CITATION REPORT List of articles citing

Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020

DOI: 10.3390/jcm9030789 Journal of Clinical Medicine, 2020, 9, .

Source: https://exaly.com/paper-pdf/76907800/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
209	Optimal Control of Fractional Order COVID-19 Epidemic Spreading in Japan and India 2020. 2020 , 15, 207-236	13
208	The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. 2020,	25
207	Evaluation of the effect of the state of emergency for the first wave of COVID-19 in Japan. 2020 , 5, 580-587	23
206	Short-Term Statistical Forecasts of COVID-19 Infections in India. 2020 , 8, 186932-186938	16
205	Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency. 2020 , 141, 110295	15
204	Prediction of the final size for COVID-19 epidemic using machine learning: A case study of Egypt. 2020 , 5, 622-634	27
203	Prediction of confinement effects on the number of Covid-19 outbreak in Algeria. 2020 , 15, 37	10
202	Japanese tactics for suppressing COVID-19 spread. 2020 , 186, 6-7	5
201	Why lockdown? Why national unity? Why global solidarity? Simplified arithmetic tools for decision-makers, health professionals, journalists and the general public to explore containment options for the 2019 novel coronavirus. 2020 , 5, 442-458	14
200	Demand and supply of invasive and noninvasive ventilators at the peak of the COVID-19 outbreak in Okinawa. 2020 , 21, 98-101	
199	Modeling the Impact of Unreported Cases of the COVID-19 in the North African Countries. 2020 , 9,	16
198	Modeling, Control, and Prediction of the Spread of COVID-19 Using Compartmental, Logistic, and Gauss Models: A Case Study in Iraq and Egypt. 2020 , 8, 1400	14
197	Collocation of Next-Generation Operators for Computing the Basic Reproduction Number of Structured Populations. 2020 , 85, 40	4
196	A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy. 2020 , 15, 50	11
195	Shifting workstyle to teleworking as a new normal in face of COVID-19: analysis with the model introducing intercity movement and behavioral pattern. 2020 , 8, 1056	13
194	Validating a Phenomenological Mathematical Model for Public Health and Safety Interventions Influencing the Evolutionary Stages of Recent Outbreak for Long-Term and Short-Term Domains in Pakistan. 2020 , 2020, 1-9	12
193	On a Coupled Time-Dependent SIR Models Fitting with New York and New-Jersey States COVID-19 Data. 2020 , 9,	11

(2020-2020)

192	Expanded SEIRCQ Model Applied to COVID-19 Epidemic Control Strategy Design and Medical Infrastructure Planning. 2020 , 2020, 1-15	5
191	Neural network powered COVID-19 spread forecasting model. 2020 , 140, 110203	58
190	Simulation of coronavirus disease 2019 (COVID-19) scenarios with possibility of reinfection. 2020 , 139, 110296	24
189	Modeling of COVID-19 Outbreak Indicators in China Between January and June. 2020 , 1-9	1
188	Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives. 2020 , 139, 110280	51
187	Prediction of the Peak, Effect of Intervention, and Total Infected by COVID-19 in India. 2020 , 1-11	2
186	Ten Epidemiological Parameters of COVID-19: Use of Rapid Literature Review to Inform Predictive Models During the Pandemic. 2020 , 8, 598547	6
185	Evaluation of the Economic, Environmental, and Social Impacts of the COVID-19 Pandemic on the Japanese Tourism Industry. 2020 , 12, 10302	27
184	The basic reproduction number of SARS-CoV-2 in Wuhan is about to die out, how about the rest of the World?. 2020 , 30, e2111	33
183	Lessons from being challenged by COVID-19. 2020 , 137, 109923	20
182	A Possible Scenario for the Covid-19 Epidemic, Based on the SI(R) Model. 2020 , 2, 1-3	5
181	Chaos theory applied to the outbreak of COVID-19: an ancillary approach to decision making in pandemic context. 2020 , 148, e95	20
180	A quantitative and qualitative analysis of the COVID-19 pandemic model. 2020 , 138, 109932	21
179	Predicting intervention effect for COVID-19 in Japan: state space modeling approach. 2020 , 14, 174-181	20
0		• 1
178	Prediction of Epidemic Peak and Infected Cases for COVID-19 Disease in Malaysia, 2020. 2020 , 17,	24
178	Evaluation and prediction of COVID-19 in India: A case study of worst hit states. 2020 , 139, 110014	31

