Structure of V-ATPase from the mammalian brain

Science 367, 1240-1246 DOI: 10.1126/science.aaz2924

Citation Report

#	Article	IF	CITATIONS
1	Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Molecular Cell, 2020, 80, 501-511.e3.	4.5	88
2	The importance of the membrane for biophysical measurements. Nature Chemical Biology, 2020, 16, 1285-1292.	3.9	25
3	Comparative Multiplexed Interactomics of SARS-CoV-2 and Homologous Coronavirus Nonstructural Proteins Identifies Unique and Shared Host-Cell Dependencies. ACS Infectious Diseases, 2020, 6, 3174-3189.	1.8	92
4	Cryo-EM structures of intact V-ATPase from bovine brain. Nature Communications, 2020, 11, 3921.	5.8	46
5	An affinity change model to elucidate the rotation mechanism of V1-ATPase. Biochemical and Biophysical Research Communications, 2020, 533, 1413-1418.	1.0	1
6	Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers, 2020, 12, 2437.	1.7	44
7	The interaction partners of (pro)renin receptor in the distal nephron. FASEB Journal, 2020, 34, 14136-14149.	0.2	7
8	A "Sugar-Coated―Proton Pump Comes into Focus: High-Resolution Structure of a Human V-ATPase. Molecular Cell, 2020, 80, 379-380.	4.5	3
9	Native mass spectrometry—A valuable tool in structural biology. Journal of Mass Spectrometry, 2020, 55, e4578.	0.7	45
10	The Lysosome at the Intersection of Cellular Growth and Destruction. Developmental Cell, 2020, 54, 226-238.	3.1	77
11	Haploinsufficiency of <scp><i>ATP6V0C</i></scp> possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. American Journal of Medical Genetics, Part A, 2021, 185, 196-202.	0.7	9
12	Loss of <i>Furin</i> in β-Cells Induces an mTORC1-ATF4 Anabolic Pathway That Leads to β-Cell Dysfunction. Diabetes, 2021, 70, 492-503.	0.3	20
13	Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.	3.8	108
14	Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM. Structure, 2021, 29, 186-195.e6.	1.6	19
15	Expanding the clinical and molecular spectrum of <scp><i>ATP6V1A</i></scp> related metabolic cutis laxa. Journal of Inherited Metabolic Disease, 2021, 44, 972-986.	1.7	7
16	DOORS syndrome and a recurrentÂtruncating ATP6V1B2 variant. Genetics in Medicine, 2021, 23, 149-154.	1.1	11
17	Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 233-257.	0.9	2
18	Characterization of the T4 gp32–ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry. Chemical Science, 2021, 12, 13764-13776.	3.7	3

#	Article	IF	CITATIONS
19	Membrane Proteins Structure and Mechanism of the Vacuolar H+-ATPase. , 2021, , 581-593.		2
21	Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Nature Communications, 2021, 12, 858.	5.8	26
23	Structural biology of the invasion arsenal of Gramâ€negative bacterial pathogens. FEBS Journal, 2022, 289, 1385-1427.	2.2	5
24	Molecular basis of V-ATPase inhibition by bafilomycin A1. Nature Communications, 2021, 12, 1782.	5.8	70
25	Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts. Scientific Reports, 2021, 11, 9214.	1.6	4
26	Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis. Biomolecules, 2021, 11, 747.	1.8	15
27	Strong ion difference: Questionable stewardship. Acta Physiologica, 2021, 233, e13667.	1.8	4
28	Structural Characterization of Endogenous Tuberous Sclerosis Protein Complex Revealed Potential Polymeric Assembly. Biochemistry, 2021, 60, 1808-1821.	1.2	1
29	Connecting â€~multi-omics' approaches to endogenous protein complexes. Trends in Chemistry, 2021, 3, 445-455.	4.4	6
30	The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. International Journal of Molecular Sciences, 2021, 22, 6934.	1.8	17
31	RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Frontiers in Cell and Developmental Biology, 2021, 9, 698190.	1.8	21
32	Genetic architecture and phenotypic landscape of deafness and onychodystrophy syndromes. Human Genetics, 2022, 141, 821-838.	1.8	1
33	Novel vertebrate- and brain-specific driver of neuronal outgrowth. Progress in Neurobiology, 2021, 202, 102069.	2.8	1
35	Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	4
36	NDST3 deacetylates αâ€ŧubulin and suppresses Vâ€ATPase assembly and lysosomal acidification. EMBO Journal, 2021, 40, e107204.	3.5	11
37	Purification of active human vacuolar H+-ATPase in native lipid-containing nanodiscs. Journal of Biological Chemistry, 2021, 297, 100964.	1.6	4
38	Probing membrane protein–lipid interactions. Current Opinion in Structural Biology, 2021, 69, 78-85.	2.6	21
39	Vacuolar-type proton ATPase is required for maintenance of apicobasal polarity of embryonic visceral endoderm. Scientific Reports, 2021, 11, 19355.	1.6	3

