Quantum steering

Reviews of Modern Physics

92,

DOI: 10.1103/revmodphys.92.015001

Citation Report

#	Article	IF	CITATION
1	Diagnosing steerability of a bipartite state with the nonsteering threshold. Physical Review A, 2020, 102, .	1.0	3
2	Generalizing Optimal Bell Inequalities. Physical Review Letters, 2020, 125, 200401.	2.9	5
3	Entanglement Enhancement from a Two-Port Feedback Optical Parametric Amplifier. Physical Review Applied, 2020, 14, .	1.5	8
4	Quantum direct cause across the Cherenkov threshold in circuit QED. Physical Review A, 2020, 102, .	1.0	0
5	Experimental demonstration of measurement-device-independent measure of quantum steering. Npj Quantum Information, 2020, 6, .	2.8	24
6	Einstein-Podolsky-Rosen steering in spontaneous parametric down-conversion cascaded with a sum-frequency generation. Physical Review A, 2020, 102, .	1.0	9
7	Some Quantum Measurements with Three Outcomes Can Reveal Nonclassicality where All Two-Outcome Measurements Fail to Do So. Physical Review Letters, 2020, 125, 230402.	2.9	10
8	Shareability of quantum steering and its relation with entanglement. Physical Review A, 2020, 102, .	1.0	13
9	Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes. Physical Review A, 2020, 101, .	1.0	13
10	Number-phase entanglement and Einstein-Podolsky-Rosen steering. Physical Review A, 2020, 101, .	1.0	10
11	Generalized quantum steering ellipsoids for a qubit-field system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 175502.	0.6	1
12	Experimental Demonstration of Robust Quantum Steering. Physical Review Letters, 2020, 125, 020404.	2.9	27
13	Quantum steering of Bell-diagonal states with generalized measurements. Physical Review A, 2020, 101,	1.0	3
14	Experimental observation of Einstein-Podolsky-Rosen steering via entanglement detection. Physical Review A, 2020, 101, .	1.0	9
15	Enhanced entanglement and asymmetric EPR steering between magnons. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	38
16	Continuous variable tripartite entanglement and steering using a third-order nonlinear optical interaction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 371.	0.9	8
17	Entangled States. Texts in Computer Science, 2021, , 19-23.	0.5	0
18	Quantum steering based on cascaded four-wave mixing processes. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 160301.	0.2	1

#	Article	IF	CITATIONS
19	Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering. Fundamental Research, 2021, 1, 99-101.	1.6	9
20	Quantum measurement incompatibility in subspaces. Physical Review A, 2021, 103, .	1.0	7
21	Genuine Einstein-Podolsky-Rosen steering of three-qubit states by multiple sequential observers. Physical Review A, 2021, 103, .	1.0	24
22	Verification of complementarity relations between quantum steering criteria using an optical system. Physical Review A, 2021, 103, .	1.0	8
23	The different behaviors of thermal noise in collective quantum steering and genuinely tripartite steering induced by atomic coherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 065401.	0.6	1
24	Quantum temporal steering in a noise channel with topological characterization. European Physical Journal D, 2021, 75, 1.	0.6	3
25	Relationship between first-order coherence and the maximum violation of the three-setting linear steering inequality for a two-qubit system. Physical Review A, 2021, 103, .	1.0	8
26	Postquantum common-cause channels: the resource theory of local operations and shared entanglement. Quantum - the Open Journal for Quantum Science, 0, 5, 419.	0.0	8
27	Zero uncertainty states in the presence of quantum memory. Npj Quantum Information, 2021, 7, .	2.8	4
28	Characterizing quantum nonlocalities per uncertainty relation. Quantum Information Processing, 2021, 20, 1.	1.0	4
29	Nonlocal single particle steering generated through single particle entanglement. Scientific Reports, 2021, 11, 6744.	1.6	4
30	Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels. Npj Quantum Information, 2021, 7, .	2.8	31
31	Benchmarking quantum state transfer on quantum devices. Physical Review Research, 2021, 3, .	1.3	5
32	Jordan products of quantum channels and their compatibility. Nature Communications, 2021, 12, 2129.	5.8	14
33	Uncertainty principle of quantum processes. Physical Review Research, 2021, 3, .	1.3	6
34	Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments. Physical Review A, 2021, 103, .	1.0	2
35	Detecting Many-Body Bell Nonlocality by Solving Ising Models. Physical Review Letters, 2021, 126, 140504.	2.9	9
36	Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox. Nature Communications, 2021, 12, 2410.	5.8	32

