Photoswitchable fluorescent polymer nanoparticles as a materials for authentication and optical patterning

Journal of Materials Chemistry C 8, 5476-5493 DOI: 10.1039/d0tc00937g

Citation Report

#	Article	IF	CITATIONS
1	Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano, 2020, 14, 14417-14492.	14.6	314
2	Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. Polymer, 2020, 205, 122859.	3.8	19
3	Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 2020, 245, 116507.	10.2	43
4	Controlled release of anti-cancer drug from the shell and hollow cavities of poly(N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation chain transfer polymerization. European Polymer Journal, 2020, 135, 109877.	5.4	20
5	Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. Journal of Colloid and Interface Science, 2020, 580, 192-210.	9.4	40
6	Modification of cellulose nanocrystal with dual temperature- and CO2-responsive block copolymers for ion adsorption applications. Journal of Molecular Liquids, 2020, 310, 113234.	4.9	24
7	Cellulose nanocrystal-grafted multi-responsive copolymers containing cleavable o-nitrobenzyl ester units for stimuli-stabilization of oil-in-water droplets. Chemical Engineering Journal, 2021, 417, 128005.	12.7	20
8	Dual-mode security anticounterfeiting and encoding by electrospinning of highly photoluminescent spiropyran nanofibers. Journal of Materials Chemistry C, 2021, 9, 9571-9583.	5.5	27
9	Bioinspired Synergistic Photochromic Luminescence and Programmable Liquid Crystal Actuators. Angewandte Chemie, 2021, 133, 11347-11351.	2.0	28
10	Bioinspired Synergistic Photochromic Luminescence and Programmable Liquid Crystal Actuators. Angewandte Chemie - International Edition, 2021, 60, 11247-11251.	13.8	125
11	Interparticle cycloaddition reactions for morphology transition of coumarin-functionalized stimuli-responsive polymer nanoparticles prepared by surfactant-free dispersion polymerization. Polymer, 2021, 228, 123899.	3.8	12
12	Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. ACS Applied Materials & Interfaces, 2021, 13, 33574-33583.	8.0	33
13	Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers. Journal of Colloid and Interface Science, 2021, 593, 67-78.	9.4	29
14	Production of photochromic nanocomposite film via sprayâ€coating of rareâ€earth strontium aluminate for antiâ€counterfeit applications. Luminescence, 2021, 36, 1933-1944.	2.9	51
15	Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope. Sensors, 2021, 21, 5463.	3.8	4
16	Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. Polymer, 2021, 231, 124112.	3.8	5
17	Photoluminescent Nanoinks with Multilevel Security for Quick Authentication of Encoded Optical Tags by Sunlight: Effective Physicochemical Parameters on Responsivity, Printability, and Brightness. ACS Applied Materials & Interfaces, 2021, 13, 44878-44892.	8.0	24
18	Synthesis of lanthanideâ€doped strontium aluminate nanoparticles encapsulated in polyacrylonitrile nanofibres: photoluminescence properties for anticounterfeiting applications. Luminescence, 2022, 37, 40-50.	2.9	18

#	Article	IF	CITATIONS
19	Sectional intramolecular charge transfer manipulating in a D-A-D' coumarin derivative for recessive rewritable paper. Dyes and Pigments, 2021, 194, 109605.	3.7	3
20	Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chemical Engineering Journal, 2021, 425, 131557.	12.7	56
21	The transfer and amplification of cyanostilbene molecular function to advanced flexible optical paints through self-crosslinkable side-chain liquid crystal polysiloxanes. Materials Horizons, 2021, 8, 1561-1569.	12.2	10
22	Morphology evolution of functionalized styrene and methyl methacrylate copolymer latex nanoparticles by one-step emulsifier-free emulsion polymerization. European Polymer Journal, 2020, 133, 109790.	5.4	26
23	Organic photoresponsive materials for information storage: a review. Advanced Photonics, 2020, 3, .	11.8	48
24	Smart block copolymers as fluorescence chemosensors of copper ions with high detection limit. Journal of Molecular Liquids, 2022, 345, 117786.	4.9	10
25	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	47.7	173
26	Stimuli-responsive block copolymers as pH chemosensors by fluorescence emission intensification mechanism. European Polymer Journal, 2022, 162, 110928.	5.4	9
27	Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Applied Surface Science, 2022, 581, 152395.	6.1	19
28	Anti-Counterfeiting Tags Using Flexible Substrate with Gradient Micropatterning of Silver Nanowires. Micromachines, 2022, 13, 168.	2.9	3
29	Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Scientific Reports, 2022, 12, 1079.	3.3	12
30	Novel nanocomposite film developed via screen-printing of viologen polymer for anti-counterfeiting applications: Photochromism, thermochromism and vapochromic. Reactive and Functional Polymers, 2022, 172, 105186.	4.1	25
31	Carbon Dots Embedded in Cellulose Film: Programmable, Performance-Tunable, and Large-Scale Subtle Fluorescent Patterning by <i>in Situ</i> Laser Writing. ACS Nano, 2022, 16, 2910-2920.	14.6	21
32	Development of photochromic fused 2 <i>H</i> -naphthopyrans with promising thermal fading rates. Journal of Materials Chemistry C, 2022, 10, 5542-5549.	5.5	3
33	Aptamer ÂFunctionalization and High-Contrast Reversible Dual-Color ÂPhotoswitching Fluorescence OfÂPolymeric NanoparticlesÂFor LatentÂFingerprintsÂImaging. SSRN Electronic Journal, 0, , .	0.4	0
34	Coumarin-Containing Block Copolymers as Carbon Dioxide Chemosensors Based on a Fluorescence Quenching Mechanism. ACS Applied Polymer Materials, 2022, 4, 1816-1825.	4.4	14
35	Fluorescent Polymers Conspectus. Polymers, 2022, 14, 1118.	4.5	16
36	Quadruple Anti ounterfeiting Retroreflective Structural Color Films. Advanced Optical Materials, 2022, 10, .	7.3	17