174	COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. 2020 , 139, 110088	140
173	Translating transmissibility measures into recommendations for coronavirus prevention. 2020 , 54, 43	15
172	Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. 2020 , 92, 1995-2003	24
171	Age-Structured Modeling of COVID-19 Epidemic in the USA, UAE and Algeria. 2021 , 60, 401-411	34
170	#stayhome to contain Covid-19: Neuro-SIR - Neurodynamical epidemic modeling of infection patterns in social networks. 2021 , 165, 113970	9
169	A mathematical analysis of ongoing outbreak COVID-19 in India through nonsingular derivative. 2021 , 37, 1282-1298	39
168	Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection. 2021 , 142, 110377	1
167	Count regression models for COVID-19. 2021 , 563, 125460	9
166	COVID-19 Dynamics: A Heterogeneous Model. 2020 , 8, 558368	2
165	Mathematical Modeling Predicts That Strict Social Distancing Measures Would Be Needed to Shorten the Duration of Waves of COVID-19 Infections in Vietnam. 2020 , 8, 559693	1
164	COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. 2021 , 6, 324-342	26
163	Modeling the Spread of Covid-19 Pandemic in Morocco. 2021 , 599-615	О
162	Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. 2021 ,	О
161	Modeling the Epidemic Features of COVID-19. 2021 , 10, 931-938	
160	A mathematical model for the dynamics of SARS-CoV-2 virus using the Caputo-Fabrizio operator. 2021 , 18, 6095-6116	3
159	Mathematical modeling and a month ahead forecast of the coronavirus disease 2019 (COVID-19) pandemic: an Indian scenario. 2021 , 7, 1-12	6
158	Geographic Negative Correlation of Estimated Incidence between First and Second Waves of Coronavirus Disease 2019 (COVID-19) in Italy. 2021 , 9, 133	5
157	Power-series solution of compartmental epidemiological models. 2021 , 18, 3274-3290	7

(2021-2021)

156	COVID-19 outbreak, social distancing and mass testing in Kenya-insights from a mathematical model. 2021 , 32, 757-772	3
155	COVID-19 Infection Prediction and Classification. 2021 , 195-208	
154	The Prediction for COVID-19 Outbreak in China by using the Concept of Term Structure for the Turning Period. 2021 , 187, 284-293	O
153	Challenges and Limitations of Geospatial Data and Analyses in the Context of COVID-19. 2021 , 137-167	2
152	SARS-COV-2 outbreak and control in Kenya - Mathematical model analysis. 2021 , 6, 370-380	2
151	COVID-9 and Unemployment: A Novel Bi-level Optimal Control Model. 2021 , 67, 1153-1167	5
150	Analysis of COVID-19 Dynamics in EU Countries Using the Dynamic Time Warping Method and ARIMA Models. 2021 , 337-352	0
149	Correlation of subway turnstile entries and COVID-19 incidence and deaths in New York City. 2021 , 6, 183-194	9
148	K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases. 2021 , 19, 1966-1975	2
147	On the Threshold of Release of Confinement in an Epidemic SEIR Model Taking into Account the Protective Effect of Mask. 2021 , 83, 25	3
146	Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. 2021 , 10, 18	18
145	Modifying the network-based stochastic SEIR model to account for quarantine: an application to COVID-19. 2021 , 10,	3
144	An Integrated Neural Network and SEIR Model to Predict COVID-19. 2021 , 14, 94	13
143	Impact of a new SARS-CoV-2 variant on the population: A mathematical modeling approach.	2
142	Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. 2021 , 17, e1008837	14
141	The Quixotic Task of Forecasting Peaks of COVID-19: Rather Focus on Forward and Backward Projections. 2021 , 9, 623521	5
140	Impact of a New SARS-CoV-2 Variant on the Population: A Mathematical Modeling Approach. 2021 , 26, 25	10
139	Simulations of the COVID-19 Epidemic in Nigeria Using SIR Model. 2021 , 1893, 012016	