#	Article	IF	CITATIONS
37	Multipartite entanglement criterion via generalized local uncertainty relations. Scientific Reports, 2021, 11, 9640.	1.6	1
38	Edge of the set of no-signaling assemblages. Physical Review A, 2021, 103, .	1.0	1
39	Steering paradox for Einstein–Podolsky–Rosen argument and its extended inequality. Photonics Research, 2021, 9, 992.	3.4	2
40	Genuine High-Dimensional Quantum Steering. Physical Review Letters, 2021, 126, 200404.	2.9	39
41	Exposure of subtle multipartite quantum nonlocality. Npj Quantum Information, 2021, 7, .	2.8	2
42	Device-independent quantification of measurement incompatibility. Physical Review Research, 2021, 3, .	1.3	6
43	Communication, Dynamical Resource Theory, and Thermodynamics. PRX Quantum, 2021, 2, .	3.5	8
44	Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states. Physical Review A, 2021, 103,	1.0	5
45	Bell Diagonal and Werner State Generation: Entanglement, Non-Locality, Steering and Discord on the IBM Quantum Computer. Entropy, 2021, 23, 797.	1.1	11
46	Constraint Relation Between Steerability and Concurrence for Twoâ€Qubit States. Annalen Der Physik, 2021, 533, 2100098.	0.9	9
47	Genuine multipartite entanglement in time. SciPost Physics, 2021, 10, .	1.5	15
48	Robust semi-device-independent certification of all pure bipartite maximally entangled states via quantum steering. Physical Review Research, 2021, 3, .	1.3	9
49	Quantum channels transforming Bell local states as unsteerable states. Quantum Engineering, 2021, 3, e74.	1.2	1
50	General Method for Classicality Certification in the Prepare and Measure Scenario. PRX Quantum, 2021, 2, .	3.5	4
51	Nonlocality, Steering, and Quantum State Tomography in a Single Experiment. Physical Review Letters, 2021, 127, 020401.	2.9	10
52	Distillation of genuine tripartite Einstein-Podolsky-Rosen steering. Physical Review A, 2021, 104, .	1.0	8
53	One-Shot Manipulation of Dynamical Quantum Resources. Physical Review Letters, 2021, 127, 060402.	2.9	11
54	Sharing quantum steering among multiple Alices and Bobs via a two-qubit Werner state. Quantum Information Processing, 2021, 20, 1.	1.0	3

#	Article	IF	CITATIONS
55	Estimating quantum steering and Bell nonlocality through quantum entanglement in two-photon systems. Optics Express, 2021, 29, 26822.	1.7	5
56	Quantum steering as a witness of quantum scrambling. Physical Review A, 2021, 104, .	1.0	6
57	Role of fine-grained uncertainty in determining the limit of preparation contextuality. Physical Review A, 2021, 104, .	1.0	2
58	Gaussian continuous-variable isotropic state. Physical Review A, 2021, 104, .	1.0	6
59	Collective multipartite Einstein-Podolsky-Rosen steering via cascaded four-wave mixing of rubidium atoms. Physical Review A, 2021, 104, .	1.0	9
60	Quantum advantage of resources in data hiding. Quantum Information Processing, 2021, 20, 1.	1.0	1
61	Non-Gaussian Quantum States and Where to Find Them. PRX Quantum, 2021, 2, .	3.5	101
62	Robust self-testing of steerable quantum assemblages and its applications on device-independent quantum certification. Quantum - the Open Journal for Quantum Science, 0, 5, 552.	0.0	12
63	Quantum resources of the steady-state of three coupled qubits: Microscopic versus phenomenological model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 415, 127651.	0.9	1
64	Mathematically Proving Bell Nonlocality Motivated by the GHZ Argument. IEEE Access, 2021, 9, 39550-39559.	2.6	2
65	Averaged fidelity-based steering criteria. Physical Review A, 2021, 103, .	1.0	4
66	Self-testing and certification using trusted quantum inputs. New Journal of Physics, 2020, 22, 073006.	1.2	8
67	Exploration of entropic uncertainty bound in a symmetric multi-qubit system under noisy channels. Physica Scripta, 2021, 96, 015101.	1.2	18
68	Rényi formulation of uncertainty relations for POVMs assigned to a quantum design. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 405301.	0.7	7
69	Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States. Physical Review Letters, 2020, 125, 260506.	2.9	31
70	Entropic uncertainty relations from quantum designs. Physical Review Research, 2020, 2, .	1.3	12
71	Complexity of compatible measurements. Physical Review Research, 2020, 2, .	1.3	4
72	Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Physical Review Research, 2020, 2, .	1.3	27

