Materials for solar-powered water evaporation

Nature Reviews Materials 5, 388-401

DOI: 10.1038/s41578-020-0182-4

Citation Report

#	Article	IF	CITATIONS
1	Chinese ink enabled wood evaporator for continuous water desalination. Desalination, 2020, 496, 114727.	4.0	62
2	Guaranteeing Complete Salt Rejection by Channeling Saline Water through Fluidic Photothermal Structure toward Synergistic Zero Energy Clean Water Production and <i>In Situ</i> Energy Generation. ACS Energy Letters, 2020, 5, 3397-3404.	8.8	129
3	Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material. Materials Today Energy, 2020, 18, 100546.	2.5	23
4	Integrated Evaporator for Efficient Solar-Driven Interfacial Steam Generation. Nano Letters, 2020, 20, 6051-6058.	4.5	121
5	A Passive High-Temperature High-Pressure Solar Steam Generator for Medical Sterilization. Joule, 2020, 4, 2733-2745.	11.7	76
6	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano, 2020, 14, 17419-17427.	7.3	150
7	A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 24703-24709.	5.2	65
8	An all-day solar-driven vapor generator <i>via</i> photothermal and Joule-heating effects. Journal of Materials Chemistry A, 2020, 8, 25178-25186.	5.2	50
9	Design of self-righting steam generators for solar-driven interfacial evaporation and self-powered water wave detection. Journal of Materials Chemistry A, 2020, 8, 24664-24674.	5.2	36
10	Recent advances in solar-driven evaporation systems. Journal of Materials Chemistry A, 2020, 8, 25571-25600.	5.2	77
11	Plasmonic metal nitrides for solar-driven water evaporation. Environmental Science: Water Research and Technology, 2020, 6, 3169-3177.	1.2	14
12	Topologyâ€Controlled Hydration of Polymer Network in Hydrogels for Solarâ€Driven Wastewater Treatment. Advanced Materials, 2020, 32, e2007012.	11.1	225
13	Modular design of solar-thermal nanofluidics for advanced desalination membranes. Journal of Materials Chemistry A, 2020, 8, 24493-24500.	5.2	30
14	Highly Efficient Solar Evaporator Based On a Hydrophobic Association Hydrogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 18114-18125.	3.2	42
15	Moistureâ€Enabled Electricity Generation: From Physics and Materials to Selfâ€Powered Applications. Advanced Materials, 2020, 32, e2003722.	11.1	175
16	Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation. ACS Applied Energy Materials, 2020, 3, 9216-9225.	2.5	36
18	A Novel Salt-Rejecting Linen Fabric-Based Solar Evaporator for Stable and Efficient Water Desalination under Highly Saline Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 11845-11852.	3.2	65
19	Manipulating Interfacial Charge-Transfer Absorption of Cocrystal Absorber for Efficient Solar Seawater Desalination and Water Purification. ACS Energy Letters, 2020, 5, 2698-2705.	8.8	92

#	Article	IF	CITATIONS
20	Energy Matching for Boosting Water Evaporation in Direct Solar Steam Generation. Solar Rrl, 2020, 4, 2000341.	3.1	50
21	Enzyme-Regulated Healable Polymeric Hydrogels. ACS Central Science, 2020, 6, 1507-1522.	5.3	48
22	Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy, 2020, 78, 105269.	8.2	215
23	Preparation of mechanically robust Fe3O4/porous carbon/diatomite composite monolith for solar steam generation. Environmental Science and Pollution Research, 2020, 27, 45775-45786.	2.7	4
24	Multilayer graphite nano-sheet composite hydrogel for solar desalination systems with floatability and recyclability. New Journal of Chemistry, 2020, 44, 20181-20191.	1.4	16
25	Eco-friendly Carboxymethyl Cellulose Nanofiber Hydrogels Prepared via Freeze Cross-Linking and Their Applications. ACS Applied Polymer Materials, 2020, 2, 5482-5491.	2.0	41
26	Enhanced photoresponse and fast charge transfer: three-dimensional macroporous g-C ₃ N ₄ /GO-TiO ₂ nanostructure for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 19533-19543.	5.2	38
27	A three-dimensional printed biomimetic hierarchical graphene architecture for high-efficiency solar steam-generation. Journal of Materials Chemistry A, 2020, 8, 19387-19395.	5. 2	34
28	Turning Trash into Treasure: Pencil Waste–Derived Materials for Solarâ€Powered Water Evaporation. Energy Technology, 2020, 8, 2000567.	1.8	22
29	Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane. Science China Materials, 2020, 63, 1948-1956.	3.5	10
30	Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 4289-4305.	2.0	43
31	A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity <i>via</i> Real-Environment Solar–Thermal–Electric Conversion. ACS Nano, 2020, 14, 15738-15747.	7.3	152
32	Polymeric Membranes with Selective Solutionâ€Diffusion for Intercepting Volatile Organic Compounds during Solarâ€Driven Water Remediation. Advanced Materials, 2020, 32, e2004401.	11.1	142
33	Atmospheric Water Harvesting: A Review of Material and Structural Designs. , 2020, 2, 671-684.		274
34	Airflow Enhanced Solar Evaporation Based on Janus Graphene Membranes with Stable Interfacial Floatability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25435-25443.	4.0	93
35	Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy, 2020, 76, 104998.	8.2	126
36	Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials, 2020, 10, 1199.	1.9	38
37	Charge transfer co-crystals based on donor–acceptor interactions for near-infrared photothermal conversion. Chemical Communications, 2020, 56, 5223-5226.	2.2	62

#	ARTICLE	IF	CITATIONS
38	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
39	Sustainable Wood-Based Hierarchical Solar Steam Generator: A Biomimetic Design with Reduced Vaporization Enthalpy of Water. Nano Letters, 2020, 20, 5699-5704.	4.5	162
40	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	2.7	36
41	Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 13927-13934.	5.2	28
42	Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges. Water Research, 2020, 177, 115770.	5.3	131
43	Sustainable Solar Evaporation from Solute Surface via Energy Downconversion. Global Challenges, 2021, 5, 2000077.	1.8	7
44	Covalent Organic Frameworks for Water Treatment. Advanced Materials Interfaces, 2021, 8, .	1.9	70
45	Salt Mitigation Strategies of Solarâ€Driven Interfacial Desalination. Advanced Functional Materials, 2021, 31, 2007855.	7.8	149
46	Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 2021, 581, 545-551.	5.0	38
47	Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy, 2021, 79, 105436.	8.2	52
48	Solarâ€Driven Allâ€inâ€One Interfacial Water Evaporator Based on Electrostatic Flocking. Advanced Sustainable Systems, 2021, 5, .	2.7	16
49	Strategies for breaking theoretical evaporation limitation in direct solar steam generation. Solar Energy Materials and Solar Cells, 2021, 220, 110842.	3.0	47
50	A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles. Renewable Energy, 2021, 165, 278-287.	4.3	11
51	A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere, 2021, 267, 128916.	4.2	38
52	Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy, 2021, 216, 119262.	4.5	91
53	Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 138, 110547.	8.2	18
54	Solarâ€Driven Interfacial Evaporation and Selfâ€Powered Water Wave Detection Based on an Allâ€Cellulose Monolithic Design. Advanced Functional Materials, 2021, 31, 2008681.	7.8	150
55	Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chemical Engineering Journal, 2021, 417, 128051.	6.6	90

#	Article	IF	CITATIONS
56	Bi2S3/nylon membrane photothermal absorber with water shortage warning capability for seawater desalination. Materials Letters, 2021, 286, 129188.	1.3	8
57	Thermoresponsive and antifouling hydrogels as a radiative energy driven water harvesting system. Materials Chemistry Frontiers, 2021, 5, 917-928.	3.2	5
58	Gel-emulsion templated polymeric aerogels for solar-driven interfacial evaporation and electricity generation. Materials Chemistry Frontiers, 2021, 5, 1953-1961.	3.2	23
59	Ultrastable Plasmonic Cu-Based Core–Shell Nanoparticles. Chemistry of Materials, 2021, 33, 695-705.	3.2	29
60	Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices. Materials Chemistry Frontiers, 2021, 5, 1140-1163.	3.2	51
61	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	1.2	94
62	Photothermally boosted water splitting electrocatalysis by broadband solar harvesting nickel phosphide within a quasi-MOF. Journal of Materials Chemistry A, 2021, 9, 16479-16488.	5.2	30
63	Intensifying sustainable solar water production by steam heat internal circulation. Materials Advances, 2021, 2, 1731-1738.	2.6	0
64	Black Au-Decorated TiO ₂ Produced via Laser Ablation in Liquid. ACS Applied Materials & Laser Applied & Laser	4.0	32
65	Multifunctional oligomer sponge for efficient solar water purification and oil cleanup. Journal of Materials Chemistry A, 2021, 9, 2104-2110.	5.2	11
66	Design of monolithic closed-cell polymer foams <i>via</i> controlled gas-foaming for high-performance solar-driven interfacial evaporation. Journal of Materials Chemistry A, 2021, 9, 9692-9705.	5.2	77
67	A solution to break the salt barrier for high-rate sustainable solar desalination. Energy and Environmental Science, 2021, 14, 2451-2459.	15.6	87
68	Intensifying Heat Using MOFâ€Isolated Graphene for Solarâ€Driven Seawater Desalination at 98% Solarâ€toâ€Thermal Efficiency. Advanced Functional Materials, 2021, 31, 2008904.	7.8	87
69	Sustainable Solar Evaporation while Salt Accumulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4935-4942.	4.0	46
70	A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. Journal of Materials Chemistry A, 2021, 9, 11013-11024.	5.2	31
71	Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti ₃ C ₂ T <i>_x</i> MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3762-3770.	4.0	82
72	Harnessing synchronous photothermal and photocatalytic effects of cryptomelane-type MnO ₂ nanowires towards clean water production. Journal of Materials Chemistry A, 2021, 9, 2414-2420.	5.2	27
73	Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy and Environmental Science, 2021, 14, 5979-5994.	15.6	170

