Identification of region-specific astrocyte subtypes at s

Nature Communications 11, 1220 DOI: 10.1038/s41467-019-14198-8

Citation Report

#	Article	IF	CITATIONS
1	Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends in Immunology, 2020, 41, 758-770.	6.8	344
2	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	6.8	146
3	Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Frontiers in Immunology, 2020, 11, 573256.	4.8	122
4	Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease. Cell, 2020, 182, 976-991.e19.	28.9	491
5	The Expanding Cell Diversity of the Brain Vasculature. Frontiers in Physiology, 2020, 11, 600767.	2.8	35
6	The role of brain innate immune response in lysosomal storage disorders: fundamental process or evolutionary side effect?. FEBS Letters, 2020, 594, 3619-3631.	2.8	7
7	Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Frontiers in Neurology, 2020, 11, 591690.	2.4	83
8	Neurogenesis From Embryo to Adult – Lessons From Flies and Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 533.	3.7	38
9	Microglia and astrocyte dysfunction in parkinson's disease. Neurobiology of Disease, 2020, 144, 105028.	4.4	177
10	Location, Location, Location: Transcriptional Control of Astrocyte Heterogeneity. Trends in Immunology, 2020, 41, 753-755.	6.8	1
11	Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Frontiers in Physiology, 2020, 11, 948.	2.8	40
12	A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Frontiers in Cellular Neuroscience, 2020, 14, 565921.	3.7	11
13	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	4.1	26
14	Unraveling the adult cell progeny of early postnatal progenitor cells. Scientific Reports, 2020, 10, 19058.	3.3	7
15	Transcriptional heterogeneity between primary adult grey and white matter astrocytes underlie differences in modulation of in vitro myelination. Journal of Neuroinflammation, 2020, 17, 373.	7.2	11
16	Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chemical Neuroscience, 2020, 11, 3707-3731.	3.5	31
17	Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia, 2020, 68, 2451-2470.	4.9	96
18	Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience, 2020, 23, 500-509.	14.8	290

#	Article	IF	CITATIONS
19	No Longer Underappreciated: The Emerging Concept of Astrocyte Heterogeneity in Neuroscience. Brain Sciences, 2020, 10, 168.	2.3	64
20	Excessive Astrocytic GABA Causes Cortical Hypometabolism and Impedes Functional Recovery after Subcortical Stroke. Cell Reports, 2020, 32, 107861.	6.4	39
21	Tackling mitochondrial diversity in brain function: from animal models to human brain organoids. International Journal of Biochemistry and Cell Biology, 2020, 123, 105760.	2.8	12
22	Astrocytes shape the plastic response of adult cortical neurons to vision loss. Glia, 2020, 68, 2102-2118.	4.9	19
23	Regionally encoded functional heterogeneity of astrocytes in health and disease: A perspective. Glia, 2021, 69, 20-27.	4.9	43
24	Deciphering neural heterogeneity through cell lineage tracing. Cellular and Molecular Life Sciences, 2021, 78, 1971-1982.	5.4	9
25	Repetitive injury and absence of monocytes promote astrocyte selfâ€renewal and neurological recovery. Glia, 2021, 69, 165-181.	4.9	9
26	Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascularâ€interstitial flux through the cortical mantle. Glia, 2021, 69, 715-728.	4.9	36
27	Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia, 2021, 69, 513-531.	4.9	19
28	Astrocytes in the regulation of cerebrovascular functions. Glia, 2021, 69, 817-841.	4.9	51
29	Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia, 2021, 69, 1341-1368.	4.9	24
30	Extracellular Vesicle-Mediated Bilateral Communication between Glioblastoma and Astrocytes. Trends in Neurosciences, 2021, 44, 215-226.	8.6	41
31	Insights into the mechanism of adult neurogenesis - an interview with Arturo Ãlvarez-Buylla. International Journal of Developmental Biology, 2021, 65, 153-161.	0.6	1
32	Regionally diverse astrocyte subtypes and their heterogeneous response to EAE. Clia, 2021, 69, 1140-1154.	4.9	31
33	Sonic hedgehog signaling in astrocytes. Cellular and Molecular Life Sciences, 2021, 78, 1393-1403.	5.4	22
34	Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia, 2021, 69, 346-361.	4.9	19
35	Glymphatic system, AQP4, and their implications in Alzheimer's disease. Neurological Research and Practice, 2021, 3, 5.	2.0	88
36	Mitochondrial Dysfunction in Astrocytes: A Role in Parkinson's Disease?. Frontiers in Cell and Developmental Biology, 2020, 8, 608026.	3.7	37

#	Article	IF	CITATIONS
38	Intracrine Vascular Endothelial Growth Factor Maintains Hippocampal Neural Stem Cell Quiescence. SSRN Electronic Journal, 0, , .	0.4	0
39	Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochemical Research, 2021, 46, 2715-2730.	3.3	24
40	Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Frontiers in Cellular Neuroscience, 2021, 15, 645691.	3.7	33
41	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
42	Reactive astrocytes as treatment targets in Alzheimer's disease—Systematic review of studies using the <scp>APPswePS1dE9</scp> mouse model. Glia, 2021, 69, 1852-1881.	4.9	37
43	Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nature Neuroscience, 2021, 24, 529-541.	14.8	88
44	Astrocyte-immune cell interactions in physiology and pathology. Immunity, 2021, 54, 211-224.	14.3	105
45	Endocannabinoids and cortical plasticity: CB1R as a possible regulator of the excitation/inhibition balance in health and disease. European Journal of Neuroscience, 2022, 55, 971-988.	2.6	12
46	Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids and Barriers of the CNS, 2021, 18, 14.	5.0	24
47	Generation and Characterization of Immortalized Mouse Cortical Astrocytes From Wildtype and Connexin43 Knockout Mice. Frontiers in Cellular Neuroscience, 2021, 15, 647109.	3.7	5
48	Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 649538.	3.7	14
49	Astrocytes in Alzheimer's Disease: Pathological Significance and Molecular Pathways. Cells, 2021, 10, 540.	4.1	62
50	Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia, 2021, 69, 2077-2099.	4.9	54
51	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	6.8	41
52	Mapping Astrocyte Transcriptional Signatures in Response to Neuroactive Compounds. International Journal of Molecular Sciences, 2021, 22, 3975.	4.1	12
54	Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state. Brain, 2021, 144, 1167-1182.	7.6	27
55	Extracellular ATP-Induced Alterations in Extracellular H+ Fluxes From Cultured Cortical and Hippocampal Astrocytes. Frontiers in Cellular Neuroscience, 2021, 15, 640217.	3.7	5
56	More Than Cell Markers: Understanding Heterogeneous Clial Responses to Implantable Neural Devices. Frontiers in Cellular Neuroscience, 2021, 15, 658992.	3.7	1