138	Highlighting the compound risk of COVID-19 and environmental pollutants using geospatial technology. 2021 , 11, 8363	6
137	Prediction of COVID-19 cases during Tokyoll Olympic and Paralympic Games.	1
136	Analysis of Key Factors of a SARS-CoV-2 Vaccination Program: A Mathematical Modeling Approach 2021 , 2, 140-161	13
135	Estimation of novel coronavirus (COVID-19) reproduction number and case fatality rate: A systematic review and meta-analysis. 2021 , 4, e274	14
134	The epidemiological characteristics and effectiveness of countermeasures to contain coronavirus disease 2019 in Ningbo City, Zhejiang Province, China. 2021 , 11, 9545	3
133	Assessment of basic reproductive number for COVID-19 at global level: A meta-analysis. 2021 , 100, e25837	14
132	Predicting COVID-19 cases using bidirectional LSTM on multivariate time series. 2021 , 28, 56043-56052	10
131	Cross-Validation Comparison of COVID-19 Forecast Models. 2021 , 2, 296	3
130	Prediction of COVID-19 cases during Tokyo's Olympic and Paralympic Games. 2021 , 22, 171-172	2
129	One Year of the COVID-19 Pandemic in Galicia: A Global View of Age-Group Statistics during Three Waves. 2021 , 18,	7
128	Modeling population-wide testing of SARS-CoV-2 for containing COVID-19 pandemic in Okinawa, Japan. 2021 , 22, 173-181	1
127	Japan Covid mitigation strategy and its epidemic prediction.	1
126	Non-pharmaceutical intervention to reduce COVID-19 impact in Argentina. 2021 ,	
125	Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. 2021 , 11,	11
124	Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset. 2021 , 1-15	3
123	Modeling the dynamics of the SARS-CoV-2 virus in a population with asymptomatic and symptomatic infected individuals and vaccination.	8
122	Forecasting the spread and total size of confirmed and discharged cases of COVID-19 in Nigeria using an ARIMA model. 2021 , 37, 517-522	O
121	Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives. 2021 , 60, 3189-3204	25

120	Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan. 2021, 18,	3
119	Systematic review of predictive mathematical models of COVID-19 epidemic. 2021 , 77, S385-S392	4
118	Nonlinear Dynamics of the Introduction of a New SARS-CoV-2 Variant with Different Infectiousness. 2021 , 9, 1564	3
117	The Impact of the Declaration of the State of Emergency on the Spread of COVID-19: A Modeling Analysis. 2021 , 2021, 8873059	
116	Qualitative analysis of a mathematical model with presymptomatic individuals and two SARS-CoV-2 variants. 2021 , 40, 1	5
115	Variants of SARS-COV-2 and the Death Toll.	
114	A novel hybrid fuzzy time series model for prediction of COVID-19 infected cases and deaths in India. 2021 ,	6
113	Analysis of Delayed Vaccination Regimens: A Mathematical Modeling Approach 2021 , 2, 271-293	5
112	Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA. 2021 , 1-11	2
111	Predicting seasonal influenza using supermarket retail records. 2021 , 17, e1009087	1
110	Structure of epidemic models: toward further applications in economics. 2021 , 1-27	
109	Explicit formulae for the peak time of an epidemic from the SIR model. 2021 , 422, 132902	17
108	Positive anti-SARS-CoV-2 rapid serological test results among asymptomatic blood donors. 2021 , 29, 24-24	0
107	Potential impact of alternative vaccination strategies on COVID-19 cases, hospitalization, and mortality in Japan during 2021-2022. 2021 , 22, 311-313	1
106	Examining the interplay between face mask usage, asymptomatic transmission, and social distancing on the spread of COVID-19. 2021 , 11, 15998	16
105	Mapping the Role of Digital Health Technologies in Prevention and Control of COVID-19 Pandemic: Review of the Literature. 2021 , 30, 26-37	9
104	Overview and cross-validation of COVID-19 forecasting univariate models. 2021 , 61, 3021-3021	3
103	Simulating the impacts of interregional mobility restriction on the spatial spread of COVID-19 in Japan. 2021 , 11, 18951	2

102 Optimal and worst examination strategies for COVID-19.

101	Estimation of Mortality Rate of COVID-19 in India using SEIRD Model. 1	
100	Basic Reproduction Number of the 2019 Novel Coronavirus Disease in the Major Endemic Areas of China: A Latent Profile Analysis. 2021 , 9, 575315	1
99	Implementation of stacking based ARIMA model for prediction of Covid-19 cases in India. 2021 , 121, 103887	7
98	Prediction studies of the epidemic peak of coronavirus disease in Japan: From Caputo derivatives to Atangana B aleanu derivatives.	O
97	Active Learning-Based Estimation of COVID-19 Pandemic: A Synergetic Case Study in Selective Regions Population. 2022 , 31-65	O
96	Analysis and prediction of COVID-19 epidemic in South Africa. 2021,	2
95	Meta-analysis of several epidemic characteristics of COVID-19. 2020 , 18, 536-549	4
94	Simulating the Impacts of Interregional Mobility Restriction on the Spatial Spread of COVID-19 in Japan.	О
93	Application of Geometric Poisson Distribution for COVID-19 in Selected States of India. 2021 , 435-446	1
92	How Effective Were and Are Lockdowns?. 2021 , 81-117	
91	Meta-analysis on Serial Intervals and Reproductive Rates for SARS-CoV-2. 2021 , 273, 416-423	10
90	Prediction of Peak and Termination of Novel Coronavirus Covid-19 Epidemic in Iran.	4
89	The Framework for the Prediction of the Critical Turning Period for Outbreak of COVID-19 Spread in China based on the iSEIR Model1.	3
88	Brief Analysis of the ARIMA model on the COVID-19 in Italy.	11
87	Basic reproduction number of 2019 Novel Coronavirus Disease in Major Endemic Areas of China: A latent profile analysis.	1
86	Analysis of the COVID-19 epidemic in french overseas department Mayotte based on a modified deterministic and stochastic SEIR model.	4
85	Why lockdown? Simplified arithmetic tools for decision-makers, health professionals, journalists and the general public to explore containment options for the novel coronavirus.	3