	Стат	tion Report	
#	Article	IF	Citations
73	Measurement-induced steering of quantum systems. Physical Review Research, 2020, 2, .	1.3	43
74	Simultaneous certification of entangled states and measurements in bounded dimensional semiquantum games. Physical Review Research, 2020, 2, .	1.3	2
75	Practical Framework for Conditional Non-Gaussian Quantum State Preparation. PRX Quantum, 2020, 1,	3.5	25
76	Demonstration of simultaneous quantum steering by multiple observers via sequential weak measurements. Optica, 2020, 7, 675.	4.8	25
77	Resource Preservability. Quantum - the Open Journal for Quantum Science, 0, 4, 244.	0.0	14
78	Self-testing of quantum systems: a review. Quantum - the Open Journal for Quantum Science, 0, 4, 337.	0.0	144
79	Tradeoff relations for two-valued qubit measurements. , 2021, , .		0
80	Network Quantum Steering. Physical Review Letters, 2021, 127, 170405.	2.9	22
81	A Quintet of Quandaries: Five No-Go Theorems for Relational Quantum Mechanics. Foundations of Physics, 2021, 51, 1.	0.6	17
82	Asymmetric steerability of quantum equilibrium and nonequilibrium steady states through entanglement detection. Physical Review A, 2021, 104, .	1.0	4
83	Quantum mechanical work. Physical Review A, 2021, 104, .	1.0	10
84	Entanglement cost for steering assemblages. Physical Review A, 2021, 104, .	1.0	1
85	Confident entanglement detection via the separable numerical range. Physical Review A, 2021, 104, .	1.0	1
86	Verification of joint measurability using phase-space quasiprobability distributions. Physical Review A, 2021, 104, .	1.0	3
87	Gaussian quantum steering under the influence of a dilaton black hole. European Physical Journal C, 2021, 81, 1.	1.4	3
88	Experimental Demonstration of Fine-Grained Steering Inequality of Two-Qubit Mixed States. Photonics, 2021, 8, 514.	0.9	2
89	Identifying genuine quantum teleportation. Physical Review A, 2021, 104, .	1.0	4
90	Experimental verification of the relationship between first-order coherence and linear steerability. Optics Express, 2021, 29, 40668.	1.7	2

#	Article	IF	Citations
91	Experimental certification of the steering criterion based on the local uncertainty relation. Physical Review A, 2021, 104, .	1.0	2
92	Suppressing measurement uncertainty in an inhomogeneous spin star system. Scientific Reports, 2021, 11, 22691.	1.6	11
93	Cyclic Einstein-Podolsky-Rosen steering. Physical Review Research, 2021, 3, .	1.3	4
94	Optimal verification of the Bell state and Greenberger–Horne–Zeilinger states in untrusted quantum networks. Npj Quantum Information, 2021, 7, .	2.8	4
95	Full multipartite steering inseparability, genuine multipartite steering, and monogamy for continuous-variable systems. Physical Review A, 2022, 105, .	1.0	10
96	Genuine High-Dimensional Quantum Steering. , 2021, , .		0
97	Enhancing steered coherence in the Heisenberg model using Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions. Laser Physics Letters, 2022, 19, 025204.	0.6	3
98	Generalising the Horodecki criterion to nonprojective qubit observables. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 045301.	0.7	3
99	Deterministic distribution of orbital angular momentum multiplexed continuous-variable entanglement and quantum steering. Photonics Research, 2022, 10, 777.	3.4	5
100	Quantum steering with Gaussian states: A tutorial. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 430, 127954.	0.9	4
101	Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems. Physica A: Statistical Mechanics and Its Applications, 2022, 594, 127035.	1.2	2
102	Simulating macroscopic quantum correlations in linear networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127911.	0.9	5
103	Limitations on sharing Bell nonlocality between sequential pairs of observers. Physical Review A, 2021, 104, .	1.0	31
104	Emergence of Objectivity for Quantum Many-Body Systems. Entropy, 2022, 24, 277.	1.1	2
105	Maximal violation of steering inequalities and the matrix cube. Quantum - the Open Journal for Quantum Science, 0, 6, 656.	0.0	3
106	Entanglement of Local Hidden States. Quantum - the Open Journal for Quantum Science, 0, 6, 651.	0.0	3
107	Reliable experimental certification of one-way Einstein-Podolsky-Rosen steering. Physical Review Research, 2022, 4, .	1.3	9
108	Observation of Gaussian quantum correlations existence of photons under linear beam splitter. Journal of Physics Communications, 2022, 6, 025007.	0.5	Ο

