Coordination Tunes Selectivity: Twoâ€Electron Oxyger Molybdenum Singleâ€Atom Catalysts

Angewandte Chemie - International Edition 59, 9171-9176 DOI: 10.1002/anie.202003842

Citation Report

#	Article	IF	CITATIONS
1	Exploration of cobalt@N-doped carbon nanocomposites toward hydrogen peroxide (H2O2) electrosynthesis: A two level investigation through the RRDE analysis and a polymer-based electrolyzer implementation. Electrochimica Acta, 2020, 364, 137287.	2.6	12
2	Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23312-23316.	1.6	46
3	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 19324-19329.	1.6	11
4	Highly ordered macroporous dual-element-doped carbon from metal–organic frameworks for catalyzing oxygen reduction. Chemical Science, 2020, 11, 9584-9592.	3.7	40
5	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie - International Edition, 2020, 59, 20589-20595.	7.2	247
6	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie, 2020, 132, 20770-20776.	1.6	37
7	Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sustainable Materials and Technologies, 2020, 25, e00204.	1.7	17
8	Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe ₂ polymorph catalysts. Energy and Environmental Science, 2020, 13, 4189-4203.	15.6	134
9	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.	7.3	97
10	High-Efficiency Electrocatalysis of Molecular Oxygen toward Hydroxyl Radicals Enabled by an Atomically Dispersed Iron Catalyst. Environmental Science & Technology, 2020, 54, 12662-12672.	4.6	114
11	Interface Engineering of Partially Phosphidated Co@Co–P@NPCNTs for Highly Enhanced Electrochemical Overall Water Splitting. Small, 2020, 16, e2002124.	5.2	71
12	Recent Progress of Singleâ€atom Catalysts in the Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Electroanalysis, 2020, 32, 2591-2602.	1.5	23
13	Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23112-23116.	7.2	270
14	2D-organic framework confined metal single atoms with the loading reaching the theoretical limit. Materials Horizons, 2020, 7, 2726-2733.	6.4	26
15	Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. ACS Nano, 2020, 14, 11570-11578.	7.3	84
16	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	10.2	210
17	Recent Advances in Electrochemical Oxygen Reduction to H ₂ O ₂ : Catalyst and Cell Design. ACS Energy Letters, 2020, 5, 1881-1892.	8.8	185
18	Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis, 2020, 10, 7584-7618.	5.5	274

#	Article	IF	CITATIONS
19	A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2020, 10, 7495-7511.	5.5	254
20	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. ACS Central Science, 2020, 6, 1431-1440.	5.3	69
21	Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 19162-19167.	7.2	64
22	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
23	Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 58, 629-635.	7.1	28
24	Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56, 470-485.	7.1	56
25	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	6.9	195
26	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	1.9	35
27	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	7.1	12
28	Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628.	7.1	30
29	Coordination Engineering of Singleâ€Atom Catalysts for the Oxygen Reduction Reaction: A Review. Advanced Energy Materials, 2021, 11, 2002473.	10.2	217
30	The assembling principle and strategies of high-density atomically dispersed catalysts. Chemical Engineering Journal, 2021, 417, 127917.	6.6	13
31	Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. CheM, 2021, 7, 436-449.	5.8	216
32	Multiatom Catalysts for Energyâ€Related Electrocatalysis. Advanced Sustainable Systems, 2021, 5, 2000213.	2.7	13
33	Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Applied Catalysis B: Environmental, 2021, 285, 119780.	10.8	68
34	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	10.2	150
35	Potential active sites of Mo single atoms for electrocatalytic reduction of N2. Chinese Chemical Letters, 2021, 32, 53-56.	4.8	66
36	Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. Journal of Materials Chemistry A, 2021, 9, 1240-1251.	5.2	135

#	Article	IF	CITATIONS
37	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	6.8	48
38	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	7.3	58
39	One-dimensional conductive metal–organic framework nanorods: a highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. Journal of Materials Chemistry A, 2021, 9, 20345-20349.	5.2	36
40	Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318.	7.8	133
41	Edge-effect enhanced catalytic CO oxidation by atomically dispersed Pt on nitride-graphene. Journal of Materials Chemistry A, 2021, 9, 2093-2098.	5.2	5
42	Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production. Chemistry - an Asian Journal, 2021, 16, 498-502.	1.7	7
43	Mo single atoms in the Cu(111) surface as improved catalytic active centers for deoxygenation reactions. Catalysis Science and Technology, 2021, 11, 4969-4978.	2.1	2
44	Morphology engineering of atomic layer defect-rich CoSe ₂ nanosheets for highly selective electrosynthesis of hydrogen peroxide. Journal of Materials Chemistry A, 2021, 9, 21340-21346.	5.2	16
45	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
46	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	7.2	265
47	Rational Fabrication of Low oordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7607-7611.	7.2	368
48	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	1.6	60
49	Rational Fabrication of Low oordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7685-7689.	1.6	39
50	Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Amp; Interfaces, 2021, 13, 6989-7003.	4.0	36
51	Design Strategies of Nonâ€Noble Metalâ€Based Electrocatalysts for Twoâ€Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem, 2021, 14, 1616-1633.	3.6	46
52	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	8.3	96
53	Selective Electrocatalytic Reduction of Oxygen to Hydroxyl Radicals via 3â€Electron Pathway with FeCo Alloy Encapsulated Carbon Aerogel for Fast and Complete Removing Pollutants. Angewandte Chemie, 2021, 133, 10463-10471.	1.6	6
54	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	1.6	30