CITATION REPORT

		CITATION RE	PORT	
#	ARTICLE Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to No	ncellular	IF	CITATIONS
40	Components of the Bone. International Journal of Molecular Sciences, 2021, 22, 10097.	recircitai	1.8	4
42	Recent developments in gastroesophageal mesenchymal tumours. Histopathology, 2021	., 78, 171-186.	1.6	9
43	Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. (Moscow), 2020, 85, 1613-1630.	Biochemistry	0.7	11
44	Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses, 2021, 13, 13.		1.5	22
45	Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance. ELife, 202	0, 9, .	2.8	11
46	Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. G 2021, 22, 297.	enome Biology,	3.8	7
47	The assembly, regulation and function of the mitochondrial respiratory chain. Nature Rev Molecular Cell Biology, 2022, 23, 141-161.	iews	16.1	256
48	A novel neuron-specific regulator of the V-ATPase in Drosophila. ENeuro, 2021, 8, ENEUR	0.0193-21.2021.	0.9	2
49	Knockdown of Vacuolar ATPase Subunit G Gene Affects Larval Survival and Impaired Pup Adult Emergence in Henosepilachna vigintioctopunctata. Insects, 2021, 12, 935.	ation and	1.0	5
50	Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: patholog implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacological Research, 2021, 173, 105922.	ical	3.1	15
52	ĐĐ¾Ñ,Đ¾Ñ€Đ½Ñ‹Đµ Đ,Đ¾Đ½-Ñ,Ñ€Đ°Đ½ÑĐ»Đ¾Ñ†Đ,рующĐ,е ĐĐ¢Đ Đ °Đ∙	Ñ‹/ÐТÐ ¤ ŇÐ _; м2Ň,Ð°Đ·Ñ	Ì<: ⋈€ аĐ∙ I	Ð1⁄2Ð34Ð34Ð
53	Expansion of the "Sodium World―through Evolutionary Time and Taxonomic Space (Moscow), 2020, 85, 1518-1542.	. Biochemistry	0.7	4
54	ĐĐ²ÑĐ¿Đ°Đ½ÑĐ,ѕ«ĐаÑ,Ñ€Đ,ĐµĐ²Đ¾Đ³Đ¾ Đ¼Đ,Ñ€Đ°Â» ÑĐºĐ²Đ¾Đ∙ÑŒ ÑĐ²Đӟ	¼Đ»ÑŽÑ†Đ,Đ¾Đ½Đ½E)3⁄aÐu вÑ	Ĩ∰µÐ¼Ñ•Đ
55	Genome-wide analysis of V-ATPase genes in Plutella xylostella (L.) and the potential role or resistance to Bacillus thuringiensis Cry1Ac toxin. International Journal of Biological Macromolecules, 2022, 194, 74-83.	of PxVHA-G1 in	3.6	4
57	Vacuolar <scp>ATPase</scp> subunit F is critical for larval survival in <i>Henosepilachna vigintioctopunctata</i> . Insect Molecular Biology, 2022, 31, 177-189.		1.0	5
59	Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. So Advances, 2021, 7, eabi9027.	cience	4.7	50
62	Detection and quantification of the vacuolar H+ATPase using the <i>Legionella</i> effec SidK. Journal of Cell Biology, 2022, 221, .	tor protein	2.3	16
63	Defective Cystinosin, Aberrant Autophagyâ^'Endolysosome Pathways, and Storage Disea Assembling the Puzzle. Cells, 2022, 11, 326.	se: Towards	1.8	2