#	Article	IF	CITATIONS
109	Complementary relation between tripartite entanglement and the maximum steering inequality violation. Physical Review A, 2022, 105, .	1.0	8
110	Quantum-Memory-Enhanced Preparation of Nonlocal Graph States. Physical Review Letters, 2022, 128, 080501.	2.9	3
111	Witnessing quantum steering by means of the Fisher information. Physical Review A, 2022, 105, .	1.0	4
112	Steering quantum nonlocalities of quantum dot system suffering from decoherence. Chinese Physics B, 2022, 31, 090302.	0.7	2
113	Quantum steering with vector vortex photon states with the detection loophole closed. Npj Quantum Information, 2022, 8, .	2.8	4
114	Robust genuine high-dimensional steering with many measurements. Physical Review A, 2022, 105, .	1.0	5
115	Demonstrating Shareability of Multipartite Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2022, 128, 120402.	2.9	17
116	Incompatibility in restricted operational theories: connecting contextuality and steering. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 174001.	0.7	2
117	Distribution and quantification of remotely generated Wigner negativity. Npj Quantum Information, 2022, 8, .	2.8	7
118	Operational nonclassicality in minimal autonomous thermal machines. Quantum - the Open Journal for Quantum Science, 0, 6, 672.	0.0	10
119	Spin Quantum Heat Engine Quantified by Quantum Steering. Physical Review Letters, 2022, 128, 090602.	2.9	25
120	Einstein-Podolsky-Rosen steering in two-sided sequential measurements with one entangled pair. Physical Review A, 2022, 105, .	1.0	18
121	Robust method for certifying genuine high-dimensional quantum steering with multimeasurement settings. Optica, 2022, 9, 473.	4.8	7
122	Quantum steering on IBM quantum processors. Physical Review A, 2022, 105, .	1.0	2
123	Quantum correlations in optomechanical system in the presence of optical feedback. Physics Open, 2022, 11, 100100.	0.7	2
124	Entanglement, nonlocal features, quantum teleportation of two-mode squeezed vacuum states with superposition of photon-pair addition and subtraction operations. Optik, 2022, 257, 168744.	1.4	8
125	Conditions for experimental detection of one-way quantum steering in a three-mode optomechanical system. AEJ - Alexandria Engineering Journal, 2022, 61, 9297-9304.	3.4	2
126	Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise. Physical Review A, 2021, 104, .	1.0	8