#	Article	IF	CITATIONS
37	Aptamer functionalization and high-contrast reversible dual-color photoswitching fluorescence of polymeric nanoparticles for latent fingerprints imaging. Sensors and Actuators B: Chemical, 2022, 367, 132049.	7.8	9
38	Development of optical chemosensors based on photochromic polymer nanocarriers. New Journal of Chemistry, 2022, 46, 15080-15094.	2.8	11
39	Photo-pH dual stimuli-responsive multicolor fluorescent polymeric nanoparticles for multicolor security ink, optical data encryption and zebrafish imaging. Dyes and Pigments, 2022, 205, 110588.	3.7	14
40	Inorganic photochromism material SrHfO3:Er3+ integrating multiple optical behaviors for multimodal anti-counterfeiting. Journal of Alloys and Compounds, 2022, 921, 166081.	5.5	15
41	Optical Chemosensors based on Spiropyran-Doped Polymer Nanoparticles for Sensing pH of Aqueous Media. Langmuir, 2022, 38, 9410-9420.	3.5	13
42	Coupling of Hydrophobic Graphene Quantum Dots with Photochromic Molecule for Fabrication of Transparent Photo-Responsive Polymeric Films Manifesting Fret Functioning. SSRN Electronic Journal, 0, , .	0.4	0
44	Colorimetric/fluorometric optical chemosensors based on oxazolidine for highly selective detection of Fe3+ and Ag+ in aqueous media: Development of ionochromic security papers. Journal of Molecular Structure, 2023, 1271, 134021.	3.6	5
45	Photochromic Polymer Nanoparticles as Highly Efficient Anticounterfeiting Nanoinks for Development of Photo-Switchable Encoded Tags. SSRN Electronic Journal, 0, , .	0.4	0
46	Stimuli-Responsive Dendritic Macromolecules for Optical Detection of Metal Ions and Acidic Vapors by the Photoinduced Electron Transfer Mechanism: Paper-Based Indicator for Food Spoilage Sensing. ACS Applied Materials & Interfaces, 2022, 14, 41433-41446.	8.0	11
47	Water treatment using stimuli-responsive polymers. Polymer Chemistry, 2022, 13, 5940-5964.	3.9	9
48	Scalable Production of Self-Toughening Plant Oil-Based Polyurethane Elastomers with Multistimuli-Responsive Functionalities. ACS Applied Materials & Interfaces, 2022, 14, 50090-50100.	8.0	11
49	Photoluminescent Polymer Nanoparticles Based on Oxazolidine Derivatives for Authentication and Security Marking of Confidential Notes. Langmuir, 2022, 38, 13782-13792.	3.5	14
50	Photochromic polymer nanoparticles as highly efficient anticounterfeiting nanoinks for development of photo-switchable encoded tags. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114343.	3.9	21
51	Acrylicâ€urethane/modified Rhodamineâ€B ecoâ€friendly UVâ€curable anticounterfeiting ink. Polymers for Advanced Technologies, 2023, 34, 646-654.	3.2	2
52	Coupling of hydrophobic graphene quantum dots with photochromic molecule for fabrication of transparent photo-responsive polymeric films manifesting FRET functioning. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437, 114420.	3.9	3
53	Development of pH sensing colloidal nanoparticles and oil/water separating electrospun membranes containing oxazolidine from functional polymers. Journal of Materials Chemistry C, 2023, 11, 685-697.	5.5	6
54	Thermostably photoswitchable red fluorescent polymeric nanoparticles for rewritable fluorescence patterning and zebrafish imaging. European Polymer Journal, 2023, 183, 111771.	5.4	4
55	Anti-Counterfeiting Inks Based on Förster Resonance Energy Transfer in Microcrystalline Cellulose-Grafted Poly(amidoamine) for Artificial Industries. ACS Applied Polymer Materials, 2023, 5, 1092-1102.	4.4	6