#	Article	IF	CITATIONS
55	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	7.2	341
56	Theory-Driven Design of Electrocatalysts for the Two-Electron Oxygen Reduction Reaction Based on Dispersed Metal Phthalocyanines. CCS Chemistry, 2022, 4, 228-236.	4.6	24
57	Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction. ChemSusChem, 2021, 14, 1835-1839.	3.6	10
58	Selective Electrocatalytic Reduction of Oxygen to Hydroxyl Radicals via 3â€Electron Pathway with FeCo Alloy Encapsulated Carbon Aerogel for Fast and Complete Removing Pollutants. Angewandte Chemie - International Edition, 2021, 60, 10375-10383.	7.2	141
59	Highly Selective O ₂ Reduction to H ₂ O ₂ Catalyzed by Cobalt Nanoparticles Supported on Nitrogen-Doped Carbon in Alkaline Solution. ACS Catalysis, 2021, 11, 5035-5046.	5.5	36
60	Recent Progress of Electrochemical Production of Hydrogen Peroxide by Twoâ€Electron Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100076.	5.6	148
61	Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials, 2021, 11, 2100332.	10.2	143
62	Boosting Selective Nitrogen Reduction via Geometric Coordination Engineering on Singleâ€Tungstenâ€Atom Catalysts. Advanced Materials, 2021, 33, e2100429.	11.1	128
63	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	5.8	35
64	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 15563-15571.	7.2	136
65	Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule, 2021, 5, 1432-1461.	11.7	97
66	Enhancing Electrocatalytic Production of <scp>H₂O₂</scp> by Modulating Coordination Environment of Cobalt Center. Bulletin of the Korean Chemical Society, 2021, 42, 1155-1160.	1.0	8
67	Engineering local coordination environments and site densities for highâ€performance Feâ€Nâ€C oxygen reduction reaction electrocatalysis. SmartMat, 2021, 2, 154-175.	6.4	81
68	Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy, 2021, 84, 105817.	8.2	59
69	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	5.9	97
70	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries. Angewandte Chemie, 2021, 133, 15691-15699.	1.6	21
71	Bimetallic PdAu Nanoframes for Electrochemical H ₂ O ₂ Production in Acids. , 2021, 3, 996-1002.		48
72	Engineering the Local Coordination Environment of Single-Atom Catalysts and Their Applications in Photocatalytic Water Splitting: A Review. Transactions of Tianjin University, 2021, 27, 313-330.	3.3	37

ARTICLE IF CITATIONS # Atomically Structural Regulations of Carbonâ€Based Singleâ€Atom Catalysts for Electrochemical 4.6 61 73 CO₂Reduction. Small Methods, 2021, 5, e2100102. Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in 74 14.4 138 Single-Atom Catalysts. Nano-Micro Letters, 2021, 13, 136. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced 75 5.8 69 activity for alkynes diboration. Nature Communications, 2021, 12, 4205. Transforming C₆₀ Molecules into Polyhedral Carbon Micro–Nano Shells for Electrochemically Producing H₂O₂ in Neutral Electrolytes. ACS Applied Materials & amp; Interfaces, 2021, 13, 35856-35864. Enhanced Electrochemical H₂O₂ Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO<sub>2â€"<i>x</i> 77 4.0 67 Applied Materials & amp; Interfaces, 2021, 13, 33182-33187. Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. Journal of the American Chemical Society, 6.6 2021, 143, 12220-12229. An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction 79 7.2 275 Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271. Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. 7.2 34 Angewandte Chemie - International Edition, 2021, 60, 22769-22775. Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. 81 0 1.6 Angewandte Chemie, 2021, 133, 22951. Van der Waals Heterostructuresâ€"Recent Progress in Electrode Materials for Clean Energy 1.3 Applications. Materials, 2021, 14, 3754. An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction 83 32 1.6 Performance. Angewandte Chemie, 2021, 133, 19411-19420. Porous Materials Confining Single Atoms for Catalysis. Frontiers in Chemistry, 2021, 9, 717201. 84 1.8 Recent advances and trends of heterogeneous electro-Fenton process for wastewater 85 4.8 64 treatment-review. Chinese Chemical Letters, 2022, 33, 653-662. Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597. Recent Advances in Enhancing Oxygen Reduction Reaction Performance for Nonâ€Nobleâ€Metal 87 1.8 6 Electrocatalysts Derived from Electrospinning. Energy Technology, 2021, 9, 2100301. Carbon Free and Noble Metal Free Ni₂Mo₆S₈ Electrocatalyst for Selective Electrosynthesis of H₂O₂. Advanced Functional Materials, 2021, 31, 44 2104716. Binary Atomically Dispersed Metalâ€Site Catalysts with Coreâ[°]Shell Nanostructures for O₂ 89 5.8 29 and CO₂ Reduction Reactions. Small Science, 2021, 1, 2100046. Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702