#	ARTICLE	IF	Citations
74	Bayberry tannin directed assembly of a bifunctional graphene aerogel for simultaneous solar steam generation and marine uranium extraction. Nanoscale, 2021, 13, 5419-5428.	2.8	36
75	An environmental pollutant to an efficient solar vapor generator: an eco-friendly method for freshwater production. Materials Advances, 2021, 2, 3856-3861.	2.6	10
76	Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Materials Chemistry Frontiers, 2021, 5, 1510-1524.	3.2	42
77	Bio-inspired vertically aligned polyaniline nanofiber layers enabling extremely high-efficiency solar membrane distillation for water purification. Journal of Materials Chemistry A, 2021, 9, 10678-10684.	5 . 2	66
78	Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges. Journal of Materials Chemistry A, 2021, 9, 6612-6633.	5.2	51
79	A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. Journal of Materials Chemistry A, O, , .	5.2	44
80	Nano/microstructured materials for solar-driven interfacial evaporators towards water purification. Journal of Materials Chemistry A, 2021, 9, 13746-13769.	5.2	31
81	A thermally insulated solar evaporator coupled with a passive condenser for freshwater collection. Journal of Materials Chemistry A, 2021, 9, 22428-22439.	5.2	16
82	Emerging Materials for Water-Enabled Electricity Generation. , 2021, 3, 193-209.		78
83	Photothermal Membrane Distillation toward Solar Water Production. Small Methods, 2021, 5, e2001200.	4.6	137
84	Allâ€Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator. Advanced Science, 2021, 8, 2002501.	5.6	225
86	Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy, 2021, 80, 105569.	8.2	99
87	Construction of a Three-Dimensional Interpenetrating Network Sponge for High-Efficiency and Cavity-Enhanced Solar-Driven Wastewater Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10902-10915.	4.0	50
88	Confinement Capillarity of Thin Coating for Boosting Solarâ€Driven Water Evaporation. Advanced Functional Materials, 2021, 31, 2011114.	7.8	131
89	Interfacial Solar Vapor Generation: Materials and Structural Design. Accounts of Materials Research, 2021, 2, 198-209.	5.9	75
90	Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators. Green Energy and Environment, 2023, 8, 151-162.	4.7	29
91	Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation. Advanced Functional Materials, 2021, 31, 2101036.	7.8	90
92	Fabrication of Black In ₂ O ₃ with Dense Oxygen Vacancy through Dual Functional Carbon Doping for Enhancing Photothermal CO ₂ Hydrogenation. Advanced Functional Materials, 2021, 31, 2100908.	7.8	66

#	Article	IF	CITATIONS
93	A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss. Solar Rrl, 2021, 5, 2100053.	3.1	127
94	Biomimetic Ultraâ€Black Sponge Derived from Loofah and Coâ€MOF for Longâ€Term Solarâ€Powered Vapor Generation and Desalination. Solar Rrl, 2021, 5, 2000817.	3.1	28
95	Defectâ€Induced Selfâ€Cleaning Solar Absorber with Fullâ€Spectrum Light Absorption for Efficient Dye Wastewater Purification. Solar Rrl, 2021, 5, 2100105.	3.1	23
96	Highâ€Efficiency Photothermal Water Evaporation using Broadband Solar Energy Harvesting by Ultrablack Silicon Structures. Advanced Energy and Sustainability Research, 2021, 2, 2000083.	2.8	22
97	Continuous solar desalination based on restricted salt crystallization zone. Desalination, 2021, 501, 114911.	4.0	25
98	Engineering Hydrogels for Efficient Solar Desalination and Water Purification. Accounts of Materials Research, 2021, 2, 374-384.	5.9	92
99	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
100	All-day fresh water harvesting by microstructured hydrogel membranes. Nature Communications, 2021, 12, 2797.	5.8	159
101	Anisotropic Evaporator with a Tâ€Shape Design for Highâ€Performance Solarâ€Driven Zeroâ€Liquid Discharge. Small, 2021, 17, e2100969.	5.2	39
102	Biowasteâ€Derived Carbonized Bone for Solar Steam Generation and Seawater Desalination. Advanced Sustainable Systems, 2021, 5, 2100031.	2.7	15
103	Woodâ€Derived Systems for Sustainable Oil/Water Separation. Advanced Sustainable Systems, 2021, 5, 2100039.	2.7	22
104	Stretchable Antiâ€Fogging Tapes for Diverse Transparent Materials. Advanced Functional Materials, 2021, 31, 2103551.	7.8	25
105	Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation. ACS Nano, 2021, 15, 10366-10376.	7.3	230
106	Enhanced Nearâ€Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskiteâ€Based P–N Heterojunction. Advanced Science, 2021, 8, e2002211.	5.6	33
107	Vacancy engineering and constructing built-in electric field in Z-scheme full-spectrum-Response OD/3D BiOI/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling. Chemical Engineering Journal, 2021, 414, 128867.	6.6	30
108	Aligned Millineedle Arrays for Solar Power Seawater Desalination with Siteâ€Specific Salt Formation. Small, 2021, 17, e2101487.	5.2	36
109	A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. Journal of Colloid and Interface Science, 2021, 592, 77-86.	5.0	62
110	Boosting solar steam generation in dynamically tunable polymer porous architectures. Polymer, 2021, 226, 123811.	1.8	13

#	ARTICLE	IF	CITATIONS
111	Carbon Materials for Solar Water Evaporation and Desalination. Small, 2021, 17, e2007176.	5.2	186
112	Microtubular PEDOT-Coated Bricks for Atmospheric Water Harvesting. ACS Applied Materials & Description of the Interfaces, 2021, 13, 34671-34678.	4.0	12
113	Reduced Red Mud as the Solar Absorber for Solar-Driven Water Evaporation and Vapor–Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30556-30564.	4.0	32
114	Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon, 2021, 177, 199-206.	5.4	56
115	Dualâ€Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Advanced Functional Materials, 2021, 31, 2102618.	7.8	226
116	A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule, 2021, 5, 1602-1612.	11.7	107
117	Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Research, 2021, 198, 117135.	5.3	57
118	Multifunctional hydrogels for sustainable energy and environment. Polymer International, 2021, 70, 1425-1432.	1.6	33
119	Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination, 2021, 507, 115038.	4.0	55
120	Solar Water Evaporation Toward Water Purification and Beyond. , 2021, 3, 1112-1129.		107
121	Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight–Energy–Water Nexus. ACS Nano, 2021, 15, 12535-12566.	7.3	220
122	Exergy-efficient boundary and design guidelines for atmospheric water harvesters with nano-porous sorbents. Nano Energy, 2021, 85, 105977.	8.2	43
123	Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam Generation. Advanced Materials, 2021, 33, e2102258.	11.1	79
124	Volcanic relationship between wettability of the interface and water migration rate in solar steam generation systems. Nano Research, 0, , $1.$	5.8	3
125	Mechanically robust, solar-driven, and degradable lignin-based polyurethane adsorbent for efficient crude oil spill remediation. Chemical Engineering Journal, 2021, 415, 128956.	6.6	83
126	Design and Utilization of Infrared Light for Interfacial Solar Water Purification. ACS Energy Letters, 2021, 6, 2645-2657.	8.8	29
127	Structure development of carbon-based solar-driven water evaporation systems. Science Bulletin, 2021, 66, 1472-1483.	4.3	118
128	3D Printing a Biomimetic Bridgeâ€Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Advanced Materials, 2021, 33, e2102443.	11.1	172

#	Article	IF	CITATIONS
129	Robust Pseudocapacitive Sodium Cation Intercalation Induced by Cobalt Vacancies at Atomically Thin Co _{1â^'<i>x</i>} Se ₂ /Graphene Heterostructure for Sodiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 18978-18985.	1.6	12
130	Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. Advanced Materials, 2021, 33, e2102994.	11.1	105
131	High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane. Science China Materials, 2022, 65, 201-212.	3.5	32
132	Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination, 2021, 507, 115024.	4.0	97
133	Robust Pseudocapacitive Sodium Cation Intercalation Induced by Cobalt Vacancies at Atomically Thin Co _{1â^'<i>x</i>} Se ₂ /Graphene Heterostructure for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 18830-18837.	7.2	68
134	Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy, 2021, 86, 106112.	8.2	60
135	Tailoring Photophysical Properties of Diketopyrrolopyrrole Small Molecules with Electron-Withdrawing Moieties for Efficient Solar Steam Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38365-38374.	4.0	12
136	Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination, 2021, 509, 115072.	4.0	34
137	Conformal Microfluidicâ€Blowâ€Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO ₂ Reduction. Advanced Science, 2021, 8, e2101232.	5.6	68
138	Lanthanide-Doped Topological Nanosheets with Enhanced Near-Infrared Photothermal Performance for Energy Conversion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43094-43103.	4.0	16
139	Highly Saltâ€Resistant 3D Hydrogel Evaporator for Continuous Solar Desalination via Localized Crystallization. Advanced Functional Materials, 2021, 31, 2104380.	7.8	122
140	Suspended Membrane Evaporators Integrating Environmental and Solar Evaporation for Oily Wastewater Purification. ACS Applied Materials & Interfaces, 2021, 13, 39513-39522.	4.0	54
141	Enhancing solar desalination performance based on restricted salt ions transport. Journal of Environmental Chemical Engineering, 2021, 9, 105272.	3.3	4
142	Carbon materials for solar-powered seawater desalination. New Carbon Materials, 2021, 36, 683-701.	2.9	22
143	Designing Newâ€Generation Piezoelectric Transducers by Embedding Superior Grapheneâ€Based Thermal Regulators. Advanced Materials, 2021, 33, e2103141.	11.1	9
144	Lowâ€Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Water†ransfer. Advanced Science, 2021, 8, e2101727.	5.6	65
145	Photo-triggered CO2 release from mussel-inspired polymers. Chemical Engineering Journal, 2021, 418, 129382.	6.6	6
146	Salt-solution-infused thin-film condenser for simultaneous anti-frost and solar-assisted atmospheric water harvesting. Cell Reports Physical Science, 2021, 2, 100568.	2.8	4