ARTICLE IF CITATIONS # Temporal steering of a two-level system interacting with a coherent superposition of two 127 1.0 2 environments. Quantum Information Processing, 2022, 21, 1. Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification. Npj 2.8 Quantum Information, 2022, 8, . Memory effect of a dephasing channel on measurement uncertainty, dense coding, teleportation, and 129 2.0 8 quantum Fisher information. Results in Physics, 2022, 37, 105526. Dynamical nonlocality in quantum time via modular operators. Physical Review A, 2022, 105, . 130 Limits on sequential sharing of nonlocal advantage of quantum coherence. Science China: Physics, 131 2.0 10 Mechanics and Astronomy, 2022, 65, . Unidirectional Gaussian Oneâ€Way Steering. Annalen Der Physik, 2022, 534, . Enhanced entanglement and quantum steering of directly and indirectly coupled modes in a 133 1.2 16 magnomechanical system. Physica Scripta, 2022, 97, 075102. Can NSI affect non-local correlations in neutrino oscillations?. European Physical Journal C, 2022, 82, 1.4 Experimental Demonstration of Remotely Creating Wigner Negativity via Quantum Steering. Physical 135 2.9 19 Review Letters, 2022, 128, . Quantifying Quantumness of Channels Without Entanglement. PRX Quantum, 2022, 3, . 3.5 Asymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on 137 2.9 5 the Topology. Physical Review Letters, 2022, 128, 138 Error-disturbance uncertainty relations in Faraday measurements. Physical Review A, 2022, 105, . Quantum Cloning of Steering. Chinese Physics Letters, 2022, 39, 070302. 139 1.3 2 Driving quantum systems with periodic conditional measurements. Physical Review Research, 2022, 4, . 140 1.3 Revealing hidden standard tripartite nonlocality by local filtering. Quantum Information Processing, 141 1.0 0 2022, 21, . A geometrical framework for quantum incompatibility resources. AAPPS Bulletin, 2022, 32, . 142 Retrieving High-Dimensional Quantum Steering from a Noisy Environment with <mml:math 143 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math> 2.9 12 Measurement Settings. Physical Review Letters, 2022, 128, . Quantifying incompatibility of quantum measurements through non-commutativity. Journal of Physics 144 A: Mathematical and Theoretical, 2022, 55, 265302.

#	Article	IF	CITATIONS
145	Estimating the Shannon Entropy and (Un)certainty Relations for Design-Structured POVMs. SIAM Journal on Applied Mathematics, 2022, 82, 1001-1019.	0.8	1
146	Locality of three-qubit Greenberger-Horne-Zeilinger-symmetric states. Physical Review A, 2022, 105, .	1.0	3
147	Complete complementarity relations for quantum correlations in neutrino oscillations. European Physical Journal C, 2022, 82, .	1.4	10
148	Post-quantum steering is a stronger-than-quantum resource for information processing. Npj Quantum Information, 2022, 8, .	2.8	6
149	Macroscopic delayed choice and retrocausality: Quantum eraser, Leggett-Garg, and dimension witness tests with cat states. Physical Review A, 2022, 105, .	1.0	2
150	Hybrid No-Signaling-Quantum Correlations. New Journal of Physics, 0, , .	1.2	0
151	Probing Genuine Multipartite Einstein–Podolsky–Rosen Steering and Entanglement Under an Open Tripartite System. Frontiers in Physics, 0, 10, .	1.0	2
152	Quantum steering as resource of quantum teleportation. Physical Review A, 2022, 106, .	1.0	7
153	Dynamics of Rényi-2 correlations in optomechanics. Physica Scripta, 2022, 97, 095102.	1.2	5
154	Creating quantum correlations in generalized entanglement swapping. Physical Review A, 2022, 106, .	1.0	2
155	Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides. Chinese Physics B, O, , .	0.7	0
156	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
157	Complete classification of steerability under local filters and its relation with measurement incompatibility. Nature Communications, 2022, 13, .	5.8	9
158	Revealing hidden steering nonlocality in a quantum network. European Physical Journal D, 2022, 76, .	0.6	1
159	Entanglement enhancement from coherent feedback-controlled and cascaded nondegenerate optical parametric amplifiers. Optics Communications, 2023, 526, 128858.	1.0	1
160	Average steered coherence in correlated amplitude damping channel. Results in Physics, 2022, 42, 105998.	2.0	1
161	Virtual Excitations and Quantum Correlations in Ultra-Strongly Coupled Harmonicoscillators Under Intrinsic Decoherence. SSRN Electronic Journal, 0, , .	0.4	0
162	Improving the bidirectional steerability between two accelerated partners via filtering process. Modern Physics Letters A, 2022, 37, .	0.5	10

