The Rise of Non-Tuberculosis Mycobacterial Lung Disea

Frontiers in Immunology

11, 303

DOI: 10.3389/fimmu.2020.00303

Citation Report

#	Article	IF	CITATIONS
1	Diagnostic performance of real time PCR and MALDI-TOF in the detection of nontuberculous mycobacteria from clinical isolates. Tuberculosis, 2020, 125, 101988.	0.8	11
3	Opportunist Coinfections by Nontuberculous Mycobacteria and Fungi in Immunocompromised Patients. Antibiotics, 2020, 9, 771.	1.5	8
4	CFTR Depletion Confers Hypersusceptibility to Mycobacterium fortuitum in a Zebrafish Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 357.	1.8	14
5	Short-Chain Fatty Acids Promote Mycobacterium avium subsp. hominissuis Growth in Nutrient-Limited Environments and Influence Susceptibility to Antibiotics. Pathogens, 2020, 9, 700.	1.2	8
6	Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	19
7	Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms, 2020, 8, 1380.	1.6	32
8	Chronic Pulmonary Aspergillosis Following Nontuberculous Mycobacterial Infections: An Emerging Disease. Journal of Fungi (Basel, Switzerland), 2020, 6, 346.	1.5	12
9	Host Immune Response and Novel Diagnostic Approach to NTM Infections. International Journal of Molecular Sciences, 2020, 21, 4351.	1.8	24
10	Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology, 2021, 10, 96.	1.3	54
11	Clinical and Molecular Findings in Mendelian Susceptibility to Mycobacterial Diseases: Experience From India. Frontiers in Immunology, 2021, 12, 631298.	2.2	36
12	The medicinal plant Tabebuia impetiginosa potently reduces pro-inflammatory cytokine responses in primary human lymphocytes. Scientific Reports, 2021, 11, 5519.	1.6	3
13	Prevalence and speciation of non-tuberculous mycobacteria among pulmonary and extrapulmonary tuberculosis suspects in South India. Journal of Infection and Public Health, 2021, 14, 320-323.	1.9	13
15	Prevalence and Antimicrobial Susceptibility of Non-tuberculous Mycobacteria Isolated from Sputum Samples of Patients with Pulmonary Infections in China. Jundishapur Journal of Microbiology, 2021, 14,	0.2	3
16	Subunit vaccine protects against a clinical isolate of Mycobacterium avium in wild type and immunocompromised mouse models. Scientific Reports, 2021, 11, 9040.	1.6	15
17	Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics, 2021, 10, 381.	1.5	10
18	Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection. Expert Review of Respiratory Medicine, 2021, 15, 737-744.	1.0	4
19	Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clinical Pharmacokinetics, 2021, 60, 1081-1102.	1.6	4
20	Increased whiB7 expression and antibiotic resistance in Mycobacterium chelonae carrying two prophages. BMC Microbiology, 2021, 21, 176.	1.3	7

#	ARTICLE	IF	Citations
21	Current Updates on Mycobacterial Taxonomy, 2018 to 2019. Journal of Clinical Microbiology, 2021, 59, e0152820.	1.8	10
22	Nontuberculous Mycobacteria in the Biofilm Microbiome of Private Well and Premise Plumbing. Environmental Engineering Science, 0, , .	0.8	2
23	BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. Journal of Clinical Investigation, 2021, 131, .	3.9	47
24	Nontuberculous Mycobacteria in Humans, Animals, and Water in Zambia: A Systematic Review. Frontiers in Tropical Diseases, 2021, 2, .	0.5	12
25	In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Neglected Tropical Diseases, 2021, 15, e0009636.	1.3	6
27	Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City and Environment Interactions, 2021, 11, 100070.	1.8	8
28	Draft Genome Sequences of Clinical Respiratory Isolates of Mycobacterium goodii Recovered in Ireland. Microbiology Resource Announcements, 2021, 10, e0053121.	0.3	0
29	Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscessus. Frontiers in Pharmacology, 2021, 12, 724725.	1.6	15
30	Particulate Mycobacterial Vaccines Induce Protective Immunity against Tuberculosis in Mice. Nanomaterials, 2021, 11, 2060.	1.9	7
31	A Murine Model of Mycobacterium kansasii Infection Reproducing Necrotic Lung Pathology Reveals Considerable Heterogeneity in Virulence of Clinical Isolates. Frontiers in Microbiology, 2021, 12, 718477.	1.5	1
32	Advances in Understanding of the Immune Response to Mycobacterial Pathogens and Vaccines through Use of Cattle and Mycobacterium avium subsp. paratuberculosis as a Prototypic Mycobacterial Pathogen. Vaccines, 2021, 9, 1085.	2.1	3
33	Screening of Fungi for Antimycobacterial Activity Using a Medium-Throughput Bioluminescence-Based Assay. Frontiers in Microbiology, 2021, 12, 739995.	1.5	4
34	Emerging Pulmonary Infections in Clinical Practice. Advances in Clinical Radiology, 2021, 3, 103-124.	0.1	0
35	Depletion of PD-1 or PD-L1 did not affect the mortality of mice infected with Mycobacterium avium. Scientific Reports, 2021, 11, 18008.	1.6	5
36	Clofazimine susceptibility testing of Mycobacterium avium complex and Mycobacterium abscessus: a meta-analysis study. Journal of Global Antimicrobial Resistance, 2021, 26, 188-193.	0.9	7
37	100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infectious Diseases, The, 2022, 22, e2-e12.	4.6	87
38	Origin of COVID-19: Dismissing the Mojiang mine theory and the laboratory accident narrative. Environmental Research, 2022, 204, 112141.	3.7	15
39	Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surface, 2021, 7, 100051.	1.5	23