#	ARTICLE	IF	CITATIONS
147	Fabrication of Ag nanoparticles doped hypercrosslinked polymers monoliths for solar desalination. Polymer, 2021, 231, 124115.	1.8	12
148	Waste semi-coke/polydopamine based self-floating solar evaporator for water purification. Solar Energy Materials and Solar Cells, 2021, 230, 111237.	3.0	28
149	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
150	Interfacial solar evaporation driven lead removal from a contaminated soil. EcoMat, 2021, 3, e12140.	6.8	34
151	Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy, 2021, 87, 106146.	8.2	77
152	Multibioinspired JANUS Membranes with Spatial Surface Refreshment for Enhanced Fog Collection. Advanced Materials Interfaces, 2021, 8, 2101212.	1.9	7
153	Interfacial Engineering of Attractive Pickering Emulsion Gel-Templated Porous Materials for Enhanced Solar Vapor Generation. Energies, 2021, 14, 6077.	1.6	3
154	Highly Efficient Solar Vapor Generation via a Simple Morphological Alteration of TiO ₂ Films Grown on a Glassy Carbon Foam. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50911-50919.	4.0	16
155	Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Solar Energy Materials and Solar Cells, 2021, 230, 111233.	3.0	45
156	Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation. Desalination, 2021, 511, 115113.	4.0	43
157	Enhancing solar steam generation using a highly thermally conductive evaporator support. Science Bulletin, 2021, 66, 2479-2488.	4.3	159
158	Amorphous Highâ€Entropy Hydroxides of Tunable Wide Solar Absorption for Solar Water Evaporation. Particle and Particle Systems Characterization, 2021, 38, 2100094.	1.2	3
159	Highâ€performance water purification and desalination by solarâ€driven interfacial evaporation and photocatalytic <scp>VOC</scp> decomposition enabled by hierarchical <scp> TiO ₂ uO </scp> nanoarchitecture. International Journal of Energy Research, 2022, 46, 1313-1326.	2.2	21
160	Thermal performance of nanomaterial in solar collector: State-of-play for graphene. Journal of Energy Storage, 2021, 42, 103022.	3.9	13
161	Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation. Materials Chemistry and Physics, 2021, 271, 124904.	2.0	27
162	Oriented thermal etching of hollow carbon spheres with delicate heat management for efficient solar steam generation. International Journal of Heat and Mass Transfer, 2021, 178, 121579.	2.5	8
163	Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa. Renewable and Sustainable Energy Reviews, 2021, 149, 111414.	8.2	21
164	Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chemical Engineering Journal, 2021, 422, 129998.	6.6	83

#	Article	IF	CITATIONS
165	3D microflowers CuS/Sn2S3 heterostructure for highly efficient solar steam generation and water purification. Solar Energy Materials and Solar Cells, 2021, 232, 111377.	3.0	29
166	Fracture and fatigue of ideal polymer networks. Extreme Mechanics Letters, 2021, 48, 101399.	2.0	24
167	Bilayer fiber membrane electrospun from MOF derived Co3S4 and PAN for solar steam generation induced sea water desalination. Journal of Solid State Chemistry, 2021, 303, 122423.	1.4	20
168	Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation. Desalination, 2021, 515, 115192.	4.0	24
169	Lanthanide doped two dimensional heterostructure nanosheets with highly efficient harvest towards solar energy. Materials and Design, 2021, 210, 110023.	3.3	10
170	Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators. Desalination, 2021, 516, 115224.	4.0	56
171	Enhancement of pollutant degradation and solar-driven water evaporation by architecting hierarchical 1D/2D TiO2 @ MoS2 core–shell networks. Applied Surface Science, 2021, 570, 151143.	3.1	22
172	Facile fabrication of low-cost starch-based biohydrogel evaporator for efficient solar steam generation. Desalination, 2021, 517, 115260.	4.0	38
173	Nitrogen-doped graphene quantum dots hydrogels for highly efficient solar steam generation. Desalination, 2021, 517, 115264.	4.0	33
174	Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance. Carbohydrate Polymers, 2021, 273, 118536.	5.1	34
175	Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation. Chemical Engineering Journal, 2022, 428, 131142.	6.6	20
176	Fiber-intercepting-particle structured MOF fabrics for simultaneous solar vapor generation and organic pollutant adsorption. Chemical Engineering Journal, 2022, 428, 131365.	6.6	37
177	Porifera-inspired cost-effective and scalable "porous hydrogel sponge―for durable and highly efficient solar-driven desalination. Chemical Engineering Journal, 2022, 427, 130905.	6.6	32
178	Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation. Chemical Engineering Journal, 2022, 429, 132539.	6.6	56
179	Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation. Chemical Engineering Journal, 2022, 428, 132624.	6.6	41
180	Efficient solar domestic and industrial sewage purification via polymer wastewater collector. Chemical Engineering Journal, 2022, 428, 131199.	6.6	16
181	Photothermal Devices for Sustainable Uses Beyond Desalination. Advanced Energy and Sustainability Research, 2021, 2, 2000056.	2.8	32
182	Novel fabrication of a yeast biochar-based photothermal-responsive platform for controlled imidacloprid release. RSC Advances, 2021, 11, 19395-19405.	1.7	7

#	Article	IF	CITATIONS
183	A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment. Sustainable Energy and Fuels, 2021, 5, 5627-5637.	2.5	17
184	Super-Absorbers by Randomly Distributed Titanium Spheres. IEEE Photonics Technology Letters, 2021, 33, 247-250.	1.3	4
185	Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy and Environmental Science, 2021, 14, 5347-5357.	15.6	133
186	Directional solution transfer of a 3D solar evaporator inhibiting salt crystallization. Journal of Materials Chemistry A, 2021, 9, 22472-22480.	5.2	24
187	Salt-Rejecting Solar Interfacial Evaporation. Cell Reports Physical Science, 2021, 2, 100310.	2.8	76
188	Passive, high-efficiency thermally-localized solar desalination. Energy and Environmental Science, 2021, 14, 1771-1793.	15.6	142
189	Ultraâ€Black Pinecone for Efficient Solar Steam Generation under Omnidirectional Illumination. Advanced Sustainable Systems, 2021, 5, 2000244.	2.7	16
190	A Lowâ€Cost 3D Spherical Evaporator with Unique Surface Topology and Inner Structure for Solar Water Evaporationâ€Assisted Dye Wastewater Treatment. Advanced Sustainable Systems, 2021, 5, 2000245.	2.7	48
191	Building of multifunctional and hierarchical HxMoO3/PNIPAM hydrogel for high-efficiency solar vapor generation. Green Energy and Environment, 2022, 7, 1006-1013.	4.7	21
192	Poly(<i>N</i> -phenylglycine)-Based Bioinspired System for Stably and Efficiently Enhancing Solar Evaporation. ACS Sustainable Chemistry and Engineering, 2021, 9, 448-457.	3.2	28
193	PASSIVE ATMOSPHERIC WATER HARVESTING UTILIZING AN ANCIENT CHINESE INK SLAB. Facta Universitatis, Series: Mechanical Engineering, 2021, 19, 229.	2.3	35
194	Water harvesting from desert soil via interfacial solar heating under natural sunlight. Journal of Colloid and Interface Science, 2022, 607, 1986-1992.	5.0	7
195	Polymeric materials for solar water purification. Journal of Polymer Science, 2021, 59, 3084-3099.	2.0	21
196	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	11.1	68
197	Nanosecond Laser Patterned Porous Graphene from Monolithic Mesoporous Carbon for Highâ∈Performance Solar Thermal Interfacial Evaporation. Advanced Materials Technologies, 2021, 6, 2101052.	3.0	9
198	Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials, 2021, 11, 76.	1.9	7
199	Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. Journal of Materials Chemistry A, 2021, 9, 26127-26134.	5.2	12
200	Metal organic framework enabled wood evaporator for solar-driven water purification. Separation and Purification Technology, 2022, 281, 119912.	3.9	48

#	Article	IF	CITATIONS
201	3D-printed hierarchical porous cellulose/alginate/carbon black hydrogel for high-efficiency solar steam generation. Chemical Engineering Journal, 2022, 430, 132765.	6.6	111
202	Highly charged hydrogel with enhanced donnan exclusion toward ammonium for efficient solar-driven water remediation. Chemical Engineering Journal, 2022, 430, 133019.	6.6	15
203	High-rate long-lasting solar desalination towards hypersaline brine enabled by introducing a siphon-drop mode. Chemical Engineering Journal, 2022, 430, 133043.	6.6	10
204	High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. Journal of Colloid and Interface Science, 2022, 608, 840-852.	5.0	97
205	The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectrics. Journal of Materials Chemistry C, 2022, 10, 2732-2741.	2.7	24
206	Principles and applications of photothermal catalysis. Chem Catalysis, 2022, 2, 52-83.	2.9	157
207	Engineering of porous graphene oxide membranes for solar steam generation with improved efficiency. Environmental Science: Water Research and Technology, 0, , .	1.2	4
208	Utilization of sewage resources through efficient solar-water evaporation by single-atom Cu sites. Carbon, 2022, 187, 207-215.	5.4	12
209	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie, 2022, 134, e202114074.	1.6	16
210	Polymeric Hydrogelsâ€"A Promising Platform in Enhancing Water Security for a Sustainable Future. Advanced Materials Interfaces, 2021, 8, 2100580.	1.9	46
211	Selective Deposition of Candle Soot on a Cellulose Membrane for Efficient Solar Evaporation. ACS Omega, 2021, 6, 31366-31374.	1.6	4
212	Investigating the synergistic initiating effect on promoting methane hydrate formation via mixed graphene and sodium cholate. Journal of Molecular Liquids, 2022, 349, 118134.	2.3	5
213	Highly Elastic Interconnected Porous Hydrogels through Selfâ€Assembled Templating for Solar Water Purification. Angewandte Chemie - International Edition, 2022, 61, e202114074.	7.2	70
214	Diatom-Inspired TiO ₂ -PANi-Decorated Bilayer Photothermal Foam for Solar-Driven Clean Water Generation. ACS Applied Materials & Interfaces, 2021, 13, 58124-58133.	4.0	34
215	Polypyrrole–Dopamine Nanofiber Light-Trapping Coating for Efficient Solar Vapor Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57153-57162.	4.0	22
216	Solarâ€Initiated Frontal Polymerization of Photothermic Hydrogels with High Swelling Properties for Efficient Water Evaporation. Solar Rrl, 2022, 6, 2100917.	3.1	10
217	Ultrarobust Photothermal Materials via Dynamic Crosslinking for Solar Harvesting. Small, 2022, 18, e2104048.	5.2	43
218	Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. Journal of Materials Chemistry A, 2021, 9, 27121-27139.	5.2	63