#	Article	IF	CITATIONS
91	Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. CheM, 2021, 7, 3114-3130.	5.8	109
92	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77
93	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 20528-20534.	7.2	27
94	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 20691-20697.	1.6	3
95	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
96	Enhanced Onâ€Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated Nâ€Doped Graphene Catalyst. ChemCatChem, 2021, 13, 4372-4383.	1.8	15
97	Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Materials Science, 2021, 3, 313-318.	3.9	64
98	Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nature Communications, 2021, 12, 5589.	5.8	173
99	Single-atom catalyst for high-performance methanol oxidation. Nature Communications, 2021, 12, 5235.	5.8	113
100	Structural Modulation on NiCo ₂ S ₄ Nanoarray by N Doping to Enhance 2eâ€ORR Selectivity for Photothermal AOPs and Znâ~'O ₂ Batteries**. Chemistry - A European Journal, 2021, 27, 14451-14460.	1.7	6
101	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	7.2	112
102	Controllable drilling by corrosive Cu1Ox to access highly accessible single-site catalysts for bacterial disinfection. Applied Catalysis B: Environmental, 2021, 293, 120228.	10.8	11
103	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
104	Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angewandte Chemie, 2021, 133, 22904-22910.	1.6	4
105	Designed Synthesis and Catalytic Mechanisms of Nonâ€Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Small Methods, 2021, 5, e2100865.	4.6	39
106	Molecule Confined Isolated Metal Sites Enable the Electrocatalytic Synthesis of Hydrogen Peroxide. Advanced Materials, 2022, 34, e2104891.	11.1	42
107	Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. Journal of Energy Chemistry, 2021, 63, 659-666.	7.1	40
108	Stable NiPt–Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy and Environment, 2023, 8, 559-566.	4.7	10

#	Article	IF	CITATIONS
109	Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 22722-22728.	7.2	113
110	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
111	N-doped carbon nanoflower-supported Fe-N4 motifs for high-efficiency reduction of oxygen in both alkaline and acid. Chemical Engineering Journal, 2021, 424, 130401.	6.6	20
112	Electrocatalytic H2O2 generation for disinfection. Chinese Journal of Catalysis, 2021, 42, 2149-2163.	6.9	39
113	Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chemical Engineering Journal, 2021, 425, 130611.	6.6	25
114	Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery. Journal of Energy Chemistry, 2022, 66, 306-313.	7.1	56
115	High-loading single-atom tungsten anchored on graphitic carbon nitride (melon) for efficient oxidation of emerging contaminants. Chemical Engineering Journal, 2022, 427, 131973.	6.6	11
116	Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation. Chemical Engineering Journal, 2022, 427, 132038.	6.6	65
117	Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor. Chemical Engineering Journal, 2022, 428, 131534.	6.6	16
118	Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electro-Fenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range. Chemical Engineering Journal, 2022, 427, 130996.	6.6	44
119	Construction and Application of 3D Graphene Materials Based on Templated Polymerization. Springer Theses, 2021, , 57-88.	0.0	0
120	Three Phase Interface Engineering for Advanced Catalytic Applications. ACS Applied Energy Materials, 2021, 4, 1045-1052.	2.5	22
121	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	15.6	188
122	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	15.6	128
123	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
124	Electrocatalytic H ₂ O ₂ production <i>via</i> two-electron O ₂ reduction by Mo-doped TiO ₂ nanocrystallines. Catalysis Science and Technology, 2021, 11, 6970-6974.	2.1	4
125	Stabilizing Fe–N–C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2102209.	5.6	102
126	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102	7.3	24

#	Article	IF	CITATIONS
127	Grapheneâ€Supported Atomically Dispersed Metals as Bifunctional Catalysts for Nextâ€Generation Batteries Based on Conversion Reactions. Advanced Materials, 2022, 34, e2105812.	11.1	106
128	MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. Journal of Energy Chemistry, 2022, 67, 391-422.	7.1	43
129	Lowâ€Coordinated CoNC on Oxygenated Graphene for Efficient Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2022, 32, 2106886.	7.8	97
130	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62
131	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66
132	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	104
133	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 27530-27535.	1.6	12
134	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	9
135	Metalâ€Triazolateâ€Frameworkâ€Derived FeN ₄ Cl ₁ Singleâ€Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 27324-27329.	7.2	142
136	Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chemical Engineering Journal, 2022, 430, 132990.	6.6	29
137	On-site H2O2 electro-generation process combined with ultraviolet: A promising approach for odorous compounds purification in drinking water system. Chemical Engineering Journal, 2022, 430, 132829.	6.6	23
138	Bacterial cellulose-regulated synthesis of metallic Ni catalysts for high-efficiency electrosynthesis of hydrogen peroxide. Science China Materials, 0, , 1.	3.5	6
139	Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nature Communications, 2021, 12, 6335.	5.8	95
140	Electronic Structure Regulation of Singleâ€Atom Catalysts for Electrochemical Oxygen Reduction to H ₂ O ₂ . Small, 2022, 18, e2103824.	5.2	49
141	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28
142	Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chinese Journal of Catalysis, 2022, 43, 71-91.	6.9	15
143	Race on Highâ€loading Metal Single Atoms and Successful Preparation Strategies. ChemCatChem, 2022, 14, .	1.8	14
144	Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Advanced Functional Materials, 2022, 32, 2108381.	7.8	51