#	ARTICLE	lF	CITATIONS
41	Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Frontiers in Microbiology, 2020, 11, 614313.	1.5	15
42	Mycobacteria–host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117, 682-692.	1.2	32
43	Nontuberculous mycobacterial lung disease caused by <i>Mycobacterium avium</i> complex - disease burden, unmet needs, and advances in treatment developments. Expert Review of Respiratory Medicine, 2021, 15, 1387-1401.	1.0	21
44	Recurrent fever 3 years postâ€lung transplantation: A treacherous case of <i>Mycobacterium genavense</i> . Transplant Infectious Disease, 2021, 23, e13741.	0.7	1
46	Whole Genome Sequencing in the Management of Non-Tuberculous Mycobacterial Infections. Microorganisms, 2021, 9, 2237.	1.6	15
47	Mycobacterium intracellulare subsp. chimaera from Cardio Surgery Heating-Cooling Units and from Clinical Samples in Israel Are Genetically Unrelated. Pathogens, 2021, 10, 1392.	1.2	3
48	The Role of Biofilms, Bacterial Phenotypes, and Innate Immune Response in Mycobacterium avium Colonization to Infection. Journal of Theoretical Biology, 2022, 534, 110949.	0.8	7
49	Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens, 2021, 10, 1417.	1.2	10
50	Mortality in rheumatoid arthritis patients with pulmonary nontuberculous mycobacterial disease: A retrospective cohort study. PLoS ONE, 2020, 15, e0243110.	1.1	7
51	AntiMycobacterial activity of endophytic actinobacteria from selected medicinal plants. Biomedical and Biotechnology Research Journal, 2020, 4, 193.	0.3	1
52	Non-Tuberculous Mycobacterial Pulmonary Disease identified during community-based screening for : a case report. Malawi Medical Journal, 2021, 33, 65-67.	0.2	0
53	The Potential of Digital Polymerase Chain Reaction for Improving Diagnostic Yield of Nontuberculous Mycobacteria Pulmonary Disease. Infection and Drug Resistance, 2021, Volume 14, 5079-5087.	1.1	0
54	Monitoring prolongation of QT interval in patients with multidrug-resistant tuberculosis and non-tuberculous mycobacterium using mobile health device AliveCor. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2022, 26, 100293.	0.6	1
55	Clinical Characteristics and Antimicrobial Susceptibility of Mycobacterium intracellulare and Mycobacterium abscessus Pulmonary Diseases: A Retrospective Study. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-9.	0.7	2
56	Non-tuberculous Mycobacteria Infection: A Neglected Disease in Bangladesh. US Respiratory & Pulmonary Diseases, 2021, 6, 10.	0.2	0
57	Nontuberculous Mycobacterial Resistance to Antibiotics and Disinfectants: Challenges Still Ahead. BioMed Research International, 2022, 2022, 1-12.	0.9	15
58	Comparison of Macrophage Immune Responses and Metabolic Reprogramming in Smooth and Rough Variant Infections of Mycobacterium mucogenicum. International Journal of Molecular Sciences, 2022, 23, 2488.	1.8	4
59	Factors Associated with Treatment Outcome in Patients with Nontuberculous Mycobacterial Pulmonary Disease: A Large Population-Based Retrospective Cohort Study in Shanghai. Tropical Medicine and Infectious Disease, 2022, 7, 27.	0.9	11