CITATION REPORT

#	Article	IF	CITATIONS
56	Nano-inks in security and defense applications. , 2023, , 623-657.		0
57	Dual-Color Photoluminescent Functionalized Nanoparticles for Static-Dynamic Anticounterfeiting and Encryption: First Collaboration of Spiropyran and Coumarin. ACS Applied Materials & Interfaces, 2023, 15, 7466-7484.	8.0	32
58	Modulating hydrothermal condition to achieve carbon dots-zeolite composites with multicolor afterglow. Nano Research, 2023, 16, 7761-7769.	10.4	10
59	Synthesis and Application of Fluorescent Polymer Micro―and Nanoparticles. Small, 2023, 19, .	10.0	9
60	Anti-counterfeiting ink based on polymer nanoparticles containing spiropyran and Aza-BODIPY for artificial industries. Reactive and Functional Polymers, 2023, 187, 105593.	4.1	8
61	Tuning the Photochromism of Spiropyran in Functionalized Nanoporous Silica Nanoparticles for Dynamic Anticounterfeiting Applications. ACS Omega, 2023, 8, 16459-16470.	3.5	6
62	Prediction of Half-Life Time in Thermal Back Reaction of Photochromic Diarylbenzenes by Screening Approach. Bulletin of the Chemical Society of Japan, 2023, 96, 496-502.	3.2	2
63	Photochromic Tungsten Oxide Quantum Dots-based Fluorescent Photoswitches towards Dual-mode Anti-counterfeiting Application. Journal of Colloid and Interface Science, 2023, 646, 855-862.	9.4	10
64	Photoresponsive Diaryletheneâ€Containing Polymers: Recent Advances and Future Challenges. Macromolecular Rapid Communications, 2023, 44, .	3.9	4
65	Photoluminescent Cellulose Nanofibers-Reinforced Alginate Hydrogel with Color-Tunable and Self-Healing Properties for Authentication Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 3293-3303.	3.7	3
66	Visibleâ€Lightâ€Driven Photoswitchable Fluorescent Polymers for Photorewritable Pattern, Antiâ€Counterfeiting, and Information Encryption. Advanced Functional Materials, 2023, 33, .	14.9	9
67	Preparation of polyacrylonitrile-based solution blow spinning fluorescent nanofibers from perylene-doped silica nanoparticles. Polymer-Plastics Technology and Materials, 2023, 62, 2390-2402.	1.3	1
68	Synthesis and characterization of photochromic polyurethane nanoparticles by miniemulsion polymerization. Dyes and Pigments, 2023, 219, 111647.	3.7	0
69	Dynamic anticounterfeiting polymeric inks for multipurpose time-dependent encryption with a high level of security. European Polymer Journal, 2023, 197, 112339.	5.4	5
70	Unexpected photo-liability of perylene diimides for fluorescent patterns. Journal of Macromolecular Science - Pure and Applied Chemistry, 2024, 61, 11-18.	2.2	0
71	Design of chemosensors and dynamic anticounterfeiting inks based on colloidal nanoprecipitated polymers. Journal of Materials Chemistry C, 0, , .	5.5	1
72	Preparation of polylactic acid reinforced with cellulose nanofibers toward photochromic self-healing adhesive for anti-counterfeiting applications. International Journal of Biological Macromolecules, 2024, 259, 129065.	7.5	1
73	Solvent dependence on the thermal cycloreversion reaction of photochromic diarylbenzene derivatives. Chemistry Letters, 2024, 53, .	1.3	0

CITATION REPORT

#	Article	IF	CITATIONS
74	Lanthanide-Polyoxometalate-Based Film with Reversible Photochromism and Luminescent Switching Properties for Erasable Inkless Security Printing. ACS Applied Materials & Interfaces, 2024, 16, 7973-7982.	8.0	0
75	Solid-state photochromic properties of indole thiosemicarbazones with aggregation-induced emission. New Journal of Chemistry, 2024, 48, 4726-4734.	2.8	0
76	Development of acidochromic colloidal polymer nanoparticles containing azobenzene derivatives as eco-friendly time-dependent anticounterfeiting inks. European Polymer Journal, 2024, 210, 112942.	5.4	0

CITATION REPORT