#	Article	IF	CITATIONS
145	Atomic Fe–N ₄ /C in Flexible Carbon Fiber Membrane as Binderâ€Free Air Cathode for Zn–Air Batteries with Stable Cycling over 1000 h. Advanced Materials, 2022, 34, e2105410.	11.1	158
146	Sacrificial Templateâ€Assisted Synthesis of Inorganic Nanosheets with High‣oading Singleâ€Atom Catalysts: A General Approach. Advanced Functional Materials, 2022, 32, 2110485.	7.8	18
147	Elaborating Nitrogen and Oxygen Dopants Configurations within Graphene Electrocatalysts for Two-Electron Oxygen Reduction. , 2022, 4, 320-328.		15
148	Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. Journal of Materials Chemistry A, 2022, 10, 5771-5791.	5.2	19
149	Boosting nitrogen reduction on single Mo atom by tuning its coordination environment. Sustainable Energy and Fuels, 2021, 5, 6488-6497.	2.5	7
150	Recent Advances in ZIFâ€Derived Atomic Metal–N–C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. Small, 2022, 18, e2105409.	5.2	50
151	Size-dependent selectivity of iron-based electrocatalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2022, 6, 736-743.	2.5	5
152	Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15, 3880-3885.	5.8	38
153	Mesoporous Co–O–C nanosheets for electrochemical production of hydrogen peroxide in acidic medium. Journal of Materials Chemistry A, 2022, 10, 4068-4075.	5.2	26
154	Interfacial-confined coordination to single-atom nanotherapeutics. Nature Communications, 2022, 13, 91.	5.8	49
155	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	1.6	27
156	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	127
157	Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries. Advanced Energy Materials, 2022, 12, .	10.2	44
158	Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121173.	10.8	34
159	Non-precious metal electrocatalysts for two-electron oxygen electrochemistry: Mechanisms, progress, and outlooks. Journal of Energy Chemistry, 2022, 69, 54-69.	7.1	16
160	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	11.1	84
161	Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nature Communications, 2022, 13, 685.	5.8	82
162	Atomically Dispersed Heteronuclear Dualâ€Atom Catalysts: A New Rising Star in Atomic Catalysis. Small, 2022, 18, e2106091.	5.2	78

#	Article	IF	CITATIONS
163	Single Ni active sites with a nitrogen and phosphorus dual coordination for an efficient CO ₂ reduction. Nanoscale, 2022, 14, 6846-6853.	2.8	9
164	Electrocatalytic two-electron oxygen reduction over nitrogen doped hollow carbon nanospheres. Chemical Communications, 2022, 58, 5025-5028.	2.2	14
165	An <i>in situ</i> generated 3D porous nanostructure on 2D nanosheets to boost the oxygen evolution reaction for water-splitting. Nanoscale, 2022, 14, 4566-4572.	2.8	36
166	Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A, 2022, 10, 10297-10325.	5.2	14
167	Precise synthesis of single-atom Mo, W, Nb coordinated with oxygen functional groups of graphene oxide for stable and selective two-electron oxygen reduction in neutral media. Journal of Materials Chemistry A, 2022, 10, 9488-9496.	5.2	8
168	Carbon based electrocatalysts for selective hydrogen peroxide conversion. New Carbon Materials, 2022, 37, 223-236.	2.9	7
170	Single-site catalysis in heterogeneous electro-Fenton reaction for wastewater remediation. Chem Catalysis, 2022, 2, 679-692.	2.9	22
171	Constructing Synergistic Znâ€N ₄ and Feâ€N ₄ O Dualâ€Sites from the COF@MOF Derived Hollow Carbon for Oxygen Reduction Reaction. Small Structures, 2022, 3, .	6.9	46
172	Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Communications Chemistry, 2022, 5, .	2.0	33
173	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
174	Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Research, 2022, 15, 4980-4985.	5.8	41
175	Cationâ€Vacancyâ€Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 2022, 34, e2106541.	11.1	123
176	Boosting Oxygen Reduction for Highâ€Efficiency H ₂ O ₂ Electrosynthesis on Oxygen oordinated CoNC Catalysts. Small, 2022, 18, e2200730.	5.2	25
177	Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Applied Surface Science, 2022, 592, 153233.	3.1	18
178	A Sulfurâ€Tolerant MOFâ€Based Singleâ€Atom Fe Catalyst for Efficient Oxidation of NO and Hg ⁰ . Advanced Materials, 2022, 34, e2110123.	11.1	40
179	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	9.5	91
180	Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Applied Catalysis B: Environmental, 2022, 309, 121265.	10.8	16
181	Recent advances in highâ€loading catalysts for lowâ€temperature fuel cells: From nanoparticle to single atom. SusMat, 2021, 1, 569-592.	7.8	35