#	Article	IF	CITATIONS
163	Amplification of gravitationally induced entanglement. Physical Review D, 2022, 106, .	1.6	5
164	Revival and distribution of Einstein–Podolsky–Rosen steering of a four-mode cluster state in noisy channels. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2779.	0.9	0
165	One-way Einstein-Podolsky-Rosen steering beyond qubits. Physical Review A, 2022, 106, .	1.0	4
166	Homodyne Detection of Non-Gaussian Quantum Steering. PRX Quantum, 2022, 3, .	3.5	2
167	Decomposing all multipartite non-signalling channels via quasiprobabilistic mixtures of local channels in generalised probabilistic theories. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 404001.	0.7	0
168	Detecting Einstein-Podolsky-Rosen steering via correlation matrices. Physical Review A, 2022, 106, .	1.0	5
169	Assemblages and steering in general probabilistic theories. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	1
170	Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems. Progress in Quantum Electronics, 2022, , 100396.	3.5	1
171	Manipulation and enhancement of asymmetric steering via down-converted nondegenerate photons. AAPPS Bulletin, 2022, 32, .	2.7	2
172	Manipulating the quantum steering direction with sequential unsharp measurements. Physical Review A, 2022, 106, .	1.0	3
173	Robust one-sided self-testing of two-qubit states via quantum steering. Physical Review A, 2022, 106, .	1.0	1
174	Maxwell's two-demon engine under pure dephasing noise. Physical Review A, 2022, 106, .	1.0	3
175	Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements. Chinese Physics Letters, 2022, 39, 110301.	1.3	0
176	Quantum violation of trivial and non-trivial preparation contextuality: nonlocality and steering. European Physical Journal D, 2022, 76, .	0.6	0
177	Dynamical maps beyond Markovian regime. Physics Reports, 2022, 992, 1-85.	10.3	19
178	Limits of network nonlocality probed by timelike-separated observers. Physical Review A, 2022, 106, .	1.0	1
179	Entanglement Verification of Hyperentangled Photon Pairs. Physical Review Applied, 2022, 18, .	1.5	5
180	Resource-theoretic efficacy of the single copy of a two-qubit entangled state in a sequential network. Quantum Information Processing, 2022, 21, .	1.0	2

		CITATION REPORT		
#	Article	IF	Cr	TATIONS
181	Certified random-number generation from quantum steering. Physical Review A, 2022, 106, .	1.0	3	
182	Inequality relations for the hierarchy of quantum correlations in two-qubit systems. Frontiers of Physics, 2023, 18, .	2.4	2	
183	Detecting the genuine multipartite two-way steerability with linear steering inequalities. Quantu Information Processing, 2022, 21, .	m 1.0	2	
184	Quick Quantum Steering: Overcoming Loss and Noise with Qudits. Physical Review X, 2022, 12,	. 2.8	8	
185	Self-healing of Einstein-Rosen-Podolsky steering after an obstruction. Optics Letters, 0, , .	1.7	0	
186	Protecting nonlocal quantum correlations in correlated squeezed generalized amplitude dampin channel. Scientific Reports, 2022, 12, .	g 1.6	3	
187	Kochen-Specker contextuality. Reviews of Modern Physics, 2022, 94, .	16.4	1 52	!
188	Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks. Journal of Physics, 2023, 25, 013023.	New 1.2	0	
189	Absolutely secure distributed superdense coding: entanglement requirement for optimality. Phy Scripta, 2023, 98, 025104.	sica 1.2	2	
190	Enhancement of Steady Quantum Entanglement and Directional Controllability of Quantum Ste in Cavity Magnetic Hybrid Systems. Annalen Der Physik, 2023, 535, .	ering 0.9	3	
191	Bidirectional steering, entanglement and coherence of accelerated qubit–qutrit system with a stochastic noise. Optik, 2023, 274, 170543.	1.4	3	
192	Genuine quadripartite steering in three-photon spontaneous parametric down-conversion. Physi Review A, 2022, 106, .	cal 1.0	2	
193	Intrinsic decoherence dynamics and dense coding in dipolar spin system. Applied Physics B: Lase Optics, 2023, 129, .	rs and 1.1	4	
194	Visually capture quantum nonlocalities through quantum steering ellipsoid. Laser Physics Letter 2023, 20, 035203.	^{5,} 0.6	0	
195	Experimental detection of quantum steerability based on the critical radius in an all-optical syste Physical Review A, 2023, 107, .	m. 1.0	1	
196	Detector entanglement: Quasidistributions for Bell-state measurements. Physical Review A, 202	3, 107, . 1.0	0	
197	Eavesdropping a quantum key distribution network using sequential quantum unsharp measure attacks. European Physical Journal Plus, 2023, 138, .	ment 1.2	3	
198	Renormalization of steered coherence and quantum phase transitions in the alternating Ising mo Physica A: Statistical Mechanics and Its Applications, 2023, 615, 128617.	odel. 1.2	4	