#	Article	IF	CITATIONS
219	Atmospheric water harvester-assisted solar steam generation for highly efficient collection of distilled water. Journal of Materials Chemistry A, 2022, 10, 1885-1890.	5.2	33
220	Construction of functionalized graphene separation membranes and their latest progress in water purification. Separation and Purification Technology, 2022, 285, 120301.	3.9	15
221	Shape-controlled fabrication of cost-effective, scalable and anti-biofouling hydrogel foams for solar-powered clean water production. Chemical Engineering Journal, 2022, 431, 134144.	6.6	40
222	Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal, 2022, 431, 134024.	6.6	85
223	Constructing oxidized carbon spheres-based heterogeneous membrane with high surface energy for energy-free water purification. Chemical Engineering Journal, 2022, 431, 134132.	6.6	6
224	Nature-inspired poly(N-phenylglycine)/wood solar evaporation system for high-efficiency desalination and water purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128272.	2.3	27
225	Narrow-Bandgap LaMO3 (MÂ=ÂNi, Co) nanomaterials for efficient interfacial solar steam generation. Journal of Colloid and Interface Science, 2022, 612, 203-212.	5.0	30
226	Hierarchically structured evaporator with integrated water supply and evaporation layers to retard salt accumulation. International Journal of Heat and Mass Transfer, 2022, 185, 122447.	2.5	19
227	A Super Absorbent Resin-Based Solar Evaporator for Various Water Treatment. SSRN Electronic Journal, 0, , .	0.4	0
228	Issues and risks associated with generation lâ§"IV solar-driven water purification technologies. , 2022, , 311-335.		1
229	Solar-driven water treatment: the path forward for the energy–water nexus. , 2022, , 337-362.		6
230	Tailoring the Salt Transport Flux of Solar Evaporators for a Highly Effective Salt-Resistant Desalination with High Productivity. ACS Nano, 2022, 16, 2511-2520.	7.3	64
231	A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation. Journal of Materials Chemistry A, 2022, 10, 2856-2866.	5.2	61
232	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie, 2022, 134, .	1.6	11
233	Loofah Sponge-Derived Hygroscopic Photothermal Absorber for All-Weather Atmospheric Water Harvesting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4680-4689.	4.0	29
234	Diradicalâ€Featured Organic Smallâ€Molecule Photothermal Material with Highâ€Spin State in Dimers for Ultraâ€Broadband Solar Energy Harvesting. Advanced Materials, 2022, 34, e2108048.	11.1	37
235	Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	95
236	Polydopamineâ€Induced Multilevel Engineering of Regenerated Silk Fibroin Fiber for Photothermal Conversion. Small, 2022, 18, e2107196.	5.2	24

#	Article	IF	CITATIONS
237	Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	11.1	50
238	Interfacial Solar Steam/Vapor Generation for Heating and Cooling. Advanced Science, 2022, 9, e2104181.	5.6	42
239	Recent developments of hydrogel based solar water purification technology. Materials Advances, 2022, 3, 1322-1340.	2.6	21
240	Solar Selective Absorber for Emerging Sustainable Applications. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34
241	Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy, 2022, 95, 107016.	8.2	148
242	Porous biomass foam of polypyrrole-coated cattail fibers for efficient photothermal evaporation. Industrial Crops and Products, 2022, 178, 114559.	2.5	15
243	Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination. Separation and Purification Technology, 2022, 287, 120534.	3.9	37
244	A biomimetic interfacial solar evaporator for heavy metal soil remediation. Chemical Engineering Journal, 2022, 435, 134793.	6.6	31
245	General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nature Communications, 2022, 13, 776.	5.8	56
246	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079.	11.1	106
247	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	5.8	13
248	Waste Egg Tray and Toner-Derived Highly Efficient 3D Solar Evaporator for Freshwater Generation. ACS Applied Materials & Description (2008) ACS Applied Ma	4.0	39
249	Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solarâ€Powered Water Evaporation. Advanced Functional Materials, 2022, 32, .	7.8	94
250	Poly(<i>N</i> -phenylglycine)/MoS ₂ Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation. ACS Applied Materials & ACS Applied Materials & ACS ACS Applied Materials & ACS	4.0	37
251	Improving the Saline Water Evaporation Rates Using Highly Conductive Carbonaceous Materials Under IR Light for Improved Freshwater Production. SSRN Electronic Journal, 0, , .	0.4	0
252	Facile synthesis of hierarchical SnSe nanosheets–hydrogel evaporators for sustainable solar-powered desalination. Journal of Materials Chemistry A, 2022, 10, 10672-10681.	5.2	12
253	A Novel Approach to Simultaneously Obtain Well-Hydrophobic and Photothermal Materials for Organic Contaminant Removal and Solar Steam Generation. SSRN Electronic Journal, 0, , .	0.4	0
254	Lignin Hydrogel-Based Solar-Driven Evaporator for Cost-Effective and Highly Efficient Water Purification. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
255	Over 11 kg m ^{–2} h ^{–1} Evaporation Rate Achieved by Cooling Metal–Organic Framework Foam with Pine Needle-Like Hierarchical Structures to Subambient Temperature. ACS Applied Materials & Diterfaces, 2022, 14, 10257-10266.	4.0	48
256	Fibrous Aerogels for Solar Vapor Generation. Frontiers in Chemistry, 2022, 10, 843070.	1.8	5
257	Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 2022, 13, 849.	5.8	101
258	Adjustable object floating states based on three-segment three-phase contact line evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201665119.	3.3	1
260	Simultaneous Solarâ€driven Steam and Electricity Generation by Costâ€effective, Easy Scaleâ€up MnO ₂ â€based Flexible Membranes. Energy and Environmental Materials, 2023, 6, .	7.3	35
261	Biomimetic Design of Macroporous 3D Truss Materials for Efficient Interfacial Solar Steam Generation. ACS Nano, 2022, 16, 3554-3562.	7.3	67
262	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification. Advanced Materials, 2022, 34, e2200865.	11.1	36
263	A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. Nanomaterials, 2022, 12, 859.	1.9	14
264	Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Research, 2022, 15, 5653-5662.	5.8	10
265	Hierarchically Designed Three-Dimensional Composite Structure on a Cellulose-Based Solar Steam Generator. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12284-12294.	4.0	35
266	Crystalline hydrogen bonding of water molecules confined in a metal-organic framework. Communications Chemistry, 2022, 5, .	2.0	11
267	Hierarchically Structured Black Gold Film with Ultrahigh Porosity for Solar Steam Generation. Advanced Materials, 2022, 34, e2200108.	11.1	84
268	Janus Co@C/NCNT photothermal membrane with multiple optical absorption for highly efficient solar water evaporation and wastewater purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128960.	2.3	17
269	Flexible MXene-based Janus porous fibrous membranes for sustainable solar-driven desalination and emulsions separation. Journal of Cleaner Production, 2022, 347, 131324.	4.6	45
270	Constructing of 3D porous composite materials of NiAl/CNTs for highly efficient solar steam generation. Solar Energy Materials and Solar Cells, 2022, 240, 111722.	3.0	20
271	Designing salt transmission channel of solar-driven multistage desalination device for efficient and stable freshwater production from seawater. Desalination, 2022, 531, 115688.	4.0	13
272	Improving the saline water evaporation rates using highly conductive carbonaceous materials under infrared light for improved freshwater production. Desalination, 2022, 531, 115710.	4.0	8
273	Lignin hydrogel-based solar-driven evaporator for cost-effective and highly efficient water purification. Desalination, 2022, 531, 115706.	4.0	27

#	Article	IF	CITATIONS
274	Ultralight electrospun fiber foam with tunable lamellar macropores for efficient interfacial evaporation. Journal of Environmental Chemical Engineering, 2022, 10, 107522.	3.3	11
275	A robust PVA/C/sponge composite hydrogel with improved photothermal interfacial evaporation rate inspired by the chimney effect. Desalination, 2022, 531, 115720.	4.0	19
276	Hydrogel materials for sustainable water resources harvesting & Department: Synthesis, mechanism and applications. Chemical Engineering Journal, 2022, 439, 135756.	6.6	75
277	Magnetic nanostructure and biomolecule synergistically promoted Suaeda-inspired self-healing hydrogel composite for seawater evaporation. Science of the Total Environment, 2022, 830, 154545.	3.9	12
278	Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere, 2022, 299, 134394.	4.2	7
279	Electrochemical oxidation reconstructs graphene oxides on sponge for unprecedentedly high solar water evaporation. Carbon, 2022, 194, 267-273.	5.4	17
280	Hydrovoltaic effect of microbial films enables highly efficient and sustainable electricity generation from ambient humidity. Chemical Engineering Journal, 2022, 441, 135921.	6.6	20
281	Facile synthesis of C3N4/Niln2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Applied Catalysis B: Environmental, 2022, 310, 121336.	10.8	40
282	Direct solar vapor generation with <scp>microâ€3D</scp> printed hydrogel device. EcoMat, 2022, 4, .	6.8	19
284	CNTs/Wood Composite Nanogenerator for Producing Both Steam and Electricity. ACS Applied Electronic Materials, 2021, 3, 5287-5295.	2.0	19
285	Femtosecond laserâ€produced optical absorbers for solarâ€thermal energy harvesting. EcoMat, 2022, 4, .	6.8	6
286	Biomimetic Hybridization of Janus-like Graphene Oxide into Hierarchical Porous Hydrogels for Improved Mechanical Properties and Efficient Solar Desalination Devices. ACS Nano, 2021, 15, 19877-19887.	7.3	76
287	Is Heat Really Beneficial to Water Evaporation-Driven Electricity?. Journal of Physical Chemistry Letters, 2021, 12, 12370-12375.	2.1	8
288	Thermodynamics of hydrogels for applications in atmospheric water harvesting, evaporation, and desalination. Physical Chemistry Chemical Physics, 2022, 24, 12329-12345.	1.3	9
289	Advances and challenges of broadband solar absorbers for efficient solar steam generation. Environmental Science: Nano, 2022, 9, 2264-2296.	2.2	20
290	Highly efficient solar steam generation of polyamide 6 membrane modified with graphene oxide and Au nanoparticles. Journal of Materials Research, 2022, 37, 1475-1485.	1.2	7
291	A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Research, 2022, 15, 6705-6712.	5.8	7
292	Fully Superhydrophilic, Self-Floatable, and Multi-Contamination-Resistant Solar Steam Generator Inspired by Seaweed. Engineering, 2023, 20, 153-161.	3.2	10