#	Article	IF	CITATIONS
182	Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy and Environment, 2023, 8, 360-382.	4.7	15
183	Highâ€Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N ₁ O ₂ Coordination. Advanced Functional Materials, 2022, 32, .	7.8	55
184	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	5.7	3
185	Rational Construction of Atomically Dispersed Mn-N _{<i>x</i>} Embedded in Mesoporous N-Doped Amorphous Carbon for Efficient Oxygen Reduction Reaction in Zn-Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 224-233.	3.2	19
186	Chemical Information in the L ₃ X-ray Absorption Spectra of Molybdenum Compounds by High-Energy-Resolution Detection and Density Functional Theory. Inorganic Chemistry, 2022, 61, 869-881.	1.9	3
187	Modulation of the coordination environment enhances the electrocatalytic efficiency of Mo single atoms toward water splitting. Journal of Materials Chemistry A, 2022, 10, 8784-8797.	5.2	17
188	Modulating Coordination Environment of Fe Single Atoms for High-Efficiency All-Ph-Tolerated H2o2 Electrochemical Production. SSRN Electronic Journal, 0, , .	0.4	0
189	Electrocatalytic generation of reactive species and implications in microbial inactivation. Chinese Journal of Catalysis, 2022, 43, 1399-1416.	6.9	8
190	Atomically-dispersed Mn-(N-C2)2(O-C2)2 sites on carbon for efficient oxygen reduction reaction. Energy Storage Materials, 2022, 49, 209-218.	9.5	26
191	Epitaxially Grown Porous Heterostructure of Hexagonal Boron Nitride/Graphene as Efficient Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , .	0.4	0
191 192	Epitaxially Grown Porous Heterostructure of Hexagonal Boron Nitride/Graphene as Efficient Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714.	0.4	0 40
	Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs		
192	Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen	11.1	40
192 193	Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50, 186-195. Research progress of precise structural regulation of single atom catalyst for accelerating	11.1 9.5	40 25
192 193 194	Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50, 186-195. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. Journal of Energy Chemistry, 2022, 72, 56-72. Monolayer Nilr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for	11.1 9.5 7.1	40 25 33
192 193 194 195	Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50, 186-195. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. Journal of Energy Chemistry, 2022, 72, 56-72. Monolayer Nilr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. Journal of the American Chemical Society, 2022, 144, 9254-9263. Cobalt Single Atoms Anchored on Oxygenâ€Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation.	11.1 9.5 7.1 6.6	40 25 33 133
192 193 194 195 196	Electrocatalyst for H2o2AGeneration. SSRN Electronic Journal, 0, , . Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Fe <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy Storage Materials, 2022, 50, 186-195. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. Journal of Energy Chemistry, 2022, 72, 56-72. Monolayer NiIr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. Journal of the American Chemical Society, 2022, 144, 9254-9263. Cobalt Single Atoms Anchored on Oxygenâ€Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angewandte Chemie - International Edition, 2022, 61, . A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction	11.1 9.5 7.1 6.6 7.2	40 25 33 133 97

CITATION REPORT ARTICLE IF CITATIONS Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen 200 2.9 7 peroxide production in acid. Chem Catalysis, 2022, 2, 1450-1466. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and 16.0 conversion applications. Progress in Materials Science, 2022, 128, 100964. High-entropy oxide (Fe0.2Zn0.2Co0.2Ni0.2Cu0.2)Fe2O4: An efficient and stable spinel-type 202 electrocatalyst for H2O2 production in alkaline media. Journal of Alloys and Compounds, 2022, 913, 2.8 11 165148. Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709. Triggering Lattice Oxygen Activation of Singleâ€Atomic Mo Sites Anchored on Ni–Fe Oxyhydroxides 204 11.1 103 Nanoarrays for Electrochemical Water Oxidation. Advanced Materials, 2022, 34, e2202523. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721. 5.8 Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. 206 5.8 82 Nature Communications, 2022, 13, . Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 10.8 38 electrochemical production. Applied Catalysis B: Environmental, 2022, 315, 121578. Oxygen-rich ligands tailored for novel metal–organic gel electrocatalyst to promote two-electron 208 5.0 5 selectivity electrocatalysis. Journal of Colloid and Interface Science, 2022, 624, 100-107. A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like 209 1.6 24 Reactions. Angewandte Chemie, 2022, 134, . A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like 210 7.2 105 Reactions. Angewandte Chemie - International Edition, 2022, 61, . Manipulating Coordination Structures of Mixed-Valence Copper Single Atoms on 1T-MoS₂ 5.5 26 for Efficient Hydrogen Evolution. ACS Catalysis, 2022, 12, 7687-7695. Emerging Graphene Derivatives and Analogues for Efficient Energy Electrocatalysis. Advanced 212 7.8 22 Functional Materials, 2022, 32, . Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales 6.5 for hydroquinone determination. Journal of Hazardous Materials, 2022, 437, 129327. Atomic Bridging of Metalâ€Nitrogenâ€Carbon toward Efficient Integrated Electrocatalysis. Advanced 214 7.8 18 Functional Materials, 2022, 32, . Single Mo–N₄ Atomic Sites Anchored on Nâ€doped Carbon Nanoflowers as Sulfur Host with Multiple Immobilization and Catalytic Effects for Highâ€Performance Lithium–Sulfur Batteries. 39 Advanced Functional Materials, 2022, 32, . Robust Oxygen Reduction Electrocatalysis Enabled by Platinum Rooted on Molybdenum Nitride 216 1.9 3 Microrods. Inorganic Chemistry, 0, , .