#	Article	IF	CITATIONS
57	Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Science Advances, 2021, 7, .	10.3	65
58	Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Advanced Healthcare Materials, 2021, 10, e2100180.	7.6	13
59	Star power: the emerging role of astrocytes as neuronal partners during cortical plasticity. Current Opinion in Neurobiology, 2021, 67, 174-182.	4.2	13
60	Astrocytes and Adenosine A2A Receptors: Active Players in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 666710.	2.8	19
61	The degree of astrocyte activation is predictive of the incubation time to prion disease. Acta Neuropathologica Communications, 2021, 9, 87.	5.2	24
62	Altered oligodendroglia and astroglia in chronic traumatic encephalopathy. Acta Neuropathologica, 2021, 142, 295-321.	7.7	26
64	Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood–brain barrier and neurovascular unit. Fluids and Barriers of the CNS, 2021, 18, 24.	5.0	7
65	GPR37 is processed in the Nâ€ŧerminal ectodomain by ADAM10 and furin. FASEB Journal, 2021, 35, e21654.	0.5	11
66	ACSAâ€⊋ and GLAST classify subpopulations of multipotent and glialâ€restricted cerebellar precursors. Journal of Neuroscience Research, 2021, 99, 2228-2249.	2.9	6
67	Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activityâ€dependent regulatory mechanisms. FEBS Journal, 2022, 289, 2202-2218.	4.7	30
68	New Tricks for an Old (Hedge)Hog: Sonic Hedgehog Regulation of Astrocyte Function. Cells, 2021, 10, 1353.	4.1	8
69	Region-Specific and State-Dependent Astrocyte Ca ²⁺ Dynamics during the Sleep-Wake Cycle in Mice. Journal of Neuroscience, 2021, 41, 5440-5452.	3.6	28
70	Epigenetic control of regionâ€specific transcriptional programs in mouse cerebellar and cortical astrocytes. Glia, 2021, 69, 2160-2177.	4.9	13
71	Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Research, 2021, 1758, 147291.	2.2	62
72	Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Frontiers in Endocrinology, 2021, 12, 668517.	3.5	39
73	How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 124, 193-215.	6.1	33
75	Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Frontiers in Cellular Neuroscience, 2021, 15, 696540.	3.7	16
77	Astrocytic mitochondria in adult mouse brain slices show spontaneous calcium influx events with unique properties. Cell Calcium, 2021, 96, 102383.	2.4	17

#	Article	IF	CITATIONS
78	The histone demethylase PHF8 regulates astrocyte differentiation and function. Development (Cambridge), 2021, 148, .	2.5	5
79	Astrocytes and their Phenomenal Possibilities in the Treatment of Various Neurodegenerative Disorders: An Overview. Journal of Pharmaceutical Research International, 0, , 60-68.	1.0	6
80	Different Flavors of Astrocytes: Revising the Origins of Astrocyte Diversity and Epigenetic Signatures to Understand Heterogeneity after Injury. International Journal of Molecular Sciences, 2021, 22, 6867.	4.1	12
81	Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neuroscience and Biobehavioral Reviews, 2021, 125, 637-653.	6.1	39
82	Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function?. Frontiers in Cellular Neuroscience, 2021, 15, 685703.	3.7	18
83	Transcriptome profiling of the Olig2-expressing astrocyte subtype reveals their unique molecular signature. IScience, 2021, 24, 102806.	4.1	5
84	Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. Journal of Neuroscience Research, 2021, 99, 2427-2462.	2.9	31
85	Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity?. Frontiers in Cellular Neuroscience, 2021, 15, 703810.	3.7	34
86	Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Research Reviews, 2021, 68, 101335.	10.9	61
87	Aging-Related Tau Astrogliopathy in Aging and Neurodegeneration. Brain Sciences, 2021, 11, 927.	2.3	6
88	A common role for astrocytes in rhythmic behaviours?. Progress in Neurobiology, 2021, 202, 102052.	5.7	12
90	Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron, 2021, 109, 2091-2105.e6.	8.1	71
91	Microenvironmental interactions of oligodendroglial cells. Developmental Cell, 2021, 56, 1821-1832.	7.0	15
92	Brain Repair by Cell Replacement via In Situ Neuronal Reprogramming. Annual Review of Genetics, 2021, 55, 45-69.	7.6	8
93	Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. Journal of Neurochemistry, 2021, 158, 880-897.	3.9	28
94	Astrocyte-Neuron Signaling in Synaptogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 680301.	3.7	31
95	Revisiting the neurovascular unit. Nature Neuroscience, 2021, 24, 1198-1209.	14.8	242
96	Neuroinflammatory astrocyte subtypes in the mouse brain. Nature Neuroscience, 2021, 24, 1475-1487.	14.8	285