#	Article	IF	CITATIONS
60	Nonâ€ŧuberculous mycobacteria isolation from presumptive tuberculosis patients in Lambaréné, Gabon. Tropical Medicine and International Health, 2022, 27, 438-444.	1.0	6
61	Female Reproductive Factors and Incidence of Nontuberculous Mycobacterial Pulmonary Disease Among Postmenopausal Women in Korea. Clinical Infectious Diseases, 2022, 75, 1397-1404.	2.9	13
62	Structure–Activity Relationship of Anti- <i>Mycobacterium abscessus</i> Piperidine-4-carboxamides, a New Class of NBTI DNA Gyrase Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 417-427.	1.3	2
63	Induced Synthesis of Mycolactone Restores the Pathogenesis of Mycobacterium ulcerans In Vitro and In Vivo. Frontiers in Immunology, 2022, 13, 750643.	2.2	1
64	Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Frontiers in Microbiology, 2022, 13, 842017.	1.5	9
65	Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines, 2022, 10, 390.	2.1	9
66	Drug resistance profiles and related gene mutations in slow-growing non-tuberculous mycobacteria isolated in regional tuberculosis reference laboratories of Iran: a three year cross-sectional study. Pathogens and Global Health, 2023, 117, 52-62.	1.0	5
67	Synthesis and in vitro analysis of novel gallium tetrakis(4-methoxyphenyl)porphyrin and its long-acting nanoparticle as a potent antimycobacterial agent. Bioorganic and Medicinal Chemistry Letters, 2022, 62, 128645.	1.0	3
68	Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms, 2021, 9, 2527.	1.6	6
69	Cavitating pulmonary lung lesions with more than one microbiological aetiology. BMJ Case Reports, 2022, 15, e247396.	0.2	1
71	Recognising and managing non-tuberculous mycobacterial pulmonary disease. Primary Health Care, 2022, 32, 34-42.	0.0	0
72	GenoType CM Direct® and VisionArray Myco® for the Rapid Identification of Mycobacteria from Clinical Specimens. Journal of Clinical Medicine, 2022, 11 , 2404.	1.0	3
73	Clinically refined epidemiology of nontuberculous mycobacterial pulmonary disease in South Korea: overestimation when relying only on diagnostic codes. BMC Pulmonary Medicine, 2022, 22, 195.	0.8	4
74	Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes, 2022, 14, 2073132.	4.3	21
75	Progression and Dissemination of Pulmonary Mycobacterium Avium Infection in a Susceptible Immunocompetent Mouse Model. International Journal of Molecular Sciences, 2022, 23, 5999.	1.8	2
76	Osteoporosis in nontuberculous mycobacterial pulmonary disease: a cross-sectional study. BMC Pulmonary Medicine, 2022, 22, .	0.8	1
77	Mycobacterium abscessus Pneumonia in Severe Alcoholism. Cureus, 2022, , .	0.2	0
78	Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3

#	ARTICLE	IF	CITATIONS
79	Proteo-genetic analysis reveals clear hierarchy of ESX-1 secretion in $\langle i \rangle$ Mycobacterium marinum $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
80	Antimycobacterial and anti-inflammatory activities of metabolites from endophytic and soil fungi. Phytomedicine Plus, 2022, 2, 100312.	0.9	1
81	External Quality Assessment by European mycobacterial laboratories: Results of AFB microscopy and identification rounds. Diagnostic Microbiology and Infectious Disease, 2022, , 115757.	0.8	0
82	3D Human Organoids: The Next "Viral―Model for the Molecular Basis of Infectious Diseases. Biomedicines, 2022, 10, 1541.	1.4	6
83	Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends in Immunology, 2022, 43, 640-656.	2.9	11
84	Next-Generation Metagenome Sequencing Shows Superior Diagnostic Performance in Acid-Fast Staining Sputum Smear-Negative Pulmonary Tuberculosis and Non-tuberculous Mycobacterial Pulmonary Disease. Frontiers in Microbiology, 0, 13, .	1.5	8
85	Antimicrobial Activities of Substituted 4-N-alkylated-2-trifluoromethylquinoline Analogs Against Nontuberculous Mycobacteria. Letters in Drug Design and Discovery, 2023, 20, 1861-1866.	0.4	1
86	Differential activation of innate and adaptive lymphocytes during latent or active infection with <i>Mycobacterium tuberculosis</i> . Microbiology and Immunology, 2022, 66, 477-490.	0.7	1
87	Risk Factors for Nontuberculous Mycobacteria Infections in Solid Organ Transplant Recipients: A Multinational Case-Control Study. Clinical Infectious Diseases, 2023, 76, e995-e1003.	2.9	5
88	<i>Letter to the Editor:</i> Isolation of Nontuberculous Mycobacteria During Multidrug-Resistant Tuberculosis Treatment: Colonization or Disease?. Microbial Drug Resistance, 2022, 28, 906-908.	0.9	0
89	A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Frontiers in Immunology, $0,13,1$	2.2	3
90	Intestinal Mycobacterium avium Complex Infection in a Kidney Transplant Patient. Cureus, 2022, , .	0.2	0
91	Diagnostic performance of metagenomic next-generation sequencing in non-tuberculous mycobacterial pulmonary disease when applied to clinical practice. Infection, 2023, 51, 397-405.	2.3	6
92	Surgical Management of Mycobacterial Infections and Related Complex Pleural Space Problems. Thoracic Surgery Clinics, 2022, 32, 337-348.	0.4	1
93	Mycobacterium abscessus Mutants with a Compromised Functional Link between the Type VII ESX-3 System and an Iron Uptake Mechanism Reliant on an Unusual Mycobactin Siderophore. Pathogens, 2022, 11, 953.	1.2	8
95	Addressing antimicrobial resistance with the IDentif.AI platform: Rapidly optimizing clinically actionable combination therapy regimens against nontuberculous mycobacteria. Theranostics, 2022, 12, 6848-6864.	4.6	2
96	Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules, 2022, 27, 5824.	1.7	2
97	Editorial: Using omics to study leprosy, tuberculosis, and other mycobacterial diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0

