021, 13, .	0.1	0
36	An overview of artificial intelligence and big data analytics for smart healthcare: requirements, applications, and challenges. , 2021, , 243-254.		5
37	Construction of an Early Alert System for Intradialytic Hypotension Before Initiating Hemodialysis Based on Artificial Intelligence. SSRN Electronic Journal, O, , .	0.4	0
39	Intensivist and COVID-19 in the United States of America: a narrative review of clinical roles, current workforce, and future direction. Pan African Medical Journal, 0, 41, .	0.8	4
40	Dynamic Mortality Risk Predictions for Children in ICUs: Development and Validation of Machine Learning Models*. Pediatric Critical Care Medicine, 2022, 23, 344-352.	0.5	10

#	Article	IF	CITATIONS
41	Machine Learning and Antibiotic Management. Antibiotics, 2022, 11, 304.	3.7	2
42	Developing, implementing and governing artificial intelligence in medicine: a step-by-step approach to prevent an artificial intelligence winter. BMJ Health and Care Informatics, 2022, 29, e100495.	3.0	41
43	Quo Vadis Anesthesiologist? The Value Proposition of Future Anesthesiologists Lies in Preserving or Restoring Presurgical Health after Surgical Insult. Journal of Clinical Medicine, 2022, 11, 1135.	2.4	1
44	Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan. BMC Medical Informatics and Decision Making, 2022, 22, 75.	3.0	11
45	Current Status and Future Directions of Neuromonitoring With Emerging Technologies in Neonatal Care. Frontiers in Pediatrics, 2021, 9, 755144.	1.9	6
46	A multitask GNN-based interpretable model for discovery of selective JAK inhibitors. Journal of Cheminformatics, 2022, 14, 16.	6.1	10
47	Early identification of ICU patients at risk of complications: Regularization based on robustness and stability of explanations. Artificial Intelligence in Medicine, 2022, 128, 102283.	6.5	7
48	Artificial Intelligence to Improve Health Outcomes in the NICU and PICU: A Systematic Review. Hospital Pediatrics, 2022, 12, 93-110.	1.3	10
49	Collaborative intelligence for intensive care units. Critical Care, 2021, 25, 426.	5.8	2
50	Determining Carina and Clavicular Distance-Dependent Positioning of Endotracheal Tube in Critically Ill Patients: An Artificial Intelligence-Based Approach. Biology, 2022, 11, 490.	2.8	0
51	Machine learning to predict vasopressin responsiveness in patients with septic shock. Pharmacotherapy, 2022, 42, 460-471.	2.6	6
53	Ignorance Isn't Bliss: We Must Close the Machine Learning Knowledge Gap in Pediatric Critical Care. Frontiers in Pediatrics, 2022, 10, .	1.9	2
54	Precision Clinical Medicine Through Machine Learning: Using High and Low Quantile Ranges of Vital Signs for Risk Stratification of ICU Patients. IEEE Access, 2022, 10, 52418-52430.	4.2	10
55	Value of Intensive Nursing Detail Management in Intensive Care Unit Nursing. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-4.	1.2	1
56	Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically III Patients With Sepsis-Associated Acute Kidney Injury. Frontiers in Medicine, 0, 9, .	2.6	8
57	Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesthesia, Critical Care & Pain Medicine, 2022, , 101121.	1.4	2
58	Ensemble Voting Regression Based on Machine Learning for Predicting Medical Waste: A Case from Turkey. Mathematics, 2022, 10, 2466.	2.2	18
59	Artificial intelligence in acute respiratory distress syndrome: A systematic review. Artificial Intelligence in Medicine, 2022, 131, 102361.	6.5	8