84	Predicting the COVID-19 epidemic in Algeria using the SIR model.		14
83	COVID-19 DYNAMICS: A HETEROGENEOUS MODEL.		2
82	Reproductive number of COVID-19: A systematic review and meta-analysis based on global level evidence.		1
81	Forecasting the peak of novel coronavirus disease in Egypt using current confirmed cases and deaths.		1
80	Analysis and Prediction of COVID-19 Characteristics Using a Birth-and-Death Model.		1
79	Examining face-mask usage as an effective strategy to control COVID-19 spread.		3
78	Modelling population-wide screening of SARS-CoV-2 infection for containing COVID-19 pandemic in Okinawa, Japan.		1
77	Modeling the Effects of Nonpharmaceutical Interventions on COVID-19 Spread in Kenya. 2020 , 2020, 6231461		2
76	Twitter reveals human mobility dynamics during the COVID-19 pandemic. 2020 , 15, e0241957		85
75	Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. 2020 , 15, e0242128		86
74	Virtual reality and massive multiplayer online role-playing games as possible prophylaxis mathematical model: focus on COVID-19 spreading. 2020 , 9,		1
73	COVID-19 in the US: Estimates of Scenarios with Possibility of Reinfection.		Ο
72	Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model. 2020 , 6, e19115		107
71	Mass Infection Analysis of COVID-19 Using the SEIRD Model in Daegu-Gyeongbuk of Korea from April to May, 2020. 2020 , 35, e317		10
70	Forecasting the Spread of COVID-19 in Kuwait Using Compartmental and Logistic Regression Models. 2020 , 10, 3402		35
69	An Overview of the World Current and Future Assessment of Novel COVID-19 Trajectory, Impact, and Potential Preventive Strategies at Healthcare Settings. 2020 , 17,		5
68	An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns?. <i>Journal of Clinical Medicine</i> , 2020 , 9,	5.1	22
67	Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria. 2020 , 7, 306-318		19

66	Possible effects of mixed prevention strategy for COVID-19 epidemic: massive testing, quarantine and social distancing. 2020 , 7, 490-503	21
65	Experience from five Asia-Pacific countries during the first wave of the COVID-19 pandemic: Mitigation strategies and epidemiology outcomes. 2021 , 44, 102171	2
64	The Prediction for the Outbreak of COVID-19 for 15 States in USA by Using Turning Phase Concepts as of April 10, 2020.	1
63	Short term Forecast of the COVID-19 Epidemic in top 15 Affected Countries in the World using ARIMA Model with Machine Learning Approach (Preprint).	O
62	The epidemiologic parameters for COVID-19: A Systematic Review and Meta-Analysis.	1
61	MODELLING OF COVID-19 OUTBREAK INDICATORS IN CHINA BETWEEN JANUARY AND APRIL.	
60	Meta-analysis of several epidemic characteristics of COVID-19. 2020 ,	3
59	On Reliability of the COVID-19 Forecasts.	1
58	Prediction of the Epidemic Strength of COVID-19 in the Holy Places of Saudi Arabia during the Forthcoming Hajj Season 2020. 2020 , 1, 125-134	
57	Estimation of novel coronavirus (covid-19) reproduction number and case fatality rate: a systematic review and meta-analysis.	2
56	Monte Carlo approach to model COVID-19 deaths and infections using Gompertz functions. 2020 , 2,	0
55	IDENTYFIKACJA POWIATIW O NAJWIRSZYM RYZYKU ROZPRZESTRZENIANIA SIICHOROBY COVID-19 I OBCIENIA SIJBY ZDROWIA W POLSCE. 2020 , 21, 134-144	
54	Impact of insufficient detection in COVID-19 outbreaks. 2021 , 18, 9727-9742	
53	Simulating social distancing measures in household and close contact transmission of SARS-CoV-2. 2020 , 36, e00099920	1
52	Prediction of the Peak, Effect of Intervention and Total Infected by the Coronavirus Disease in India.	
51	Chaos theory applied to the outbreak of Covid-19: an ancillary approach to decision-making in pandemic context.	О
50	Bivariate collocation for computing R0 in epidemic models with two structures. 2021,	0
49	AutoSEIR: Accurate Forecasting from Real-time Epidemic Data Using Machine Learning.	