CITATION REPORT

#	Article	IF	CITATIONS
64	Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6.	1.6	31
65	Cryo-EM of the Yeast V _O Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chemical Biology, 2022, 17, 619-628.	1.6	4
66	Toosendanin, a novel potent vacuolar-type H ⁺ -translocating ATPase inhibitor, sensitizes cancer cells to chemotherapy by blocking protective autophagy. International Journal of Biological Sciences, 2022, 18, 2684-2702.	2.6	12
67	Intracellular pH Control by Membrane Transport in Mammalian Cells. Insights Into the Selective Advantages of Functional Redundancy. Frontiers in Molecular Biosciences, 2022, 9, 825028.	1.6	7
69	Follicular lymphoma-associated mutations in the V-ATPase chaperone VMA21 activate autophagy creating a targetable dependency. Autophagy, 2022, 18, 1982-2000.	4.3	9
70	Oxidative stress protein Oxr1 promotes Vâ€ATPase holoenzyme disassembly in catalytic activityâ€independent manner. EMBO Journal, 2022, 41, e109360.	3.5	15
71	A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. Journal of Cell Biology, 2022, 221, .	2.3	33
72	Phenotypic and genetic spectrum of ATP6V1A encephalopathy: a disorder of lysosomal homeostasis. Brain, 2022, 145, 2687-2703.	3.7	11
73	Ageing related thyroid deficiency increases brain-targeted transport of liver-derived ApoE4-laden exosomes leading to cognitive impairment. Cell Death and Disease, 2022, 13, 406.	2.7	6
74	Coordinated conformational changes in the V1 complex during V-ATPase reversible dissociation. Nature Structural and Molecular Biology, 2022, 29, 430-439.	3.6	16
75	F1-ATPase Rotary Mechanism: Interpreting Results of Diverse Experimental Modes With an Elastic Coupling Theory. Frontiers in Microbiology, 2022, 13, 861855.	1.5	2
77	Mutations in V-ATPase in follicular lymphoma activate autophagic flux creating a targetable dependency. Autophagy, 2023, 19, 716-719.	4.3	1
78	The V-ATPases in cancer and cell death. Cancer Gene Therapy, 2022, 29, 1529-1541.	2.2	26
79	ATP synthesis in an ancient ATP synthase at low driving forces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201921119.	3.3	4
80	Molecular architecture of the human caveolin-1 complex. Science Advances, 2022, 8, eabn7232.	4.7	49
81	Lysosomal Dysfunction in Down Syndrome and Alzheimer Mouse Models is Caused by Selective V-Atpase Inhibition by Tyr ⁶⁸² Phosphorylated APP βCTF. SSRN Electronic Journal, 0, , .	0.4	0
82	Follicular lymphoma-associated mutations in the V-ATPase chaperone Vma21 activate autophagy by dysfunctional V-ATPase assembly. , 2022, 1, 226-233.		0
84	Molecular basis of mEAK7-mediated human V-ATPase regulation. Nature Communications, 2022, 13, .	5.8	5