#	ARTICLE	IF	CITATIONS
98	T-SPOT with CT image analysis based on deep learning for early differential diagnosis of nontuberculous mycobacteria pulmonary disease and pulmonary tuberculosis. International Journal of Infectious Diseases, 2022, 125, 42-50.	1.5	5
100	Gastroesophageal Reflux Disease Increases Susceptibility to Nontuberculous Mycobacterial Pulmonary Disease. Chest, 2023, 163, 270-280.	0.4	10
101	A glimpse into the genotype and clinical importance of non tuberculous mycobacteria among pulmonary tuberculosis patients: The case of Ethiopia. PLoS ONE, 2022, 17, e0275159.	1.1	5
102	Aerosolised micro and nanoparticle: formulation and delivery method for lung imaging. Clinical and Translational Imaging, 2023, 11, 33-50.	1.1	2
103	Environmental and Infectious Causes of Bronchiectasis. Respiratory Medicine, 2022, , 85-115.	0.1	1
104	Characterization of Mycobacterium salfingeri sp. nov.: A novel nontuberculous mycobacteria isolated from a human wound infection. Frontiers in Microbiology, 0, 13, .	1.5	1
105	The resistomes of Mycobacteroides abscessus complex and their possible acquisition from horizontal gene transfer. BMC Genomics, 2022, 23, .	1.2	3
106	Using Vitek MS v3.0 To Identify Nontuberculous Mycobacteria in Liquid Media in a Clinical Microbiology Laboratory. Microbiology Spectrum, 2022, 10, .	1.2	2
107	Isolation ofÂnontuberculous mycobacteria species from different water sources: a study of six hospitals in Tehran, Iran. BMC Microbiology, 2022, 22, .	1.3	2
109	Expanding the knowledge around antitubercular 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides: Hit–to–lead optimization and release of a novel antitubercular chemotype via scaffold derivatization. European Journal of Medicinal Chemistry, 2023, 245, 114916.	2.6	3
110	Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease. Frontiers in Immunology, 0, 13 , .	2.2	2
111	Clinical characteristics of nontuberculous mycobacterial disease in people living with HIV/AIDS in South Korea: A multi-center, retrospective study. PLoS ONE, 2022, 17, e0276484.	1.1	4
112	Mycobacterium simiae Pulmonary Disease. Infectious Diseases in Clinical Practice, 2023, 31, .	0.1	0
113	Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Frontiers in Microbiology, 0, 13 , .	1.5	1
114	Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Frontiers in Immunology, 0, 13 , .	2.2	4
115	Nontuberculous mycobacteria: clinical and laboratory characterization (2009 and 2019). Epidemiology and Infection, 0, , 1-11.	1.0	0
116	Functional Analysis of EspM, an ESX-1-Associated Transcription Factor in Mycobacterium marinum. Journal of Bacteriology, 2022, 204, .	1.0	5
118	<i>In Vitro</i> and <i>In Vivo</i> Activity of Gepotidacin against Drug-Resistant Mycobacterial Infections. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	7