#	Article	IF	CITATIONS
97	The role of endoplasmic reticulum stress in astrocytes. Glia, 2022, 70, 5-19.	4.9	30
98	Microfluidic methods for cell separation and subsequent analysis. Chinese Chemical Letters, 2022, 33, 1180-1192.	9.0	20
99	Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells, 2021, 10, 2019.	4.1	17
100	Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metabolism, 2021, 33, 1546-1564.	16.2	143
101	Digital Reconstruction of the Neuro-Glia-Vascular Architecture. Cerebral Cortex, 2021, 31, 5686-5703.	2.9	30
102	Astrocyte Heterogeneity in Multiple Sclerosis: Current Understanding and Technical Challenges. Frontiers in Cellular Neuroscience, 2021, 15, 726479.	3.7	15
104	Neuron-astrocyte networking: astrocytes orchestrate and respond to changes in neuronal network activity across brain states and behaviors. Journal of Neurophysiology, 2021, 126, 627-636.	1.8	5
105	Brain Microenvironment Heterogeneity: Potential Value for Brain Tumors. Frontiers in Oncology, 2021, 11, 714428.	2.8	1
106	Activity-dependent modulation of synapse-regulating genes in astrocytes. ELife, 2021, 10, .	6.0	58
107	Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. International Journal of Molecular Sciences, 2021, 22, 10312.	4.1	8
108	Microphysiological models of the central nervous system with fluid flow. Brain Research Bulletin, 2021, 174, 72-83.	3.0	2
109	Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life, 2021, 11, 938.	2.4	13
110	Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews Cancer, 2021, 21, 786-802.	28.4	83
111	Distribution of Aldh1L1-CreERT2 Recombination in Astrocytes Versus Neural Stem Cells in the Neurogenic Niches of the Adult Mouse Brain. Frontiers in Neuroscience, 2021, 15, 713077.	2.8	14
112	Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron, 2021, 109, 3088-3103.e5.	8.1	95
114	Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO Journal, 2021, 40, e107532.	7.8	26
115	Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines, 2021, 9, 1341.	3.2	4
117	Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Molecular Metabolism, 2021, 53, 101312.	6.5	6

#	Article	IF	CITATIONS
118	Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food and Function, 2021, 12, 11987-12007.	4.6	14
119	A cell atlas of the chick retina based on single-cell transcriptomics. ELife, 2021, 10, .	6.0	83
120	On the reactive states of astrocytes in prion diseases. Prion, 2021, 15, 87-93.	1.8	13
121	Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends in Molecular Medicine, 2021, 27, 47-59.	6.7	18
127	Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histology and Histopathology, 2021, 36, 267-290.	0.7	7
128	Astrocytic Factors Controlling Synaptogenesis: A Team Play. Cells, 2020, 9, 2173.	4.1	19
129	Common cell type nomenclature for the mammalian brain. ELife, 2020, 9, .	6.0	56
130	Reorganization of cerebellar cortex structural components one day after experimental thermal injury. Biomedical and Biosocial Anthropology, 2021, , 34-38.	0.2	0
131	The Potential Roles of Glial Cells in the Neuropathogenesis of Cerebral Malaria. Frontiers in Cellular and Infection Microbiology, 2021, 11, 741370.	3.9	7
133	Heterogeneity and Molecular Markers for CNS Clial Cells Revealed by Single-Cell Transcriptomics. Cellular and Molecular Neurobiology, 2022, 42, 2629-2642.	3.3	18
136	Astrocyte Reactivity in Alzheimer's Disease: Therapeutic Opportunities to Promote Repair. Current Alzheimer Research, 2021, 18, .	1.4	6
137	Light microscopic and heterogeneity analysis of astrocytes in the common marmoset brain. Journal of Neuroscience Research, 2021, 99, 3121-3147.	2.9	4
145	Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 703431.	3.7	1
146	Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Current Opinion in Biotechnology, 2021, 72, 112-120.	6.6	7
148	Astrocytes in Addictive Disorders. Advances in Neurobiology, 2021, 26, 231-254.	1.8	7
149	Glial Patchwork: Oligodendrocyte Progenitor Cells and Astrocytes Blanket the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 803057.	3.7	6
150	Viral mediated knockdown of <scp>GATA6</scp> in <scp>SMA iPSC</scp> â€derived astrocytes prevents motor neuron loss and microglial activation. Glia, 2022, 70, 989-1004.	4.9	17
151	From Synapses to Circuits, Astrocytes Regulate Behavior. Frontiers in Neural Circuits, 2021, 15, 786293.	2.8	41

#	Article	IF	CITATIONS
152	A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virologica Sinica, 2022, 37, 115-126.	3.0	6
153	From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Frontiers in Neuroscience, 2021, 15, 781160.	2.8	15
154	CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data. Nucleic Acids Research, 2022, 50, e57-e57.	14.5	33
155	Cell2location maps fine-grained cell types in spatial transcriptomics. Nature Biotechnology, 2022, 40, 661-671.	17.5	335
156	Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron, 2022, 110, 366-393.	8.1	45
157	Sex differences in developmental patterns of neocortical astroglia: A mouse translatome database. Cell Reports, 2022, 38, 110310.	6.4	33
158	Diversity of satellite glia in sympathetic and sensory ganglia. Cell Reports, 2022, 38, 110328.	6.4	33
159	The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia, 2022, 70, 1215-1250.	4.9	49
160	Origin, molecular specification, and stemness of astrocytes. Developmental Neurobiology, 2022, 82, 149-159.	3.0	10
161	Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels. Nature Communications, 2022, 13, 600.	12.8	53
162	Preterm Birth Alters the Maturation of the GABAergic System in the Human Prefrontal Cortex. Frontiers in Molecular Neuroscience, 2021, 14, 827370.	2.9	6
163	Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Frontiers in Immunology, 2022, 13, 824411.	4.8	14
164	GABAA Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Frontiers in Aging Neuroscience, 2021, 13, 802582.	3.4	5
165	Singular Adult Neural Stem Cells Do Not Exist. Cells, 2022, 11, 722.	4.1	7
166	Response of Astrocyte Subpopulations Following Spinal Cord Injury. Cells, 2022, 11, 721.	4.1	8
167	Multielectrode Arrays for Functional Phenotyping of Neurons from Induced Pluripotent Stem Cell Models of Neurodevelopmental Disorders. Biology, 2022, 11, 316.	2.8	23
168	Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Reports, 2022, 38, 110416.	6.4	31
169	Retinoid signaling regulates angiogenesis and bloodâ€retinal barrier integrity in neonatal mouse retina. Microcirculation, 2022, , e12752.	1.8	3