Singleâ€atom catalysis for carbon neutrality. , 2022, 4, 1021-1079.

#	Article	IF	CITATIONS
218	Identification of the Highly Active Co–N ₄ Coordination Motif for Selective Oxygen Reduction to Hydrogen Peroxide. Journal of the American Chemical Society, 2022, 144, 14505-14516.	6.6	162
219	Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Materials Reports Energy, 2022, , 100145.	1.7	0
220	Catalyst design, measurement guidelines, and device integration for H2O2 electrosynthesis from oxygen reduction. Cell Reports Physical Science, 2022, 3, 100987.	2.8	15
221	CO ₂ Laserâ€Induced Graphene with an Appropriate Oxygen Species as an Efficient Electrocatalyst for Hydrogen Peroxide Synthesis. Chemistry - A European Journal, 2022, 28, .	1.7	11
222	Sulfur-Coordinated Transition Metal Atom in Graphene for Electrocatalytic Nitrogen Reduction with an Electronic Descriptor. Journal of Physical Chemistry Letters, 2022, 13, 8177-8184.	2.1	9
223	Efficient H2O2 generation and bisphenol A degradation in electro-Fenton of O-doped porous biochar cathode derived from spirit-based Distiller's grains. Chemical Engineering Research and Design, 2022, 166, 99-107.	2.7	8
224	Fundamental principles and environmental applications of electrochemical hydrogen peroxide production: A review. Chemical Engineering Journal, 2023, 452, 139371.	6.6	3
225	Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production. Chemical Science, 2022, 13, 11260-11265.	3.7	13
226	Tailoring the selectivity and activity of oxygen reduction by regulating the coordination environments of carbon-supported atomically dispersed metal sites. Journal of Materials Chemistry A, 2022, 10, 17948-17967.	5.2	18
227	Ultrahigh oxygen-doped carbon quantum dots for highly efficient H ₂ O ₂ production <i>via</i> two-electron electrochemical oxygen reduction. Energy and Environmental Science, 2022, 15, 4167-4174.	15.6	48
228	Sulfur-induced electron redistribution of single molybdenum atoms promotes nitrogen electroreduction to ammonia. Applied Catalysis B: Environmental, 2023, 321, 122038.	10.8	20
229	Elucidation and modulation of active sites in holey graphene electrocatalysts for <scp>H₂O₂</scp> production. EcoMat, 2023, 5, .	6.8	11
230	Recent advances in the design of single-atom electrocatalysts by defect engineering. Frontiers in Chemistry, 0, 10, .	1.8	4
231	The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical Society, 2022, 144, 18155-18174.	6.6	151
232	Atomically Dispersed Dual Metal Sites Boost the Efficiency of Olefins Epoxidation in Tandem with CO ₂ Cycloaddition. Nano Letters, 2022, 22, 8381-8388.	4.5	13
233	Defective Site Modulation Strategy for Preparing Single Atom-Dispersed Catalysts as Superior Chemiluminescent Signal Probes. Analytical Chemistry, 2022, 94, 13533-13539.	3.2	13
234	High Selective Direct Synthesis of H ₂ 0 ₂ over Pd ₁ @γâ€Al ₂ 0 ₃ Singleâ€Atom Catalyst. ChemCatChem, 2022, 14, .	1.8	0
235	Edgeâ€hosted Atomic Coâ^'N ₄ Sites on Hierarchical Porous Carbon for Highly Selective Twoâ€electron Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	1.6	3