#	Article	IF	CITATIONS
293	Synergistically regulated surface structure and water transportation of sponge hydrogel evaporator for efficient water desalination. Desalination, 2022, 533, 115780.	4.0	15
294	Investigating the effects of carbon-based nanofluids on the interfacial evaporation of salt water under infrared light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 129018.	2.3	3
295	Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19409-19418.	4.0	37
296	Photothermal motion: effect of low-intensity irradiation on the thermal motion of organic nanoparticles. Nanoscale, 2022, 14, 7233-7241.	2.8	2
297	A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. Journal of Materials Chemistry A, 2022, 10, 11712-11720.	5.2	19
298	Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy & Storage Applications. Energy & Storage Applications. Energy & Storage Applications.	2.5	10
299	Direct Plasmaâ€Enhancedâ€Chemicalâ€Vaporâ€Deposition Syntheses of Vertically Oriented Graphene Films on Functional Insulating Substrates for Wideâ€Range Applications. Advanced Functional Materials, 2022, 32, .	7.8	8
300	Efficient Solar Thermal Energy Conversion and Utilization by a Film of Conductive Metal–Organic Framework Layered on Nanocellulose. , 2022, 4, 1058-1064.		19
301	Structures, properties, and applications of zwitterionic polymers. ChemPhysMater, 2022, 1, 294-309.	1.4	33
302	General Synthesis of Large Inorganic Nanosheets via 2D Confined Assembly of Nanoparticles. ACS Central Science, 2022, 8, 627-635.	5.3	7
303	Hierarchical Poreâ€Gradient Silica Aerogel Balancing Heat and Water Management for Efficient Solarâ€Driven Water Evaporation. Advanced Sustainable Systems, 2022, 6, .	2.7	4
304	Synergistic effect of reduced graphene oxide and carbon black as hybrid light absorber for efficient and antifouling texture-based solar steam generator. Solar Energy, 2022, 238, 226-237.	2.9	8
305	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
306	Electricityâ€Boosted Solarâ€ŧoâ€Vapor Conversion upon Fiberâ€Supported CDs@CuS for Rapidly Vaporizing Seawater. Solar Rrl, 2022, 6, .	3.1	8
307	High efficiency solar interfacial evaporator for seawater desalination based on high porosity loofah sponge biochar. Solar Energy, 2022, 238, 305-314.	2.9	24
308	Avantâ€Garde Solar–Thermal Nanostructures: Nascent Strategy into Effective Photothermal Desalination. Solar Rrl, 2022, 6, .	3.1	13
309	Tubular polypyrrole enhanced elastomeric biomass foam as a portable interfacial evaporator for efficient self-desalination. Chemical Engineering Journal, 2022, 445, 136701.	6.6	20
310	Metal–Organic Framework Composite Photothermal Membrane for Removal of High-Concentration Volatile Organic Compounds from Water via Molecular Sieving. ACS Nano, 2022, 16, 8329-8337.	7.3	58

#	Article	IF	CITATIONS
311	A vasculatural hydrogel combined with Prussian blue for solar-driven vapor generation. Journal of Materials Chemistry A, 2022, 10, 12608-12615.	5.2	12
312	Ultrafast Solar-Vapor Harvesting Based on a Hierarchical Porous Hydrogel with Wettability Contrast and Tailored Water States. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24766-24774.	4.0	10
313	Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nature Communications, 2022, 13, 2761.	5.8	91
314	Carbon fiber coated by quinoa cellulose nanosheet with outstanding scaled salt self-cleaning performance and purification of organic and antibiotic contaminated water. Scientific Reports, 2022, 12, .	1.6	6
315	Laminar regenerated cellulose membrane employed for high-performance photothermal-gating osmotic power harvesting. Carbohydrate Polymers, 2022, 292, 119657.	5.1	6
316	Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators. Renewable Energy, 2022, 194, 68-79.	4.3	25
317	Molecular-assembly route to fabricate a robust flexible hydrogel membrane for high-efficient and durable solar water purification. Separation and Purification Technology, 2022, 295, 121335.	3.9	17
318	Photo-thermoelectric conversion and photo-induced thermal imaging using 2D/3D ReS2@carbon framework with enhanced photon harvesting. Chemical Engineering Journal, 2022, 446, 137084.	6.6	10
319	Photothermal-Driven Flow with Water Droplets for Effective Removal of Indoor Fine Particulate Matters. SSRN Electronic Journal, 0, , .	0.4	0
320	Graphite/Snse Hybrid-Embedded Monolithic Foams with Bimodal Pores for High Performance Solar Desalination with Spontaneous Salt Rejection. SSRN Electronic Journal, 0, , .	0.4	0
321	Controllable synthesis of N/Co-doped carbon from metal–organic frameworks for integrated solar vapor generation and advanced oxidation processes. Journal of Materials Chemistry A, 2022, 10, 13378-13392.	5.2	52
322	Sandwich-Type Absorber for Synergistically Enhanced Solar Water Evaporation and Photocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
323	Optoplasmonic Modulation of Cell Metabolic State Promotes Rapid Cell Differentiation. Analytical Chemistry, 2022, 94, 8354-8364.	3.2	4
324	Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for photocatalysis. Chem Catalysis, 2022, 2, 1734-1747.	2.9	33
325	Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy. Nano Energy, 2022, 100, 107449.	8.2	32
326	Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100, 107441.	8.2	12
327	Salt isolation from waste brine enabled by interfacial solar evaporation with zero liquid discharge. Journal of Materials Chemistry A, 2022, 10, 14470-14478.	5.2	57
328	Nanoporous Titanate Nanosheet-Based Membranes for Water Treatment and Molecular Separations. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
329	Interfacial solar evaporator synergistic phase change energy storage for all-day steam generation. Journal of Materials Chemistry A, 2022, 10, 15485-15496.	5.2	38
330	Recent Progress on Titanium Sesquioxide: Fabrication, Properties, and Applications. Advanced Functional Materials, 2022, 32, .	7.8	14
331	Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation. ACS Nano, 2022, 16, 9510-9522.	7.3	14
332	Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation. Nature Communications, 2022, 13, .	5.8	19
333	High-Porosity Lamellar Films Prepared by a Multistage Assembly Strategy for Efficient Photothermal Water Evaporation and Power Generation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29099-29110.	4.0	22
334	Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater. Cell Reports Physical Science, 2022, 3, 100940.	2.8	8
335	AquaRegenerator: A sustainable device for potable water. Materials Today: Proceedings, 2023, 72, 55-61.	0.9	0
336	Cuttleboneâ€Derived Interfacial Solar Evaporators for Longâ€Term Desalination and Water Harvesting. Advanced Sustainable Systems, 2022, 6, .	2.7	4
337	Highly efficient water steam generation via natural black urushiol-Fe polymeric microspheres coated-cotton fabric. Desalination, 2022, 538, 115906.	4.0	15
338	A super absorbent resin-based solar evaporator for high-efficient various water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129405.	2.3	6
339	Theoretical evaluation of the evaporation rate of 2D solar-driven interfacial evaporation and of its large-scale application potential. Desalination, 2022, 537, 115891.	4.0	9
340	Synchronously managed water and heat transportation for highly efficient interfacial solar desalination. Desalination, 2022, 538, 115897.	4.0	6
341	Simultaneous engineering on absorption window and transportation geometry of graphene-based foams toward high-performance solar steam generator. Applied Surface Science, 2022, 599, 154021.	3.1	5
342	Woven cattail leaf slips for large-scale, high-efficient and salt-resistant solar water evaporation. Industrial Crops and Products, 2022, 186, 115185.	2.5	5
343	Synergy of copper Selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. Journal of Colloid and Interface Science, 2022, 625, 289-296.	5.0	22
344	Advanced solar desalination on superwetting surfaces. Journal of Materials Chemistry A, 2022, 10, 19348-19366.	5.2	9
345	Self-Regulating Solar Steam Generators Enable Volatile Organic Compound Removal through In Situ H ₂ O ₂ Generation. Environmental Science & Encountry (2022), 56, 10474-10482.	4.6	15
346	Selfâ€Assembled Supercrystals Enhance the Photothermal Conversion for Solar Evaporation and Water Purification. Small, 2022, 18, .	5.2	11