#	Article	IF	CITATIONS
199	Quantum feedback induced genuine magnon–photon–magnon entanglement and steering in a cavity magnonical system. Results in Physics, 2023, 48, 106422.	2.0	4
200	A comparative study between EPR steering and directional entanglement of a joint field-field system. Physica A: Statistical Mechanics and Its Applications, 2023, 619, 128735.	1.2	2
201	<i>Colloquium</i> : Incompatible measurements in quantum information science. Reviews of Modern Physics, 2023, 95, .	16.4	24
202	Deterministic manipulation of steering between distant quantum network nodes. Optics Express, 2023, 31, 8257.	1.7	2
203	Steering-enhanced quantum metrology using superpositions of noisy phase shifts. Physical Review Research, 2023, 5, .	1.3	3
204	Quantifying EPR: the resource theory of nonclassicality of common-cause assemblages. Quantum - the Open Journal for Quantum Science, 0, 7, 926.	0.0	2
205	Improvement in quantum communication using quantum switch. Physica Scripta, 2023, 98, 045101.	1.2	1
206	Steerability criteria based on Heisenberg–Weyl observables. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 115305.	0.7	1
208	Experimental investigation of measurement incompatibility of mutually unbiased bases. , 2023, 2, 100041.		0
209	Twoâ€Qubit Steerability, Nonlocality, and Average Steered Coherence under Classical Dephasing Channels. Annalen Der Physik, 2023, 535, .	0.9	8
210	Dynamics of multipartite quantum steering for different types of decoherence channels. Scientific Reports, 2023, 13, .	1.6	2
211	Hexapartite steering based on a four-wave-mixing process with a spatially structured pump. Optics Express, 2023, 31, 11775.	1.7	4
212	Quantum conditional entropies and steerability of states with maximally mixed marginals. Physical Review A, 2023, 107, .	1.0	0
213	Self-Testing of any Pure Entangled State with the Minimal Number of Measurements and Optimal Randomness Certification in a One-Sided Device-Independent Scenario. Physical Review Applied, 2023, 19,	1.5	3
214	Coherence controlled generation of Gaussian quantum discord in a quantum beat laser. Physica Scripta, 2023, 98, 045113.	1.2	0
215	Experimental Full-Domain Mapping of Quantum Correlation in Clauser-Horne-Shimony-Holt Scenarios. Physical Review Applied, 2023, 19, .	1.5	0
216	Quantum non-Markovianity: Overview and recent developments. , 0, 2, .		1
217	Entanglement islands, fire walls and state paradox from quantum teleportation and entanglement swapping. Classical and Quantum Gravity, 2023, 40, 095012.	1.5	2

#	Article	IF	CITATIONS
218	Accurate Shot-Noise-Limited Calibration of a Time-Domain Balanced Homodyne Detector for Continuous-Variable Quantum Key Distribution. Journal of Lightwave Technology, 2023, 41, 5518-5528.	2.7	1
219	Relating EPR steering with the fidelity of quantum teleportation for two- and three-qubit states. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 185303.	0.7	1
220	Device-independent and semi-device-independent entanglement certification in broadcast Bell scenarios. SciPost Physics Core, 2023, 6, .	0.9	0
221	Coherent activation of a steerability-breaking channel. Physical Review A, 2023, 107, .	1.0	1
222	Reliable experimental manipulation of quantum steering direction. Optics Express, 2023, 31, 14771.	1.7	0
223	Leggett-Garg macrorealism and temporal correlations. Physical Review A, 2023, 107, .	1.0	4
288	Quantum Steering of Surface Error Correcting Codes. , 2023, , .		0
294	Quantum Network Coding Based on Quantum Steering. , 2023, , .		0