#	Article	IF	CITATIONS
60	Prediction algorithm for ICU mortality and length of stay using machine learning. Scientific Reports, 2022, 12, .	3.3	29
61	Quantitative Measurement of Pneumothorax Using Artificial Intelligence Management Model and Clinical Application. Diagnostics, 2022, 12, 1823.	2.6	5
62	Artificial intelligence–aided diagnosis model for acute respiratory distress syndrome combining clinical data and chest radiographs. Digital Health, 2022, 8, 205520762211203.	1.8	4
63	Evaluation of time to death after admission to an intensive care unit and factors associated with mortality: A retrospective longitudinal study. International Journal of Critical Illness and Injury Science, 2022, 12, 121.	0.6	0
65	Discrete-time survival analysis in the critically ill: a deep learning approach using heterogeneous data. Npj Digital Medicine, 2022, 5, .	10.9	10
66	Validation of a Deep Learning–based Automatic Detection Algorithm for Measurement of Endotracheal Tube–to–Carina Distance on Chest Radiographs. Anesthesiology, 2022, 137, 704-715.	2.5	3
67	Artificial Intelligence in Intensive Care Medicine: Bibliometric Analysis. Journal of Medical Internet Research, 2022, 24, e42185.	4.3	9
68	Patient Safety in the Critical Care Setting: Common Risks and Review of Evidence-Based Mitigation Strategies. , 0, , .		0
69	Acinetobacter baumannii complex-caused bloodstream infection in ICU during a 12-year period: Predicting fulminant sepsis by interpretable machine learning. Frontiers in Microbiology, 0, 13, .	3.5	0
71	The use of machine learning and artificial intelligence within pediatric critical care. Pediatric Research, 2023, 93, 405-412.	2.3	15
72	The Clinical Application of Machine Learning-Based Models for Early Prediction of Hemorrhage in Trauma Intensive Care Units. Journal of Personalized Medicine, 2022, 12, 1901.	2.5	2
73	Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units. Heart and Lung: Journal of Acute and Critical Care, 2023, 58, 74-81.	1.6	11
74	Utilizing big data from electronic health records in pediatric clinical care. Pediatric Research, 2023, 93, 382-389.	2.3	6
75	Incidence, Severity and Clinical Factors Associated with Hypotension in Patients Admitted to an Intensive Care Unit: A Prospective Observational Study. Journal of Clinical Medicine, 2022, 11, 6832.	2.4	2
76	The criticality Index-mortality: A dynamic machine learning prediction algorithm for mortality prediction in children cared for in an ICU. Frontiers in Pediatrics, 0, 10, .	1.9	2
77	Level and predictors of caring behaviours of critical care nurses. BMC Nursing, 2022, 21, .	2.5	2
79	Use of Deep Learning for Continuous Prediction of Mortality for All Admissions in Intensive Care Units. Tsinghua Science and Technology, 2023, 28, 639-648.	6.1	1
80	A novel method to calculate compliance and airway resistance in ventilated patients. Intensive Care Medicine Experimental, 2022, 10, .	1.9	2

#	Article	IF	CITATIONS
81	Development and Trends in Artificial Intelligence in Critical Care Medicine: A Bibliometric Analysis of Related Research over the Period of 2010–2021. Journal of Personalized Medicine, 2023, 13, 50.	2.5	5
82	Two-Step Approach for Occupancy Estimation in Intensive Care Units Based on Bayesian Optimization Techniques. Sensors, 2023, 23, 1162.	3.8	2
83	Applications of Artificial Intelligence in Neonatology. Applied Sciences (Switzerland), 2023, 13, 3211.	2.5	3
84	Novel architecture for gated recurrent unit autoencoder trained on time series from electronic health records enables detection of ICU patient subgroups. Scientific Reports, 2023, 13, .	3.3	1
87	Applications of Artificial Intelligence in Thrombocytopenia. Diagnostics, 2023, 13, 1060.	2.6	4
88	Acute on chronic liver failure: prognostic models and artificial intelligence applications. Hepatology Communications, 2023, 7, .	4.3	1
89	Effects of Data Structure in Convolutional Neural Network for Detection of Asynchronous Breathing in Mechanical Ventilation Treatment. , 2022, , .		0
90	Predicting the risk factors of diabetic ketoacidosis-associated acute kidney injury: A machine learning approach using XGBoost. Frontiers in Public Health, 0, 11, .	2.7	3
91	A system theory based digital model for predicting the cumulative fluid balance course in intensive care patients. Frontiers in Physiology, 0, 14, .	2.8	0
92	Expectations of Anesthesiology and Intensive Care Professionals Toward Artificial Intelligence: Observational Study. JMIR Formative Research, 0, 7, e43896.	1.4	1
93	Implementing Artificial Intelligence. Critical Care Clinics, 2023, 39, 783-793.	2.6	2
94	Exploring needs and challenges for AI in nursing care – results of an explorative sequential mixed methods study. , 2023, 1, .		4
95	Artificial Intelligence Applications in Project Scheduling: A Systematic Review, Bibliometric Analysis, and Prospects for Future Research. Management Systems in Production Engineering, 2023, 31, 144-161.	1.1	2
96	Models That Link Physiology with Outcomes. American Journal of Respiratory and Critical Care Medicine, 2023, 208, 111-111.	5.6	0
97	New technologies in anesthesia and intensive care: take your ticket for the future. Journal of Anesthesia, Analgesia and Critical Care, 2023, 3, .	1.3	1
98	Prediction of Intensive Care Unit Length of Stay in the MIMIC-IV Dataset. Applied Sciences (Switzerland), 2023, 13, 6930.	2.5	0
100	The Evolution and Future of Intensive Care Management in the Era of Telecritical Care and Artificial Intelligence. Current Problems in Cardiology, 2023, 48, 101805.	2.4	2
101	Construction of an Early Alert System for Intradialytic Hypotension before Initiating Hemodialysis Based on Machine Learning. Kidney Diseases (Basel, Switzerland), 2023, 9, 433-442.	2.5	1