#	Article	IF	Citations
236	Coordination Engineering of Singleâ€Atom Iron Catalysts for Oxygen Evolution Reaction. ChemCatChem, 2022, 14, .	1.8	9
237	Edgeâ€hosted Atomic Coâ~'N ₄ Sites on Hierarchical Porous Carbon for Highly Selective Twoâ€electron Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
238	Small‣cale Big Science: From Nano―to Atomically Dispersed Catalytic Materials. Small Science, 2022, 2, .	5.8	31
239	Atomically Dispersed Dualâ€Site Cathode with a Record High Sulfur Mass Loading for Highâ€Performance Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Materials, 2023, 35, .	11.1	46
240	Construction of Atomic Metalâ€N ₂ Sites by Interlayers of Covalent Organic Frameworks for Electrochemical H ₂ O ₂ Synthesis. Small, 2022, 18, .	5.2	17
241	Graphene-wrapped bimetallic nanoparticles bifunctional electrocatalyst for rechargeable Zn-air battery. Journal of Electroanalytical Chemistry, 2022, 927, 116946.	1.9	2
242	Multiatom activation of single-atom electrocatalysts via remote coordination for ultrahigh-rate two-electron oxygen reduction. Journal of Energy Chemistry, 2023, 76, 622-630.	7.1	14
243	Single-atom dispersed Zn-N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chemical Engineering Journal, 2023, 454, 140084.	6.6	5
244	Metal–organic framework derived single-atom catalysts for electrochemical CO ₂ reduction. RSC Advances, 2022, 12, 32518-32525.	1.7	9
245	Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Applied Catalysis B: Environmental, 2023, 324, 122195.	10.8	24
246	Bifunctional bio-photoelectrochemical cells: a "trading―platform for simultaneous production of electric power and hydrogen peroxide. Journal of Materials Chemistry A, 2023, 11, 600-608.	5.2	5
247	Constructing ultrahigh-loading unsymmetrically coordinated Zn-N3O single-atom sites with efficient oxygen reduction for H2O2 production. Chemical Engineering Journal, 2023, 455, 140721.	6.6	20
248	2D Nanomaterial Supported Singleâ€Metal Atoms for Heterogeneous Photo/Electrocatalysis. Advanced Functional Materials, 2023, 33, .	7.8	12
249	Metal-Compound-Based Electrocatalysts for Hydrogen Peroxide Electrosynthesis and the Electro-Fenton Process. ACS Energy Letters, 2023, 8, 196-212.	8.8	18
250	Atomic‣evel Interface Engineering for Boosting Oxygen Electrocatalysis Performance of Singleâ€Atom Catalysts: From Metal Active Center to the First Coordination Sphere. Advanced Science, 2023, 10, .	5.6	25
251	Interâ€Metal Interaction with a Threshold Effect in NiCu Dualâ€Atom Catalysts for CO ₂ Electroreduction. Advanced Materials, 2023, 35, .	11.1	56
252	Carbon dioxide reduction mechanism via singleâ€atom nickel supported on graphitic carbon nitride. Canadian Journal of Chemical Engineering, 2023, 101, 4640-4647.	0.9	1
253	Hybrid Lamellar Superlattices with Monoatomic Platinum Layers and Programmable Organic Ligands. Journal of the American Chemical Society, 2023, 145, 717-724.	6.6	6

#	Article	IF	Citations
254	Chargeâ€Polarized Selenium Vacancy in Nickel Diselenide Enabling Efficient and Stable Electrocatalytic Conversion of Oxygen to Hydrogen Peroxide. Advanced Science, 2023, 10, .	5.6	9
255	Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. International Journal of Nanomedicine, 0, Volume 17, 5947-5990.	3.3	13
256	Dynamic Coordination Structure Evolutions of Atomically Dispersed Metal Catalysts for Electrocatalytic Reactions. Advanced Materials Interfaces, 2023, 10, .	1.9	8
257	Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. , 2023, 5, .		12
258	On the Road from Single-Atom Materials to Highly Sensitive Electrochemical Sensing and Biosensing. Analytical Chemistry, 2023, 95, 433-443.	3.2	19
259	Ordered mesoporous carbon fiber bundles with high-density and accessible Fe-NX active sites as efficient ORR catalysts for Zn-air batteries. Chinese Chemical Letters, 2023, 34, 108142.	4.8	4
260	Dynamic gasâ€diffusion electrodes for oxygen electroreduction to hydrogen peroxide. AICHE Journal, 2023, 69, .	1.8	5
261	Composite non-noble system with bridging oxygen for catalyzing Tafel-type alkaline hydrogen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120,	3.3	6
262	Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale, 2023, 15, 3550-3559.	2.8	51
263	Highly selective oxygen reduction to H2O2 on π-d conjugated coordination polymers: The effect of coordination atoms. Chemical Engineering Journal, 2023, 460, 141688.	6.6	4
264	Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. Nano-Micro Letters, 2023, 15, .	14.4	14
265	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
266	Recent progress of metal single-atom catalysts for energy applications. Nano Energy, 2023, 111, 108404.	8.2	37
267	Engineering low-valence Mol̃′+ (0 <l̃′<4) accelerating="" cycle,<br="" fe2+="" fe3+="" mos2="" on="" sites="" surface:="">maximizing H2O2 activation efficiency, and extending applicable pH range in photo-Fenton reaction. Journal of Cleaner Production, 2023, 404, 136918.</l̃′<4)>	4.6	10
268	Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nature Communications, 2023, 14, .	5.8	36
269	Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions. Journal of Energy Chemistry, 2023, 80, 302-323.	7.1	11
270	Toward More Efficient Carbon-Based Electrocatalysts for Hydrogen Peroxide Synthesis: Roles of Cobalt and Carbon Defects in Two-Electron ORR Catalysis. Nano Letters, 2023, 23, 1100-1108.	4.5	10
271	Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. Environmental Science and Pollution Research, 2023, 30, 39431-39450.	2.7	2