#	Article	IF	CITATIONS
347	Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nature Communications, 2022, 13, .	5.8	81
348	A Review on Photothermal Conversion of Solar Energy with Nanomaterials and Nanostructures: From Fundamentals to Applications. Advanced Sustainable Systems, 2022, 6, .	2.7	68
349	Atmospheric water harvesting: Prospectus on graphene-based materials. Journal of Materials Research, 2022, 37, 2227-2240.	1.2	7
350	Polyzwitterionic Hydrogels for Highly Efficient High Salinity Solar Desalination. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
351	Polyzwitterionic Hydrogels for Highly Efficient High Salinity Solar Desalination. Angewandte Chemie, 0, , .	1.6	2
352	More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 2022, 67, 1572-1580.	4.3	122
353	Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination.	4.0	13
354	Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light: Science and Applications, 2022, 11, .	7.7	26
355	Plasmonic MoO2 coupled with sulfur-incorporated NiMoO4 as multifunctional heterostructures for solar thermoelectric self-powered urea electrolysis. Applied Surface Science, 2022, 600, 154116.	3.1	13
356	Efficient solar-driven interfacial water evaporation enabled wastewater remediation by carbonized sugarcane. Journal of Water Process Engineering, 2022, 49, 102991.	2.6	9
357	Enhanced vapor condensation by thermal redistribution on the evaporation surface in heat-localized solar desalination. Applied Thermal Engineering, 2022, 215, 118941.	3.0	10
358	Molecular engineering of biomass-derived hybrid hydrogels for solar water purification. Journal of Colloid and Interface Science, 2022, 626, 231-240.	5.0	12
359	Monolithic all-weather solar-thermal interfacial membrane evaporator. Chemical Engineering Journal, 2022, 450, 137893.	6.6	21
360	Microbial biofilms for electricity generation from water evaporation and power to wearables. Nature Communications, 2022, 13 , .	5.8	44
361	Horizon scanning process to foresight emerging issues in Arabsphere's water vision. Scientific Reports, 2022, 12, .	1.6	4
362	Enhanced Solar Evaporation Using a Scalable MoS ₂ â€Based Hydrogel for Highly Efficient Solar Desalination. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
363	Application of the photothermal-responsive gelatin-based microspheres for controlled release of imidacloprid by helix-coil structural transition mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129792.	2.3	4
364	Enhanced Solar Evaporation Using a Scalable MoS ₂ â€Based Hydrogel for Highly Efficient Solar Desalination. Angewandte Chemie, 2022, 134, .	1.6	13

#	Article	IF	Citations
365	Hierarchically porous nickel foam supported Co-NCNT arrays for efficient solar water evaporation, wastewater purification and electricity generation. Desalination, 2022, 539, 115977.	4.0	15
366	Graphite/Snse Hybrid-Embedded Monolithic Foams with Hierarchical and Bimodal Pores for High Performance Solar Desalination Membranes with Spontaneous Salt Rejection. SSRN Electronic Journal, 0, , .	0.4	0
367	Robust and Flexible 3D Photothermal Evaporator with Heat Storage for Highâ€Performance Solarâ€Driven Evaporation. Advanced Sustainable Systems, 2022, 6, .	2.7	8
368	Efficient Solarâ€Powered Interfacial Evaporation, Water Remediation, and Waste Conversion Based on a Tumblerâ€Inspired, Allâ€Cellulose, and Monolithic Design. Advanced Sustainable Systems, 2022, 6, .	2.7	6
369	Unconventional Photoconversion from Inâ€Plane 2D Heterostructures of MXene/Semiconductor. Solar Rrl, O, , .	3.1	1
370	Direct measurement of proton conductivity of a single ionomer nanofiber. Nano Energy, 2022, 102, 107738.	8.2	2
371	Biomassâ€based biomimeticâ€oriented Janus nanoarchitecture for efficient heavyâ€metal enrichment and interfacial solar water sanitation. , 2022, 1, 537-547.		21
372	A Multiscale Porous 3Dâ€Fabric Evaporator with Vertically Aligned Yarns Enables Ultraâ€Efficient and Continuous Water Desalination. Advanced Functional Materials, 2022, 32, .	7.8	43
373	Leaf-structure-inspired photothermal evaporator for versatile oily wastewater purification. Cell Reports Physical Science, 2022, 3, 101020.	2.8	3
374	Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angewandte Chemie, 2022, 134, .	1.6	10
375	Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
376	Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates. Advanced Materials, 2022, 34, .	11.1	62
377	Hierarchical unidirectional fluidic solar-electro-thermal evaporator for all-day efficient water purification. Materials Today Sustainability, 2022, 19, 100223.	1.9	3
378	Boosting solar-powered interfacial water evaporation by architecting 3D interconnected polymetric network in CNT cellular structure. Chemical Engineering Journal, 2023, 451, 138676.	6.6	32
379	Insights into the Utilization and Quantification of Thermoplasmonic Properties in Gold Nanorod Arrays. Chemistry of Materials, 2022, 34, 7369-7378.	3.2	7
380	Formulating Zwitterionic, Responsive Polymers for Designing Smart Soils. Small, 2022, 18, .	5.2	9
381	Development of an innovative MnO2 nanorod for efficient solar vapor generator., 2022,,.		1
382	Mixed temperature gradient evaporator for solar steam generation. Cell Reports Physical Science, 2022, 3, 101014.	2.8	4

#	Article	IF	CITATIONS
383	Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation. Polymer, 2022, 256, 125177.	1.8	8
384	Aligned aerogels with high salt-resistance and anti-biofouling for efficient solar evaporation. Journal of Environmental Chemical Engineering, 2022, 10, 108379.	3.3	9
385	Single-shot production of Janus graphene thin film for solar steam generation with 94.5% efficiency. Carbon, 2022, 199, 469-478.	5.4	12
386	Co-assembled hybrid of carbon nanodots and molecular fluorophores for efficient solar-driven water evaporation. Carbon, 2022, 199, 462-468.	5.4	11
387	Investigating the potentials and limitations of capillary-fed vapor generators: A heat and mass transfer study. International Communications in Heat and Mass Transfer, 2022, 137, 106309.	2.9	4
388	Designing 3D ribbed evaporating layer of solar-driven multistage desalination device for enhanced evaporation performance. Sustainable Energy Technologies and Assessments, 2022, 53, 102586.	1.7	1
389	Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Separation and Purification Technology, 2022, 300, 121889.	3.9	33
390	Activated carbon as a photothermal absorber in PVDF membranes for solar driven air-gap membrane distillation. Desalination, 2022, 541, 116031.	4.0	11
391	Efficient water purification and desalination using hydrogel and aerogel solar evaporators based on different carbon materials. Separation and Purification Technology, 2022, 301, 122003.	3.9	9
392	Stable, zero liquid discharge, and highly efficient solar-driven multistage distillation device based on tree-inspired radial water transfer. Journal of Cleaner Production, 2022, 375, 134025.	4.6	10
393	Multifunctional bio-based photothermal hydrogel for highly efficient seawater desalination and contaminant adsorption. Journal of Environmental Chemical Engineering, 2022, 10, 108616.	3.3	7
394	Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection. Separation and Purification Technology, 2022, 302, 122166.	3.9	3
395	Interaction Mechanism of Uranium(Vi) with Chitosan Hydrogel: Insights from the Perspective of Adsorbent and Adsorbate. SSRN Electronic Journal, O, , .	0.4	0
396	Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and its Performance for Desalination and Water Purification. SSRN Electronic Journal, 0, , .	0.4	0
397	Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nature Communications, 2022, 13, .	5.8	52
398	Rapid Fabrication of Porous Photothermal Hydrogel Coating for Efficient Solar-Driven Water Purification. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44809-44820.	4.0	6
399	Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter, 2022, 5, 2624-2658.	5.0	20
400	Recent Development of Moistureâ€Enabledâ€Electric Nanogenerators. Small, 2022, 18, .	5.2	20

#	Article	IF	CITATIONS
401	Double-Sided Suspending Evaporator with Top Water Supply for Concurrent Solar Evaporation and Salt Harvesting. ACS Sustainable Chemistry and Engineering, 2022, 10, 12843-12851.	3.2	9
402	From Materials to Devices: Rationally Designing Solar Steam System for Advanced Applications. Small Methods, 2022, 6, .	4.6	17
403	Confined Shape-Morphing and Dual Hydration Modes for Efficient Solar Steam Generation. ACS Energy Letters, 2022, 7, 3476-3483.	8.8	26
404	Mechanically robust bamboo node and its hierarchically fibrous structural design. National Science Review, 2023, 10, .	4.6	19
405	Spongeâ€Supported Reduced Graphene Oxides Enable Synergetic Photothermal and Electrothermal Conversion for Water Purification Coupling Hydrogen Peroxide Production. Solar Rrl, 2022, 6, .	3.1	5
406	Study of the Scale-Up Effect on the Water Sorption Performance of MOF Materials. ACS Materials Au, 2023, 3, 43-54.	2.6	13
407	Water Harvesting Strategies through Solar Steam Generator Systems. ChemSusChem, 2022, 15, .	3.6	13
408	Plant-Mimetic Vertical-Channel Hydrogels for Synergistic Water Purification and Interfacial Water Evaporation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45533-45544.	4.0	48
409	Non-Covalent Bond-Regulated Solar Evaporation Modulator: Facilitative Hydration Domains Originated via a Homogeneous Polymeric Network. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46945-46957.	4.0	4
410	Metal-organic frameworks for solar-driven atmosphere water harvesting. Chemical Engineering Journal, 2023, 452, 139656.	6.6	19
411	Solution-phase controlled synthesis of Cu ₃ NbSe ₄ nanocrystals for optoelectronic applications. Dalton Transactions, 2022, 51, 16937-16944.	1.6	1
412	Housing Delivery, Management and Technology. SpringerBriefs in Environment, Security, Development and Peace, 2022, , 51-77.	0.1	0
413	Engineering Metal–Phenolic Networks for Solar Desalination with Directional Salt Crystallization. Advanced Materials, 2023, 35, .	11,1	40
414	Proton Transport in the Gadolinium-Doped Layered Perovskite BaLaInO4. Materials, 2022, 15, 7351.	1.3	4
415	Hygroscopic Porous Polymer for Sorptionâ€Based Atmospheric Water Harvesting. Advanced Science, 2022, 9, .	5.6	23
416	Real-time and in situ monitoring of evaporation rate and salt precipitation during interfacial solar evaporation. Nano Energy, 2022, 104, 107961.	8.2	4
417	Bioinspired Micro/Nanostructured Polyethylene/Poly(Ethylene Oxide)/Graphene Films with Robust Superhydrophobicity and Excellent Antireflectivity for Solar–Thermal Power Generation, Thermal Management, and Afterheat Utilization. ACS Nano, 2022, 16, 16624-16635.	7.3	21
418	Freshwater Production Towards Microgrid Integration: Physics, Progress, and Prospects of Solar-Thermal Evaporation. , 2022, , 100037.		1