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
85	Reduced gene dosage is a common mechanism of neuropathologies caused by ATP6AP2 splicing mutations. Parkinsonism and Related Disorders, 2022, 101, 31-38.	1.1	2
87	The Plant V-ATPase. Frontiers in Plant Science, 0, 13, .	1.7	12
88	Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Nature Biotechnology, 2022, 40, 1834-1844.	9.4	13
89	Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxford,) Tj ETQq1 1 0.78	84314 rgB7 0.7	[/Overlock
90	CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7. Life Science Alliance, 2022, 5, e202201527.	1.3	10
91	Rare human <i>ATP6V1A</i> variants provide unique insights into V-ATPase functions. Brain, 0, , .	3.7	1
92	Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. Biochemistry (Moscow), 2022, 87, 702-719.	0.7	1
93	The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Translational Neurodegeneration, 2022, 11, .	3.6	19
94	Identification of mEAK-7 as a human V-ATPase regulator via cryo-EM data mining. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
95	Determinants, maintenance, and function of organellar pH. Physiological Reviews, 2023, 103, 515-606.	13.1	21
96	(Pro)renin receptor and insulin signalling regulate cell proliferation in MCF-7 breast cancer cells. Journal of Biochemistry, 0, , .	0.9	0
97	A novel pathogenic <scp> <i>ATP6V1B2</i> </scp> variant: Widening the genotypic spectrum of the epileptic neurodevelopmental phenotype. American Journal of Medical Genetics, Part A, 0, , .	0.7	2
98	Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases. BioEssays, 2022, 44, .	1.2	4
100	Structure of V-ATPase from citrus fruit. Structure, 2022, 30, 1403-1410.e4.	1.6	6
103	Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V _o and V ₁ motors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
104	Mitochondrial toxicity evaluation of traditional Chinese medicine injections with a dual in vitro approach. Frontiers in Pharmacology, 0, 13, .	1.6	1
106	Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature, 2022, 611, 827-834.	13.7	9
107	Mapping the protein binding site of the (pro)renin receptor using in silico 3D structural analysis. Hypertension Research, 2023, 46, 959-971.	1.5	1

CITATION REPORT

#	Article	IF	CITATIONS
108	A new means of energy supply driven by terahertz photons recovers related neural activity. IScience, 2023, 26, 105979.	1.9	3
110	Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps. International Journal of Molecular Sciences, 2023, 24, 4512.	1.8	4
111	CryoEM of V-ATPases: Assembly, disassembly, and inhibition. Current Opinion in Structural Biology, 2023, 80, 102592.	2.6	3
113	Cryo-EM Structural Snapshots of V/A-ATPase Reveal the Rotay Mechanism of Rotary ATPases. Seibutsu Butsuri, 2022, 62, 354-356.	0.0	0
114	Structural basis of V-ATPase V _O region assembly by Vma12p, 21p, and 22p. Proceedings of the United States of America, 2023, 120, .	3.3	2
115	The biogenesis and regulation of the plant oxidative phosphorylation system. Plant Physiology, 2023, 192, 728-747.	2.3	6
116	Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays in Biochemistry, 2023, 67, 201-213.	2.1	5
117	A Role for the V0 Sector of the V-ATPase in Neuroexocytosis: Exogenous V0d Blocks Complexin and SNARE Interactions with V0c. Cells, 2023, 12, 750.	1.8	1
118	Endolysosomal impairment by binding of amyloid beta or MAPT/Tau to V-ATPase and rescue via the HYAL-CD44 axis in Alzheimer disease. Autophagy, 2023, 19, 2318-2337.	4.3	6
119	Eat or Be Eaten: Strategies Used by <i>Legionella</i> to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infection and Immunity, 2023, 91, .	1.0	2
120	G Protein-Coupled Receptor Pharmacology—Insights from Mass Spectrometry. Pharmacological Reviews, 2023, 75, 397-415.	7.1	6
131	ATPase. , 2023, , 282-287.		0
136	The (pro)renin receptor as a pharmacological target in cardiorenal diseases. Hypertension Research, 2023, 46, 2527-2534.	1.5	1
141	Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nature Reviews Molecular Cell Biology, 2024, 25, 223-245.	16.1	5