#	Article	IF	CITATIONS
272	Tuning the Coordination Environment of Carbonâ€Based Singleâ€Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis. Advanced Materials, 2023, 35, .	11.1	27
273	NBOH Siteâ€Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Advanced Materials, 2023, 35, .	11.1	43
274	Ultraâ€low singleâ€atom Pt on g ₃ N ₄ for electrochemical hydrogen peroxide production. , 2023, 5, .		8
275	Three-Dimensional Welded Mn ₁ Site Catalysts with nearly 100% Singlet Oxygen Fabrication for Contaminant Elimination. , 2023, 1, 153-160.		4
276	Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation. Chinese Journal of Catalysis, 2023, 46, 125-136.	6.9	5
277	Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production. Journal of Environmental Chemical Engineering, 2023, 11, 109572.	3.3	0
278	Metal-free carbon-based catalysts design for oxygen reduction reaction towards hydrogen peroxide: From 3D to 0D. Materials Today, 2023, 63, 339-359.	8.3	14
279	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis. , 2023, 2, 20220059.		6
280	Fluorineâ€regulated carbon nanotubes decorated with Co single atoms for multiâ€site electrocatalysis toward twoâ€electron oxygen reduction. EcoMat, 2023, 5, .	6.8	9
281	Singleâ€Atom Catalysts for H ₂ O ₂ Electrosynthesis via Twoâ€Electron Oxygen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	7.8	26
282	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7949-7986.	5.2	6
283	Direct Observation of Transition Metal Ions Evolving into Single Atoms: Formation and Transformation of Nanoparticle Intermediates. Advanced Science, 2023, 10, .	5.6	3
284	Transition metal single atom-optimized g-C ₃ N ₄ for the highly selective electrosynthesis of H ₂ O ₂ under neutral electrolytes. Nanoscale Horizons, 2023, 8, 695-704.	4.1	5
285	Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobaltâ€Nitrogen Moieties. Angewandte Chemie, 2023, 135, .	1.6	0
286	Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobaltâ€Nitrogen Moieties. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
287	Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Research, 2023, 16, 6477-6506.	5.8	25
288	Recent advances in regulating the local environment of M-N4 structure for tailored chemical reactions. Nano Research, 2023, 16, 8596-8613.	5.8	2
289	Insights into the Electrochemical Production of Hydrogen Peroxide over Single-Atom Co–N–C Catalysts with the Introduction of Carbon Vacancy Defect near the Co–N ₄ Site. Journal of Physical Chemistry Letters, 2023, 14, 3658-3668.	2.1	4

#	Article	IF	CITATIONS
290	Oxygen vacancies and interfacial engineering of MnO/Mn3O4 heterojunction for peroxymonosulfate activation to promote Bisphenol A removal. Applied Surface Science, 2023, 628, 157302.	3.1	7
291	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	11.1	13
292	Carbon Black‧upported Singleâ€Atom CoNC as an Efficient Oxygen Reduction Electrocatalyst for H ₂ O ₂ Production in Acidic Media and Microbial Fuel Cell in Neutral Media. Advanced Functional Materials, 2023, 33, .	7.8	7
307	The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Research, 2023, 16, 10724-10741.	5.8	7
312	Recent Progress in Metal-Organic Frameworks and their Derivatives as Advanced Electrocatalysts for Oxygen Reduction Reactions. , 2023, , 129-161.		0
313	Single-atom catalysts: promotors of highly sensitive and selective sensors. Chemical Society Reviews, 2023, 52, 5088-5134.	18.7	9
322	Transition metal catalysts in the heterogeneous electro-Fenton process for organic wastewater treatment: a review. Environmental Science: Water Research and Technology, 2023, 9, 2429-2445.	1.2	1
328	Atomically dispersed Fe–O ₄ –C sites as efficient electrocatalysts for electrosynthesis of hydrogen peroxide. Chemical Communications, 2023, 59, 12148-12151.	2.2	1
338	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
376	Naturally Inspired Heme-Like Chemistries for the Oxygen Reduction Reaction: Going Beyond Platinum Group Metals in Proton Exchange Membrane Fuel Cell Catalysis. , 2024, , 325-351.		Ο