#	Article	IF	CITATIONS
170	A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia, 2022, 70, 1554-1580.	4.9	18
172	The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Frontiers in Physiology, 2022, 13, 814889.	2.8	8
174	Astroglial cannabinoid signaling and behavior. Glia, 2023, 71, 60-70.	4.9	5
175	Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflammation and Regeneration, 2022, 42, 7.	3.7	13
176	Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Molecular Psychiatry, 2022, , .	7.9	8
177	Molecular divergence of mammalian astrocyte progenitor cells at early gliogenesis. Development (Cambridge), 2022, 149, .	2.5	6
178	Functions of astrocytes in multiple sclerosis: A review. Multiple Sclerosis and Related Disorders, 2022, 60, 103749.	2.0	8
179	Sculpting Astrocyte Diversity through Circuits and Transcription. Neuroscientist, 2023, 29, 445-460.	3.5	7
180	Control of complex behavior by astrocytes and microglia. Neuroscience and Biobehavioral Reviews, 2022, 137, 104651.	6.1	11
181	The chromatin repressors EZH2 and Suv4â€20h coregulate cell fate specification during hippocampal development. FEBS Letters, 2022, 596, 294-308.	2.8	1
183	Astrocyte control of the entorhinal cortexâ€dentate gyrus circuit: Relevance to cognitive processing and impairment in pathology. Glia, 2022, 70, 1536-1553.	4.9	16
186	The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants, 2022, 11, 8.	5.1	26
189	Lunatic Fringe-GFP Marks Lamina-Specific Astrocytes That Regulate Sensory Processing. Journal of Neuroscience, 2022, 42, 567-580.	3.6	6
190	<i>Id2</i> and <i>Id4</i> are not the major negative regulators of oligodendrocyte differentiation during early central nervous system development. Clia, 2022, 70, 590-601.	4.9	6
191	AAV Vector-Mediated Antibody Delivery (A-MAD) in the Central Nervous System. Frontiers in Neurology, 2022, 13, 870799.	2.4	4
193	Astrocyte regulation of neural circuit activity and network states. Clia, 2022, 70, 1455-1466.	4.9	34
194	Astrogenesis in the murine dentate gyrus is a lifeâ€long and dynamic process. EMBO Journal, 2022, 41, e110409.	7.8	10
195	Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nature Communications, 2022, 13, 2331.	12.8	5

#	Article	IF	CITATIONS
196	In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging. Molecular Psychiatry, 2022, , .	7.9	12
197	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	3.3	17
198	Editorial: The Role of Astroglia and Oligodendroglia in CNS Development, Plasticity, and Disease – Novel Tools and Investigative Approaches. Frontiers in Cellular Neuroscience, 2022, 16, .	3.7	0
199	Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mechanisms of Disease, 2022, 14, e1557.	3.3	7
200	Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis. Cells, 2022, 11, 1633.	4.1	8
201	A closer look at astrocyte morphology: Development, heterogeneity, and plasticity at astrocyte leaflets. Current Opinion in Neurobiology, 2022, 74, 102550.	4.2	35
202	Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology, 2023, 48, 21-36.	5.4	27
203	A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia, 2022, 70, 1699-1719.	4.9	7
204	Extended intergenic DNA contributes to neuron-specific expression of neighboring genes in the mammalian nervous system. Nature Communications, 2022, 13, 2733.	12.8	4
205	Astrocyte Cell Surface Antigen 2 and Other Potential Cell Surface Markers of Enteric glia in the Mouse Colon. ASN Neuro, 2022, 14, 175909142210832.	2.7	0
208	Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nature Immunology, 2022, 23, 878-891.	14.5	59
209	Blood–Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. International Journal of Molecular Sciences, 2022, 23, 6217.	4.1	19
210	Astrocyte–synapse interactions and cell adhesion molecules. FEBS Journal, 2023, 290, 3512-3526.	4.7	19
211	Cells of the Blood–Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods in Molecular Biology, 2022, , 3-24.	0.9	26
213	Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation?. Frontiers in Aging Neuroscience, 0, 14, .	3.4	56
214	The Sedentary Lifestyle and Masticatory Dysfunction: Time to Review the Contribution to Age-Associated Cognitive Decline and Astrocyte Morphotypes in the Dentate Gyrus. International Journal of Molecular Sciences, 2022, 23, 6342.	4.1	2
215	Astrocyte: A Foe or a Friend in Intellectual Disability-Related Diseases. Frontiers in Synaptic Neuroscience, 0, 14, .	2.5	2
216	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	4.1	10

#	Article	IF	CITATIONS
218	Global analyses of <scp>mRNA</scp> expression in human sensory neurons reveal <scp>eIF5A</scp> as a conserved target for inflammatory pain. FASEB Journal, 2022, 36, .	0.5	6
219	Single-Cell RNA-Sequencing: Astrocyte and Microglial Heterogeneity in Health and Disease. Cells, 2022, 11, 2021.	4.1	19
220	Astrocyte ethanol exposure reveals persistent and defined calcium response subtypes and associated gene signatures. Journal of Biological Chemistry, 2022, 298, 102147.	3.4	2
222	Therapeutic Potential of Astrocyte Transplantation. Cell Transplantation, 2022, 31, 096368972211054.	2.5	13
224	Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury. Neuroscience Bulletin, 2023, 39, 213-244.	2.9	21
225	Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. ELife, 0, 11, .	6.0	12
226	SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nature Communications, 2022, 13, .	12.8	6
227	Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Current Opinion in Pharmacology, 2022, 65, 102261.	3.5	12
228	Foundations and implications of astrocyte heterogeneity during brain development and disease. Trends in Neurosciences, 2022, 45, 692-703.	8.6	17
230	Characterization of Astrocytes in the Minocycline-Administered Mouse Photothrombotic Ischemic Stroke Model. Neurochemical Research, 2022, 47, 2839-2855.	3.3	11
231	Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain, 2022, 145, 3288-3307.	7.6	24
232	Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. ELife, 0, 11, .	6.0	11
233	Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nature Communications, 2022, 13, .	12.8	24
234	Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. ELife, 0, 11, .	6.0	13
235	The Emerging Role of Astrocytic Autophagy in Central Nervous System Disorders. Neurochemical Research, 0, , .	3.3	1
236	Adaptive cellular response of the <i>substantia nigra</i> dopaminergic neurons upon ageâ€dependent iron accumulation. Aging Cell, 2022, 21, .	6.7	8
238	The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. Biology, 2022, 11, 1191.	2.8	6
239	The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Translational Neurodegeneration, 2022, 11, .	8.0	19