#	Article	IF	CITATIONS
119	Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon, 2022, 8, e12620.	1.4	5
120	Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Reports, 2022, 41, 111783.	2.9	5
122	Agent-based model indicates chemoattractant signaling caused by Mycobacterium avium biofilms in the lung airway increases bacterial loads by spatially diverting macrophages. Tuberculosis, 2023, 138, 102300.	0.8	1
123	Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis, 2023, 138, 102302.	0.8	4
124	Improving the Antimycobacterial Drug Clofazimine through Formation of Organic Salts by Combination with Fluoroquinolones. International Journal of Molecular Sciences, 2023, 24, 1402.	1.8	1
125	Pathophysiology of pulmonary nontuberculous mycobacterial (NTM) disease. Respiratory Investigation, 2023, 61, 135-148.	0.9	3
126	Nontuberculous Mycobacterial Isolates Among Cancer Patients: A Single-Center 5-Year Experience. Infectious Diseases in Clinical Practice, 2023, 31, .	0.1	0
127	Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories. Antibiotics, 2023, 12, 64.	1.5	3
128	Characteristics of clinical isolates of nontuberculous mycobacteria in Java-Indonesia: A multicenter study. PLoS Neglected Tropical Diseases, 2022, 16, e0011007.	1.3	1
129	Rapid diagnosis of non-tuberculous mycobacterial pulmonary diseases by metagenomic next-generation sequencing in non-referral hospitals. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
130	Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides. Communications Biology, 2023, 6, .	2.0	2
131	Inactivation kinetics of 280Ânm UV-LEDs against Mycobacterium abscessus in water. Scientific Reports, 2023, 13, .	1.6	2
132	Prosthetic joint infection caused by an imipenem-resistant Mycobacterium senegalense. Brazilian Journal of Microbiology, 0, , .	0.8	0
133	Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. IScience, 2023, 26, 106042.	1.9	2
134	A nontuberculous mycobacterium could solve the mystery of the lady from the Franciscan church in Basel, Switzerland. BMC Biology, 2023, 21, .	1.7	1
135	Culture result discrepancy between laboratories for nontuberculous mycobacteria in people with cystic fibrosis. Pediatric Pulmonology, 2023, 58, 1598-1601.	1.0	0
136	Resolution of feline <i>Mycobacterium</i> panniculitis despite protracted treatment with methylprednisolone acetate. Journal of the South African Veterinary Association, 2022, 93, 109-111.	0.2	0
137	The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Annals of Clinical Microbiology and Antimicrobials, 2023, 22, .	1.7	3

#	Article	IF	CITATIONS
138	Evaluation and clinical impact of MALDI Biotyper Mycobacteria Library v6.0 for identification of nontuberculous mycobacteria by MALDIâ€₹OF mass spectrometry. Journal of Mass Spectrometry, 2023, 58, .	0.7	2
139	<i>Galleria mellonella</i> i>â€"intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiology Reviews, 2023, 47, .	3.9	12
140	Emergence of Nontuberculous Mycobacteria at the Human–Livestock–Environment Interface in Zambia. Microbiology Research, 2023, 14, 430-447.	0.8	0
141	Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum in BALB/c mice models. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	6
142	A Brief Update on Mycobacterial Taxonomy, 2020 to 2022. Journal of Clinical Microbiology, 2023, 61, .	1.8	1
143	Targeted Chromosomal Barcoding Establishes Direct Genotype-Phenotype Associations for Antibiotic Resistance in Mycobacterium abscessus. Microbiology Spectrum, 0, , .	1.2	0
144	A novel repeat sequence-based PCR (rep-PCR) using specific repeat sequences of Mycobacterium intracellulare as a DNA fingerprinting. Frontiers in Microbiology, 0, 14 , .	1.5	1
145	Epidemiology, management, and clinical outcomes of extrapulmonary Mycobacterium abscessus complex infections in heart transplant and ventricular assist device recipients. American Journal of Transplantation, 2023, 23, 1048-1057.	2.6	1
146	Serum amyloid A proteins reduce bone mass during mycobacterial infections. Frontiers in Immunology, 0, 14 , .	2.2	0
156	Phages for the treatment of Mycobacterium species. Progress in Molecular Biology and Translational Science, 2023, , 41-92.	0.9	0
185	Sensor and Nanotechnology-Based Diagnostics in the Field of Mycobacteriology. , 2023, , 175-208.		0
189	Nontuberculous Mycobacterium Infections in Lung Disease and Medical Interventions. , 2023, , 209-236.		O