ARTICLE IF CITATIONS # Machine learning-based prediction of in-ICU mortality in pneumonia patients. Scientific Reports, 2023, 102 3.3 1 13, . Could machine learning algorithms help us predict massive bleeding at prehospital level?. Medicina 0.2 Intensiva (English Edition), 2023, , . Clinical Implementation of an Artificial Intelligence Tool in the Detection and Management of 104 0 0.5Pneumothoraces in Patients With COVID-19. Cureus, 2023, , . Machine learning model for healthcare investments predicting the length of stay in a hospital & amp; 3.9 mortality rate. Multimedia Tools and Applications, 2024, 83, 27121-27191. Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study*. Critical Care 106 0.9 7 Medicine, 2023, 51, 1638-1649. Evaluation of the SIMULRESP: A simulation software of child and teenager cardiorespiratory physiology. Pediatric Pulmonology, 2023, 58, 2832-2840. Bayesian Analysis Used to Identify Clinical and Laboratory Variables Capable of Predicting Progression 109 1.5 1 to Severe Dengue among Infected Pediatric Patients. Children, 2023, 10, 1508. Systems of Care Delivery and Optimization in the Intensive Care Unit. Anesthesiology Clinics, 2023, 41, 110 1.4 863-873. 111 Decision Aids in the ICU: a scoping review. BMJ Open, 2023, 13, e075239. 1.9 0 Global research trends in artificial intelligence for critical care with a focus on chord network 1.0 charts: Bibliometric analysis. Medicine (United States), 2023, 102, e35082. Discrepancy between perceptions and acceptance of clinical decision support Systems: implementation of artificial intelligence for vancomycin dosing. BMC Medical Informatics and Decision Making, 2023, 113 3 3.023, . Artificial intelligence in cardiac critical care., 2024, , 303-307. 114 Artificial intelligence systems in surgery: A review of opportunities, limitations, and prospects. 115 0.1 0 Russian Journal of Pediatric Surgery Anesthesia and Intensive Care, 2023, 13, 385-404. Knowledge mapping and research hotspots of artificial intelligence on ICU and Anesthesia: from a global bibliometric perspective., 2023, 1,. Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU. 117 3.3 0 Scientific Reports, 2023, 13, . Patient-Ventilator Interaction using Autoencoder derived Magnitude of Asynchrony Breathing. IFAC-PapersOnLine, 2023, 56, 2067-2072. Impact of Analytics Applying Artificial Intelligence and Machine Learning on Enhancing Intensive Care 119 0.3 0 Unit: A Narrative Review. Galician Medical Journal, 2023, 30, . Clinical Deployment of Machine Learning Tools in Transplant Medicine: What Does the Future Hold?. Transplantation, 0, , .

#	Article	IF	CITATIONS
122	Data-Driven Approaches in Healthcare: Challenges and Emerging Trends. Law, Governance and Technology Series, 2024, , 65-80.	0.4	0
123	Chinese experts' consensus on the application of intensive care big data. Frontiers in Medicine, 0, 10, .	2.6	0
124	Heart rate complexity helps mortality prediction in the intensive care unit: A pilot study using artificial intelligence. Computers in Biology and Medicine, 2024, 169, 107934.	7.0	0
126	Integrating Artificial Intelligence in Pediatric Healthcare: Parental Perceptions and Ethical Implications. Children, 2024, 11, 240.	1.5	0
127	External Validation of Deep Learning-Based Cardiac Arrest Risk Management System for Predicting In-Hospital Cardiac Arrest in Patients Admitted to General Wards Based on Rapid Response System Operating and Nonoperating Periods: A Single-Center Study. Critical Care Medicine, 2024, 52, e110-e120.	0.9	0
128	Al Based Smart Intensive Care Unit – A Survey. , 2023, , .		0
129	Deep learning model performance for identifying pediatric acute respiratory distress syndrome on chest radiographs. , 2024, 2, .		0
130	Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine. Diagnostics, 2024, 14, 687.	2.6	0
131	Predicting the Length of Mechanical Ventilation in Acute Respiratory Disease Syndrome Using Machine Learning: The PIONEER Study. Journal of Clinical Medicine, 2024, 13, 1811.	2.4	0