#	Article	IF	CITATIONS
240	A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis. Nature Aging, 2022, 2, 726-741.	11.6	21
241	Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease. Cell Reports, 2022, 40, 111280.	6.4	39
242	A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the <scp>TASK3</scp> Neuropathology Working Group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 0, , .	2.4	0
243	Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell and Melanoma Research, 2022, 35, 554-572.	3.3	3
244	All roads lead to heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of Alzheimer's disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	10
245	Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens. Nature Communications, 2022, 13, .	12.8	6
246	The astroglial and stem cell functions of adult rat folliculostellate cells. Glia, 2023, 71, 205-228.	4.9	13
247	Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Frontiers in Neuroscience, 0, 16, .	2.8	11
248	Cholesterol-induced robust Ca oscillation in astrocytes required for survival and lipid droplet formation in high-cholesterol condition. IScience, 2022, 25, 105138.	4.1	3
249	Single-cell genetics approach in ophthalmology. , 2022, , 529-541.		0
250	NLRP3-Mediated Glutaminolysis Regulates Microglia in Alzheimer's Disease. SSRN Electronic Journal, O,	0.4	1
251	Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells, 2022, 11, 2823.	4.1	13
252	Silencing of <scp>miR</scp> â€132â€3p protects against neuronal injury following status epilepticus by inhibiting <scp>lL</scp> â€1βâ€induced reactive astrocyte (<scp>A1</scp>) polarization. FASEB Journal, 2022, 36, .	0.5	3
253	AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. International Journal of Molecular Sciences, 2022, 23, 10438.	4.1	8
254	Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nature Communications, 2022, 13, .	12.8	21
255	Alterations in Astrocytic Regulation of Excitation and Inhibition by Stress Exposure and in Severe Psychopathology. Journal of Neuroscience, 2022, 42, 6823-6834.	3.6	3
256	Astrocyte Activation Markers. Biochemistry (Moscow), 2022, 87, 851-870.	1.5	2
257	Cross-regional homeostatic and reactive glial signatures in multiple sclerosis. Acta Neuropathologica, 2022, 144, 987-1003.	7.7	14

#	Article	IF	CITATIONS
258	The role of astrocytes in behaviors related to emotion and motivation. Neuroscience Research, 2023, 187, 21-39.	1.9	5
259	Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Reports, 2022, 40, 111426.	6.4	16
261	Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neuroscience and Therapeutics, 2023, 29, 24-36.	3.9	29
262	The relationships between neuroglial alterations and neuronal changes in Alzheimer's disease, and the related controversies I: Gliopathogenesis and glioprotection. Journal of Central Nervous System Disease, 2022, 14, 117957352211287.	1.9	1
263	Activity-dependent translation dynamically alters the proteome of the perisynaptic astrocyte process. Cell Reports, 2022, 41, 111474.	6.4	17
264	Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction. Nature Biotechnology, 2023, 41, 387-398.	17.5	30
267	A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Scientific Reports, 2022, 12, .	3.3	14
268	Editorial: Non-neuronal cell heterogeneity in the nervous system during health and disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	1
269	Astrocyte Heterogeneity in Regulation of Synaptic Activity. Cells, 2022, 11, 3135.	4.1	3
270	Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets. Cells, 2022, 11, 3315.	4.1	2
271	Single-Cell Analysis to Better Understand the Mechanisms Involved in MS. International Journal of Molecular Sciences, 2022, 23, 12142.	4.1	2
272	Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell, 2022, 185, 4428-4447.e28.	28.9	49
273	Transcription Factor Hb9 Is Expressed in Glial Cell Lineages in the Developing Mouse Spinal Cord. ENeuro, 2022, 9, ENEURO.0214-22.2022.	1.9	1
274	Molecular diversity of astrocytes. Science, 2022, 378, 475-476.	12.6	2
275	An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Research Reviews, 2023, 83, 101775.	10.9	14
276	Astrocytes in Paper Chips and Their Interaction with Hybrid Vesicles. Advanced Biology, 0, , 2200209.	2.5	0
277	Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 2022, 378, .	12.6	119
278	Selective neurodegeneration generated by intravenous αâ€synuclein preâ€formed fibril administration is not associated with endogenous αâ€synuclein levels in the rat brain. Brain Pathology, 2023, 33, .	4.1	1