#	Article	IF	CITATIONS
419	Freestanding Ultrathin Precisely Structured Hierarchical Porous Carbon Blackbody Film for Efficient Solar Interfacial Evaporation. Solar Rrl, 2023, 7, .	3.1	7
420	Self-Assembly of a Graphene Oxide Liquid Crystal for Water Treatment. ACS Applied Materials & Samp; Interfaces, 2022, 14, 47549-47559.	4.0	1
421	Bio-Derived Photothermal Materials and Evaporators for Sustainable Solar Energy-Driven Water Process. Langmuir, 2022, 38, 13187-13194.	1.6	8
422	Solar-radiation-induced adsorption/desorption system for carbon dioxide capture. Cell Reports Physical Science, 2022, 3, 101122.	2.8	6
423	3D-printed solar evaporator with seashell ornamentation-inspired structure for zero liquid discharge desalination. Water Research, 2022, 226, 119279.	5.3	15
424	A novel, flexible porous nanofibrous hydrogel interfacial solar evaporator for highly efficient seawater and wastewater purification. Chemosphere, 2022, 309, 136818.	4.2	10
425	Interaction mechanism of uranium(VI) with chitosan hydrogel: Insights from the perspective of adsorbent and adsorbate. Desalination, 2023, 546, 116194.	4.0	12
426	Fe–Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting. Nanoscale, 2022, 14, 18022-18032.	2.8	7
427	Ultra salt-resistant solar desalination system <i>via</i> large-scale easy assembly of microstructural units. Energy and Environmental Science, 2022, 15, 5405-5414.	15.6	29
428	Hollowing of nanoparticle membrane by sacrificing phase-inversion-formed nanohydrogel to enhance solar–steam generation efficiency. Desalination, 2023, 546, 116230.	4.0	3
429	An anti-salt accumulation 2.5D arch solar-driven evaporator based on Marangoni effect for seawater desalination. Chemical Engineering Journal, 2023, 454, 140286.	6.6	9
430	3D-printed chiral torsion Janus evaporator with enhanced light utilization towards ultrafast and stable solar-water desalination. Carbon, 2023, 202, 159-168.	5.4	8
431	Hofmeister Effectâ€Enhanced Hydration Chemistry of Hydrogel for Highâ€Efficiency Solarâ€Driven Interfacial Desalination. Advanced Materials, 2023, 35, .	11.1	57
432	Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation. Chemical Engineering Journal, 2023, 455, 140361.	6.6	19
433	Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chemical Engineering Journal, 2023, 454, 140362.	6.6	20
434	Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nature Communications, 2022, 13, .	5.8	41
435	A customized kinetic energy harvesting system with multilayer piezoelectric membrane for solar interfacial vapor generation. Nano Energy, 2022, 104, 107996.	8.2	5
436	CAU-10-H as efficient water sorbent for solar steam generation. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104593.	2.7	1

#	Article	IF	Citations
437	Advanced phase change hydrogel integrating metal-organic framework for self-powered thermal management. Nano Energy, 2023, 105, 108009.	8.2	13
438	A high-efficiency solar water evaporation-photocatalysis system achieved by manipulating surface wettability and constructing heterojunction. Applied Surface Science, 2023, 611, 155678.	3.1	13
439	Versatile nano–micro collagen fiber-based wearable electronics for health monitoring and thermal management. Journal of Materials Chemistry A, 2023, 11, 726-741.	5. 2	17
440	Interface engineering of amorphous boron for high-efficiency interfacial solar steam generation. New Journal of Chemistry, 0, , .	1.4	0
441	Waste-treating-waste: Upcycling discarded polyester into metal–organic framework nanorod for synergistic interfacial solar evaporation and sulfate-based advanced oxidation process. Chemical Engineering Journal, 2023, 456, 140994.	6.6	55
442	Janus composite membranes enable efficient solar-powered desalination and soil remediation. Composites Communications, 2023, 37, 101438.	3.3	6
443	A cryogel solar vapor generator with rapid water replenishment and high intermediate water content for seawater desalination. Journal of Materials Chemistry A, 2023, 11, 858-867.	5 . 2	8
444	Enhancing solar absorbance using a 2D graphene oxide/CuO composite film for efficient solar desalination. Environmental Science: Water Research and Technology, 2023, 9, 523-532.	1.2	3
445	A non-covalent supramolecular dual-network polyelectrolyte evaporator based on direct-ink-writing for stable solar thermal evaporation. Materials Advances, 2023, 4, 223-230.	2.6	1
446	Heat-localized solar evaporation: Transport processes and applications. Nano Energy, 2023, 107, 108086.	8.2	27
447	Magnetic, self–heating and superhydrophobic sponge for solar–driven high–viscosity oil–water separation. Journal of Hazardous Materials, 2023, 445, 130553.	6.5	20
448	Hybrid nanoarchitectonics of carbon/titanium carbide integrated hydrogel/melamine foam for highly efficient solar steam and thermoelectric power generation. Desalination, 2023, 549, 116328.	4.0	14
449	Facile fabrication of Ni5P4-NiMoOx nanorod arrays with synergistic thermal management for efficient interfacial solar steam generation and water purification. Journal of Colloid and Interface Science, 2023, 634, 22-31.	5.0	10
450	Flexible plasmonic cellulose papers for broadband absorption and efficient solar steam generation. Science China Materials, 2023, 66, 1097-1105.	3.5	5
452	Photoinduced phase transitions in nanogel particles for reversible CO2 capture. Chemical Engineering Journal, 2023, 455, 140621.	6.6	1
453	Recent Advances in Fibrous Materials for Interfacial Solar Steam Generation. Advanced Fiber Materials, 2023, 5, 791-818.	7.9	27
454	Comprehensive examination of radiative electromagnetic flowing of nanofluids with viscous dissipation effect over a vertical accelerated plate. Scientific Reports, 2022, 12, .	1.6	8
455	Emerging Materials for Interfacial Solarâ€Driven Water Purification. Angewandte Chemie, 2023, 135, .	1.6	3

#	Article	IF	CITATIONS
456	Emerging Materials for Interfacial Solarâ€Driven Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
457	Ultra-hydrophilic nanofiltration membranes fabricated via punching in the HTO nanosheets. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	4
458	Reducing Heat Conduction Enhances the Photothermal Efficiency of Upcycled Adsorbents. Advanced Functional Materials, 2023, 33, .	7.8	4
459	Porous carbon-based thermally conductive materials: Fabrication, functions and applications. , 2023, 42, 100006.		3
460	Triboelectric nanogenerators for smart agriculture. InformaÄnÃ-Materiály, 2023, 5, .	8.5	12
461	High-Performance Janus Solar Evaporator for Water Purification with Broad Spectrum Absorption and Ultralow Heat Loss. ACS Energy Letters, 2023, 8, 553-564.	8.8	27
462	Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano Energy, 2023, 108, 108115.	8.2	28
463	Systematic Review of Material and Structural Design in Interfacial Solar Evaporators for Clean Water Production. Solar Rrl, 2023, 7, .	3.1	8
464	Engineering Materials to Enhance Light-to-Heat Conversion for Efficient Solar Water Purification. Industrial & Description of the Engineering Chemistry Research, 2022, 61, 17783-17800.	1.8	8
465	Topographic Manipulation of Graphene Oxide by Polyaniline Nanocone Arrays Enables Highâ€Performance Solarâ€Driven Water Evaporation. Advanced Functional Materials, 2023, 33, .	7.8	28
466	Freestanding Hydrophilic/Hydrophobic Janus Covalent Organic Framework Membranes for Highly Efficient Solar Steam Generation. , 2023, 5, 458-465.		19
467	A flexible, high-efficiency, and low-cost FeS ₂ @CTS hydrogel film for solar interface water evaporation. Canadian Journal of Chemistry, 0, , .	0.6	0
468	Thermo-sensitive hydrogels for forward osmosis with NIR light-induced freshwater recovery. Polymer Chemistry, 2023, 14, 697-707.	1.9	3
469	A robust and 3D-printed solar evaporator based on naturally occurring molecules. Science Bulletin, 2023, 68, 203-213.	4.3	59
471	Vertically π-extended strong acceptor unit boosting near-infrared photothermal conversion of conjugated polymers toward highly efficient solar-driven water evaporation. Journal of Materials Chemistry A, 2023, 11, 2933-2946.	5 . 2	12
472	Bioinspired photothermal polyaniline composite polyurethane sponge: Interlayer engineering for high-concentration seawater desalination. Separation and Purification Technology, 2023, 311, 123181.	3.9	8
473	Jute stick derived self-regenerating sustainable solar evaporators with different salt mitigation mechanisms for highly efficient solar desalination. Journal of Materials Chemistry A, 2023, 11, 3961-3974.	5.2	17
474	A wood-inspired bimodal solar-driven evaporator for highly efficient and durable purification of high-salinity wastewater. Journal of Materials Chemistry A, 2023, 11, 2349-2359.	5.2	8