#	Article	IF	CITATIONS
279	Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex. Nature Communications, 2022, 13, .	12.8	7
280	Functional Intraregional and Interregional Heterogeneity between Myenteric Glial Cells of the Colon and Duodenum in Mice. Journal of Neuroscience, 2022, 42, 8694-8708.	3.6	11
281	Mode of action of astrocytes in pain: From the spinal cord to the brain. Progress in Neurobiology, 2022, 219, 102365.	5.7	11
282	Astrocyte heterogeneity within white matter tracts and a unique subpopulation of optic nerve head astrocytes. IScience, 2022, 25, 105568.	4.1	8
283	Microglia and astrocyte activation is regionâ€dependent in the αâ€synuclein mouse model of Parkinson's disease. Glia, 2023, 71, 571-587.	4.9	14
287	Monitoring regional astrocyte diversity by cell typeâ€specific proteomic labeling in vivo. Clia, 2023, 71, 682-703.	4.9	3
288	Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features. Nature Neuroscience, 2022, 25, 1626-1638.	14.8	16
289	Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays in Biochemistry, 2023, 67, 119-130.	4.7	11
290	Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice. Toxicological Research, 0, , .	2.1	2
291	The Role of Epigenetics in Neuroinflammatory-Driven Diseases. International Journal of Molecular Sciences, 2022, 23, 15218.	4.1	13
293	A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions. Neuroscience, 2023, 508, 40-51.	2.3	2
294	Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. Journal of Neurochemistry, 0, , .	3.9	3
295	Physiopathological changes of ferritin <scp>mRNA</scp> density and distribution in hippocampal astrocytes in the mouse brain. Journal of Neurochemistry, 0, , .	3.9	0
296	Astrocytic mitochondrial frataxin—A promising target for ischemic brain injury. CNS Neuroscience and Therapeutics, 2023, 29, 783-788.	3.9	4
297	Loss of CAMK2G affects intrinsic and motor behavior but has minimal impact on cognitive behavior. Frontiers in Neuroscience, 0, 16, .	2.8	1
298	Metabolic Heterogeneity of Cerebral Cortical and Cerebellar Astrocytes. Life, 2023, 13, 184.	2.4	1
299	Insights into Alzheimer's disease from single-cell genomic approaches. Nature Neuroscience, 2023, 26, 181-195.	14.8	39
300	Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson's Disease?. Biomolecules, 2023, 13, 178.	4.0	5

#	Article	IF	CITATIONS
301	Parabrachial nucleus astrocytes regulate wakefulness and isoflurane anesthesia in mice. Frontiers in Pharmacology, 0, 13, .	3.5	3
303	Astrocytes Transplanted during Early Postnatal Development Integrate, Mature, and Survive Long Term in Mouse Cortex. Journal of Neuroscience, 2023, 43, 1509-1529.	3.6	7
304	Utilization of ethanolamine phosphate phospholyase as a unique astrocytic marker. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
306	Astrocyte heterogeneity and interactions with local neural circuits. Essays in Biochemistry, 2023, 67, 93-106.	4.7	11
307	Single-cell transcriptomic profile of satellite glial cells in trigeminal ganglion. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	7
309	Calcium signaling in astrocytes and gliotransmitter release. Frontiers in Synaptic Neuroscience, 0, 15, .	2.5	19
311	Transcription factor combinations that define human astrocyte identity encode significant variation of maturity and function. Glia, 2023, 71, 1870-1889.	4.9	3
312	Radial stem astrocytes (aka neural stem cells): Identity, development, physioâ€pathology, and therapeutic potential. Acta Physiologica, 2023, 238, .	3.8	8
313	The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke, 2023, 54, .	2.0	28
314	Astrocyte-synapse interactions during brain development. Current Opinion in Neurobiology, 2023, 80, 102704.	4.2	10
315	The Memory Orchestra: Contribution of Astrocytes. Neuroscience Bulletin, 2023, 39, 409-424.	2.9	5
317	Apolipoprotein E ε4 modulates astrocyte neuronal support functions in the presence of amyloidâ€Î². Journal of Neurochemistry, 2023, 165, 536-549.	3.9	7
318	Neurodegeneration cell per cell. Neuron, 2023, 111, 767-786.	8.1	8
319	D1- and D2-type dopamine receptors are immunolocalized in pial and layer I astrocytes in the rat cerebral cortex. Frontiers in Neuroanatomy, 0, 17, .	1.7	3
320	The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases?. Frontiers in Molecular Medicine, 0, 3, .	1.9	0
321	Neurovascular adaptations modulating cognition, mood, and stress responses. Trends in Neurosciences, 2023, 46, 276-292.	8.6	8
323	Update for astrocytomas: medical and surgical management considerations. , 0, , 1-26.		2
324	Injury primes mutation-bearing astrocytes for dedifferentiation in later life. Current Biology, 2023, 33, 1082-1098.e8.	3.9	4

#	Article	IF	CITATIONS
325	Unexpected Classes of Aquaporin Channels Detected by Transcriptomic Analysis in Human Brain Are Associated with Both Patient Age and Alzheimer's Disease Status. Biomedicines, 2023, 11, 770.	3.2	1
326	Recent advances in deciphering hippocampus complexity using single-cell transcriptomics. Neurobiology of Disease, 2023, 179, 106062.	4.4	4
328	Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metabolism, 2023, 35, 555-570.	16.2	16
329	Astrocyte structural heterogeneity in the mouse hippocampus. Glia, 2023, 71, 1667-1682.	4.9	5
330	Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nature Neuroscience, 2023, 26, 542-554.	14.8	27
331	Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	6
332	Astrocyte development—More questions than answers. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	5
333	Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. EMBO Molecular Medicine, 2023, 15, .	6.9	7
334	A custom-made AAV1 variant (AAV1-T593K) enables efficient transduction of Japanese quail neurons in vitro and in vivo. Communications Biology, 2023, 6, .	4.4	0
335	Astrocytes underlie a faster-onset antidepressant effect of hypidone hydrochloride (YL-0919). Frontiers in Pharmacology, 0, 14, .	3.5	2
337	Mapping human adult hippocampal neurogenesis with single-cell transcriptomics: Reconciling controversy or fueling the debate?. Neuron, 2023, 111, 1714-1731.e3.	8.1	15
338	Norepinephrine links astrocytic activity to regulation of cortical state. Nature Neuroscience, 2023, 26, 579-593.	14.8	23
339	Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes, 2023, 14, 896.	2.4	6
341	Reactive astrogliosis in the era of single-cell transcriptomics. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	9
342	Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Reports, 2023, 42, 112486.	6.4	2
343	Astroglial physiology. , 2023, , 89-197.		0
344	Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace. Nature Communications, 2023, 14, .	12.8	3
346	Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nature Reviews Neurology, 2023, 19, 346-362.	10.1	33