#	Article	IF	CITATIONS
475	Vacuum-Dried and Intrinsic Photothermal Phenolic Carbon Aerogel from Coal Tar Rich in Polycyclic Aromatics for Efficient Solar Steam Generation. Industrial & Engineering Chemistry Research, 2023, 62, 1450-1462.	1.8	2
477	Mapping nonâ€conventional atmospheric drinkingâ€water harvesting opportunities in Central Eurasia: The case of Kazakhstan. Natural Resources Forum, 0, , .	1.8	0
478	Highly charged solar evaporator toward sustainable energy transition for in-situ freshwater & power generation. Chemical Engineering Journal, 2023, 458, 141431.	6.6	39
479	Round-the-clock interfacial solar vapor generator enabled by form-stable phase change materials with enhanced photothermal conversion capacity. Energy Conversion and Management, 2023, 277, 116634.	4.4	16
480	Self-hygroscopic and smart color-changing hydrogels as coolers for improving energy conversion efficiency of electronics. Nano Energy, 2023, 108, 108177.	8.2	20
481	Solar Interfacial Evaporation at the Water–Energy Nexus: Bottlenecks, Approaches, and Opportunities. Solar Rrl, 2023, 7, .	3.1	2
482	Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS Nano, 2023, 17, 1725-1738.	7.3	43
483	Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach. Energy Advances, 2023, 2, 574-605.	1.4	3
484	Easily Repairable and High-Performance Carbon Nanostructure Absorber for Solar Photothermoelectric Conversion and Photothermal Water Evaporation. ACS Applied Materials & Samp; Interfaces, 2023, 15, 8761-8769.	4.0	18
485	A 3D Corncob-based interfacial solar evaporator enhanced by environment energy with salt-rejecting and anti-corrosion for seawater distillation. Solar Energy, 2023, 252, 39-49.	2.9	19
486	Design of solar evaporator with well-aligned and multi-scale fluid channels based on convection tuning for stable and efficient brine desalination. Desalination, 2023, 550, 116408.	4.0	13
487	Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review. Chemical Engineering Journal, 2023, 460, 141716.	6.6	17
488	Nature-inspired wood-based solar evaporation system for efficient desalination and water purification. Journal of Materials Science, 2023, 58, 6220-6236.	1.7	7
489	Phase Inversion-Based foam hydrogels for highly efficient Solar-Powered interfacial desalination. Chemical Engineering Journal, 2023, 464, 142409.	6.6	10
490	One-pot pyrolysis and enhanced efficient solar evaporation of Cu/Cu2O/biochar. Materials Today Sustainability, 2023, 22, 100363.	1.9	0
491	A magnetic nanostructure PAC@Fe3O4 driven design toward Janus hydrogel achieves highly efficient solar water evaporation. Chemical Engineering Journal, 2023, 465, 142944.	6.6	4
492	Highly interconnected sponge with optimized water absorption and thermal conductivity for efficient solar desalination. Separation and Purification Technology, 2023, 314, 123502.	3.9	7
493	Hofmeister effect assists in improving solar vapor generation via tuning configuration of water and polymer chains. Desalination, 2023, 555, 116550.	4.0	2

#	Article	IF	CITATIONS
494	A portable thermostatic molecular diagnosis device based on high-efficiency photothermal conversion material for rapid field detection of SARS-CoV-2. Talanta, 2023, 258, 124422.	2.9	0
495	Marine biomass metal-organic framework hybrid evaporators for efficient solar water purification. Desalination, 2023, 556, 116577.	4.0	19
496	Entrance loss of capillary flow in narrow slit nanochannels. Physics of Fluids, 2023, 35, .	1.6	7
497	BC/GO-Ag composite aerogel with synergistic enhanced photothermal performance for efficient solar water evaporation. Solar Energy, 2023, 255, 26-35.	2.9	6
498	Flexible and robust nanofiber sponge with superior capacity to transport water for efficient and sustained solar-driven interfacial evaporation. Desalination, 2023, 550, 116399.	4.0	12
499	Hierarchically designed evaporators with dual-layered hydrogel/aerogel structure for efficient solar water evaporation. Separation and Purification Technology, 2023, 310, 123237.	3.9	7
500	Enhanced evaporation performance of solar interface evaporator by modifying the evaporation layer surface with hydrophobic fumed silica. Journal of Cleaner Production, 2023, 392, 136302.	4.6	2
501	Adsorption-based atmospheric water harvesting by passive radiative condensers for continuous decentralized water production. Applied Thermal Engineering, 2023, 225, 120163.	3.0	6
502	Personal Thermoregulation by Moistureâ€Engineered Materials. Advanced Materials, 2024, 36, .	11.1	7
503	Recent advances in interfacial solar vapor generation: clean water production and beyond. Journal of Materials Chemistry A, 2023, 11, 5978-6015.	5.2	19
504	Smart Strategies for Light and Thermal Management in Highâ€Efficiency Solar Steam Generation. Solar Rrl, 2023, 7, .	3.1	11
505	Rapid Synthesis of Oxygen-Deficient MoO _{3–<i>x</i>} -rGO Composites for Synergistic Photothermal Seawater Desalination and Photocatalytic Sterilization. ACS Sustainable Chemistry and Engineering, 2023, 11, 3359-3369.	3.2	9
506	Advances in harvesting water and energy from ubiquitous atmospheric moisture. Journal of Materials Chemistry A, 2023, 11, 12456-12481.	5.2	13
507	The Need to Correctly and Deliberately Report "Efficiency―for Solar Water Evaporators. Solar Rrl, 2023, 7, .	3.1	6
508	Bioinspired Aerogel with Vertically Ordered Channels and Low Water Evaporation Enthalpy for Highâ€Efficiency Saltâ€Rejecting Solar Seawater Desalination and Wastewater Purification. Small, 2023, 19, .	5.2	32
509	Wooden Solar Evaporator Design Based on the Water Transpiration Principle of Trees. Materials, 2023, 16, 1628.	1.3	0
510	Aramid-based aerogels for driving water evaporation through both photo-thermal and electro-thermal effects. Journal of Materials Chemistry A, 2023, 11, 7711-7723.	5.2	9
511	Dual-Effect Salt-Tolerant Slope-Suspended Solar Evaporators: High Evaporation Efficiency and Industrialized Implementation., 2023, 1, 936-946.		1

#	Article	IF	CITATIONS
512	Toward multitasking solar desalination: a Janus and scalable paper evaporator with light trapping, heat confinement, salt resistance, and pollutant degradation. Journal of Materials Chemistry A, 2023, 11, 10287-10296.	5.2	4
513	Recyclable Monolithic Vitrimer Foam for High-Efficiency Solar-Driven Interfacial Evaporation. ACS Applied Materials & Driven Interfaces, 0, , .	4.0	0
514	Interfacial charge transfer weakens hydrogen bonds between water molecules to accelerate solar water evaporation. Journal of Materials Chemistry A, 2023, 11, 7662-7669.	5.2	4
515	Recent strategies for constructing efficient interfacial solar evaporation systems. , 2023, 2, e9120062.		44
516	Atmospheric Water Generator Technologies. Water Science and Technology Library, 2023, , 1-13.	0.2	0
517	Bioinspired Nanofibrous Aerogel with Vertically Aligned Channels for Efficient Water Purification and Saltâ€Rejecting Solar Desalination. Advanced Functional Materials, 2023, 33, .	7.8	38
518	Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation. Nano-Micro Letters, 2023, 15 , .	14.4	28
519	Electricity Generation from Phase Transitions between Liquid and Gaseous Water. Advanced Energy Materials, 2023, 13, .	10.2	19
520	Fabrication and Description of Amorphous Ge33Se47Sn20 Films for Optical Applications. Journal of Electronic Materials, 2023, 52, 4495-4502.	1.0	4
521	<i>Setaria viridis</i> -inspired hydrogels with multilevel structures for efficient all-day fresh water harvesting. Journal of Materials Chemistry A, 2023, 11, 7702-7710.	5.2	7
522	Aerogels Based on MXene Nanosheet/Reduced Graphene Oxide Composites with Vertically Aligned Channel Structures for Solar-Driven Vapor Generation. ACS Applied Nano Materials, 2023, 6, 4455-4464.	2.4	4
523	Biomimetic Hygroscopic Fibrous Membrane with Hierarchically Porous Structure for Rapid Atmospheric Water Harvesting. Advanced Functional Materials, 2023, 33, .	7.8	15
524	Fibrous MXene Aerogels with Tunable Pore Structures for High-Efficiency Desalination of Contaminated Seawater. Nano-Micro Letters, 2023, 15, .	14.4	18
525	Material Design Strategies for Recovery of Critical Resources from Water. Advanced Materials, 2023, 35, .	11.1	8
526	Carnauba Waxâ€Assisted Preparation of Ecoâ€Friendly Aerogels by the Ambient Pressure Drying Method and their Applications for Photothermal Evaporation and Dye Wastewater Treatment. Advanced Materials Technologies, 0, , .	3.0	0
527	Conjugated photothermal materials and structure design for solar steam generation. Beilstein Journal of Nanotechnology, 0, 14, 454-466.	1.5	4
528	Patterned nanofibrous membrane via hot-pressing for enhanced solar thermal evaporation. Materials Chemistry and Physics, 2023, 302, 127727.	2.0	3
529	Molecular insights into enhanced water evaporation from a hybrid nanostructured surface with hydrophilic and hydrophobic domains. Chemical Engineering Journal, 2023, 465, 142838.	6.6	1

#	Article	IF	CITATIONS
530	Recent Progress in Lightâ \in 6cattering Porous Polymers and Their Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
531	Bioinspired Selfâ€Standing, Selfâ€Floating 3D Solar Evaporators Breaking the Tradeâ€Off between Salt Cycle and Heat Localization for Continuous Seawater Desalination. Advanced Materials, 2023, 35, .	11.1	33
532	A Floating Integrated Solar Microâ€Evaporator for Selfâ€Cleaning Desalination and Organic Degradation. Advanced Functional Materials, 2023, 33, .	7.8	13
533	A Lotusâ€Petioleâ€Inspired Hierarchical Design with Hydrophilic/Hydrophobic Management for Enhanced Solar Water Purification. Advanced Functional Materials, 2023, 33, .	7.8	12
572	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2023, 123, 6891-6952.	23.0	137
593	Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting., 2023, 1, 573-586.		4
619	Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chemistry, 2023, 25, 7470-7484.	4.6	2
623	Overview of the design of bionic fine hierarchical structures for fog collection. Materials Horizons, 0, , .	6.4	1
624	Biomimetic surface engineering for sustainable water harvesting systems., 2023, 1, 587-601.		9
625	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	18.7	9
627	Hydrogel use in burn therapy, thermal management, wastewater treatment and fire fighting: a review. Environmental Chemistry Letters, 2023, 21, 3273-3328.	8.3	6
640	Configuration Optimization Design of Wind Solar Complementary PG(WSCPG) System Based on Grey Prediction PID., 2023,,.		0
655	Recent developments in metal-based plasmonic nanomaterials. MRS Bulletin, 0, , .	1.7	0
738	Bacterially synthesized superfine tellurium nanoneedles as an antibacterial and solar-thermal still for efficient purification of polluted water. Nanoscale, 2024, 16, 3422-3429.	2.8	0
749	Sustainable moisture energy. Nature Reviews Materials, 0, , .	23.3	0
763	Prospective of graphene oxide based photothermal frameworks as interfacial water evaporator for clean water production. Comprehensive Analytical Chemistry, 2024, , .	0.7	0