#	Article	IF	CITATIONS
347	Endothelial Cells Are Heterogeneous in Different Brain Regions and Are Dramatically Altered in Alzheimer's Disease. Journal of Neuroscience, 2023, 43, 4541-4557.	3.6	7
348	Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes. Journal of Neuroinflammation, 2023, 20, .	7.2	4
349	Astrocyte Calcium Signaling Shifts the Polarity of Presynaptic Plasticity. Neuroscience, 2023, 525, 38-46.	2.3	1
350	Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nature Reviews Neurology, 2023, 19, 395-409.	10.1	54
351	Striatal spatial heterogeneity, clustering, and white matter association of GFAP+ astrocytes in a mouse model of Huntington's disease. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	1
352	Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 9272.	4.1	5
353	deCLUTTER2+ – a pipeline to analyze calcium traces in a stem cell model for ventral midbrain patterned astrocytes. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	1
354	Redistribution of the astrocyte phenotypes in the medial vestibular nuclei after unilateral labyrinthectomy. Frontiers in Neuroscience, 0, 17, .	2.8	0
355	High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Seminars in Cell and Developmental Biology, 2023, , .	5.0	1
358	The gut microbiome regulates astrocyte reaction to $A\hat{l}^2$ amyloidosis through microglial dependent and independent mechanisms. Molecular Neurodegeneration, 2023, 18, .	10.8	6
359	The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion?. International Journal of Molecular Sciences, 2023, 24, 11112.	4.1	0
360	Yin Yang 1 controls cerebellar astrocyte maturation. Glia, 2023, 71, 2437-2455.	4.9	1
361	Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mildâ€cognitive impairment. European Journal of Neuroscience, 2023, 58, 2677-2707.	2.6	1
362	Do astrocytes act as immune cells after pediatric TBI?. Neurobiology of Disease, 2023, 185, 106231.	4.4	1
363	Chemogenetic manipulation of astrocyte activity at the synapse— a gateway to manage brain disease. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
364	Leveraging translational insights toward precision medicine approaches for brain metastases. Nature Cancer, 2023, 4, 955-967.	13.2	0
365	Neonatal estrogen induces male-like expression of astroglial markers of maturation and plasticity in the neocortex of female mice. Brain Research, 2023, 1818, 148499.	2.2	0
366	Microglia–Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells, 2023, 12, 1942.	4.1	6

#	Article	IF	CITATIONS
367	The consequences of neurodegenerative disease on neuron-astrocyte metabolic and redox interactions. Neurobiology of Disease, 2023, 185, 106255.	4.4	2
368	Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease. Cellular and Molecular Neurobiology, 2023, 43, 3449-3464.	3.3	1
369	Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm?. International Journal of Molecular Sciences, 2023, 24, 12634.	4.1	1
370	The translational potential of cholesterol-based therapies for neurological disease. Nature Reviews Neurology, 2023, 19, 583-598.	10.1	3
371	Region-Specific Homeostatic Identity of Astrocytes Is Essential for Defining Their Response to Pathological Insults. Cells, 2023, 12, 2172.	4.1	4
372	Clial Populations in the Human Brain Following Ischemic Injury. Biomedicines, 2023, 11, 2332.	3.2	2
373	Ca2+-dependent rapid uncoupling of astrocytes upon brief metabolic stress. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	1
374	Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature, 2023, 622, 120-129.	27.8	31
375	Astrocytes in functional recovery following central nervous system injuries. Journal of Physiology, 0, , .	2.9	5
376	Single-nucleus transcriptomic mapping of blast-induced traumatic brain injury in mice hippocampus. Scientific Data, 2023, 10, .	5.3	2
377	Publicly available ex vivo transcriptomics datasets to explore CNS physiology and neurodegeneration: state of the art and perspectives. Frontiers in Neuroscience, 0, 17, .	2.8	1
378	Cooperative and competitive regulation of the astrocytic transcriptome by neurons and endothelial cells: Impact on astrocyte maturation. Journal of Neurochemistry, 2023, 167, 52-75.	3.9	1
379	Cortical astrocytes modulate dominance behavior in male mice by regulating synaptic excitatory and inhibitory balance. Nature Neuroscience, 2023, 26, 1541-1554.	14.8	5
380	Analyzing the glial proteome in Alzheimer's disease. Expert Review of Proteomics, 2023, 20, 197-209.	3.0	1
381	Regional Gene Expression in the Retina, Optic Nerve Head, and Optic Nerve of Mice with Optic Nerve Crush and Experimental Glaucoma. International Journal of Molecular Sciences, 2023, 24, 13719.	4.1	2
382	Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	15
383	Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science, 2023, 382, .	12.6	19
384	Fine-grained cell-type specific association studies with human bulk brain data using a large single-nucleus RNA sequencing based reference panel. Scientific Reports, 2023, 13, .	3.3	Ο

#	Article	IF	CITATIONS
385	The function of astrocytes and their role in neurological diseases. European Journal of Neuroscience, 2023, 58, 3932-3961.	2.6	1
386	A conceptual framework for astrocyte function. Nature Neuroscience, 2023, 26, 1848-1856.	14.8	6
387	Astrocytic Extracellular Vesicles Regulated by Microglial Inflammatory Responses Improve Stroke Recovery. Molecular Neurobiology, 2024, 61, 1002-1021.	4.0	1
388	Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. Frontiers in Ophthalmology, 0, 3, .	0.5	2
389	Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochemistry International, 2023, 169, 105591.	3.8	3
391	Translational strategies and systems biology insights for blood-brain barrier opening and delivery in brain tumors and Alzheimer's disease. Biomedicine and Pharmacotherapy, 2023, 167, 115450.	5.6	0
394	Single-nucleus transcriptomic mapping uncovers targets for traumatic brain injury. Genome Research, 2023, 33, 1818-1832.	5.5	1
395	Identification of region-specific splicing QTLs in human hippocampal tissue and its distinctive role in brain disorders. IScience, 2023, 26, 107958.	4.1	0
396	Protocol for the purification and transcriptomic analysis of mouse astrocytes using GFAT. STAR Protocols, 2023, 4, 102599.	1.2	0
397	Rapid isolation of intact retinal astrocytes: a novel approach. Acta Neuropathologica Communications, 2023, 11, .	5.2	0
398	The "molecular soldiers―of the CNS: Astrocytes, a comprehensive review on their roles and molecular signatures. European Journal of Pharmacology, 2023, 959, 176048.	3.5	2
399	Single-cell profiling of glial cells from the mouse amygdala under opioid dependent and withdrawal states. IScience, 2023, 26, 108166.	4.1	0
401	A marmoset brain cell census reveals regional specialization of cellular identities. Science Advances, 2023, 9, .	10.3	5
402	A comparative atlas of single-cell chromatin accessibility in the human brain. Science, 2023, 382, .	12.6	8
403	A single-cell multi-omic atlas spanning the adult rhesus macaque brain. Science Advances, 2023, 9, .	10.3	3
404	Optogenetics in Alzheimer's Disease: Focus on Astrocytes. Antioxidants, 2023, 12, 1856.	5.1	1
405	Metabolic remodeling in astrocytes: Paving the path to brain tumor development. Neurobiology of Disease, 2023, 188, 106327.	4.4	1
406	Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Reports, 2023, 42, 113309.	6.4	3

#	Article	IF	CITATIONS
407	A Drosophila glial cell atlas reveals a mismatch between transcriptional and morphological diversity. PLoS Biology, 2023, 21, e3002328.	5.6	1
409	Whole-Brain Evaluation of Cortical Microconnectomes. ENeuro, 2023, 10, ENEURO.0094-23.2023.	1.9	0
410	Astrocytic transcriptional and epigenetic mechanisms of drug addiction. Journal of Neural Transmission, 0, , .	2.8	0
411	A role for the cystathionine-β-synthase /H2S axis in astrocyte dysfunction in the aging brain. Redox Biology, 2023, 68, 102958.	9.0	Ο
412	Neuroinflammation: An astrocyte perspective. Science Translational Medicine, 2023, 15, .	12.4	5
413	Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain, 2024, 147, 698-716.	7.6	2
414	Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium, 2024, 117, 102817.	2.4	1
415	Astrocytes and Alpha-Synuclein: Friend or Foe?. Journal of Parkinson's Disease, 2023, 13, 1289-1301.	2.8	2
417	Unveiling Hypothalamic Molecular Signatures via Retrograde Viral Tracing and Single-Cell Transcriptomics. Scientific Data, 2023, 10, .	5.3	0
418	Astrocyte Involvement in Blood–Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. International Journal of Molecular Sciences, 2023, 24, 17146.	4.1	0
419	Earlyâ€ l ife stress and amyloidosis in mice share pathogenic pathways involving synaptic mitochondria and lipid metabolism. Alzheimer's and Dementia, 0, , .	0.8	0
420	Spatiotemporal characterization of glial cell activation in an Alzheimer's disease model by spatially resolved transcriptomics. Experimental and Molecular Medicine, 0, , .	7.7	0
421	Deciphering the distinct transcriptomic and gene regulatory map in adult macaque basal ganglia cells. GigaScience, 2022, 12, .	6.4	0
422	Alpha-Synuclein Contribution to Neuronal and Clial Damage in Parkinson's Disease. International Journal of Molecular Sciences, 2024, 25, 360.	4.1	1
423	Singleâ€cell RNA sequencing to explore cancerâ€associated fibroblasts heterogeneity: "Single―vision for "heterogeneous―environment. Cell Proliferation, 0, , .	5.3	0
424	Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells, 2024, 13, 148.	4.1	0
425	The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. International Journal of Molecular Sciences, 2024, 25, 1150.	4.1	0
426	Unravelling the genetic basis of Schizophrenia. Gene, 2024, 902, 148198.	2.2	0

#	Article	IF	CITATIONS
427	TCF7L2: A potential key regulator of antidepressant effects on hippocampal astrocytes in depression model mice. Journal of Psychiatric Research, 2024, 170, 375-386.	3.1	0
428	Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types. Nature Communications, 2024, 15, .	12.8	0
429	Serum amyloid A and mitochondrial DNA in extracellular vesicles are novel markers for detecting traumatic brain injury in a mouse model. IScience, 2024, 27, 108932.	4.1	0
431	Astrocytic Na+, K+ ATPases in physiology and pathophysiology. Cell Calcium, 2024, 118, 102851.	2.4	0
432	Astrocytic crosstalk with brain and immune cells in healthy and diseased conditions. Current Opinion in Neurobiology, 2024, 84, 102840.	4.2	0
434	Single-Nucleus RNA-Seq Characterizes the Cell Types Along the Neuronal Lineage in the Adult Human Subependymal Zone and Reveals Reduced Oligodendrocyte Progenitor Abundance with Age. ENeuro, 2024, 11, ENEURO.0246-23.2024.	1.9	0
435	Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Frontiers in Cellular Neuroscience, 0, 18, .	3.7	0
436	Methylmercury neurotoxicity: Beyond the neurocentric view. Science of the Total Environment, 2024, 920, 170939.	8.0	0
437	LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO Journal, 2024, 43, 956-992.	7.8	0
438	Neuroinflammation and acquired traumatic CNS injury: a mini review. Frontiers in Neurology, 0, 15, .	2.4	0
439	Astrocytes: The Stars in Neurodegeneration?. Biomolecules, 2024, 14, 289.	4.0	0
440	APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Molecular Neurodegeneration, 2024, 19, .	10.8	0
442	Studying the Role of Astrocytes at Synapses Using Single-Cell Transcriptomics. Neuromethods, 2024, , 173-206.	0.3	0
443	Astrocytes in selective vulnerability to neurodegenerative disease. Trends in Neurosciences, 2024, 47, 289-302.	8.6	0
444	Astrocyte expression of aging-associated markers positively correlates with neurodegeneration in the frontal lobe of the rhesus macaque brain. Frontiers in Aging Neuroscience, 0, 16, .	3.4	0