48 Mathematical Modeling and a Month Ahead Forecast of the Coronavirus Disease 2019 (COVID-19) Pandemic: An Indian Scenario.

47	Base Reproduction Number of COVID-19: Statistic Analysis.	1
46	Early reports of epidemiological parameters of the COVID-19 pandemic. 2021 , 12, 65-81	
45	Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas. 2021 , 11, 22665	1
44	Modeling Dynamics of Covid-19 Infected Population with PSO. 2021 , 75-89	
43	Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model 2022 ,	5
42	Assess Medical Screening and Isolation Measures Based on Numerical Method for COVID-19 Epidemic Model in Japan. 2022 , 130, 841-854	О
41	The Impact of Incentives on Job Performance, Business Cycle, and Population Health in Emerging Economies 2021 , 9, 778101	1
40	A Review on the Use of Machine Learning Against the Covid-19 Pandemic. 2022 , 12, 8039-8044	0
39	Early reports of epidemiological parameters of the COVID-19 pandemic. 2021 , 12, 65-81	
38	Mathematical Modeling to Study Optimal Allocation of Vaccines against COVID-19 Using an Age-Structured Population. 2022 , 11, 109	1
37	Development of a Model for the Spread of Nosocomial Infection Outbreaks Using COVID-19 Data 2022 , 10,	
36	Uncertainty quantification in Covid-19 spread: Lockdown effects 2022 , 35, 105375	0
35	COVID-19 peak estimation and effect of nationwide lockdown in India. 1-18	Ο
34	Simulation of the Progression of the COVID-19 Outbreak in Northwest Syria Using a Basic and Adjusted SIR Model. 2022 , 2, 44-58	О
33	Prediction and Classification of Human Development Index Using Machine Learning Techniques. 2021 ,	
32	Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread. 2021 , 9, 3263	1
31	Advanced Computing Approach for Modeling and Prediction COVID-19 Pandemic 2022 , 2022, 6056574	O

30	Dentists[perceptions on present and future dental practice during the COVID-19 pandemic: An embedded study. 11, 453	
29	Data analysis and prediction of the COVID-19 outbreak in the first and second waves for top 5 affected countries in the world 2022 , 1-14	o
28	Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic 2022 , 19,	1
27	The CP-ABM Approach for Modelling COVID-19 Infection Dynamics and Quantifying the Effects of Non-Pharmaceutical Interventions. 2022 , 108790	1
26	Comparative Study of Artificial Neural Network versus Parametric Method in COVID-19 data Analysis. 2022 , 105613	6
25	Stability analysis and numerical simulations of the fractional COVID-19 pandemic model. 2022 ,	1
24	Projection of the Epidemics Trend of COVID-19 in Qom, Iran: A Modeling Study. 2022, 16,	
23	Note: CORONOSIS: Corona Prognosis via a Global Lens to Enable Efficient Policy-making Both at Global and Local Levels. 2022 ,	
22	Determination of optimal prevention strategy for COVID-19 based on multi-agent simulation.	0
21	Parameter identification in epidemiological models. 2022 , 103-124	
20	Parameter identification in epidemiological models. 2022, 103-124 A Survey on Data-Driven COVID-19 and Future Pandemic Management.	0
		О
20	A Survey on Data-Driven COVID-19 and Future Pandemic Management.	O
20	A Survey on Data-Driven COVID-19 and Future Pandemic Management. Estimating the basic reproduction number from noisy daily data. 2022, 549, 111210	O
20 19 18	A Survey on Data-Driven COVID-19 and Future Pandemic Management. Estimating the basic reproduction number from noisy daily data. 2022, 549, 111210 A New Epidemic Model for the COVID-19 Pandemic: The ESI(R)D Model. 2022, 2, 398-404 Proposal for Teaching Mathematical Modelling Using COVID-19 as an Example of an Infectious	0
20 19 18	A Survey on Data-Driven COVID-19 and Future Pandemic Management. Estimating the basic reproduction number from noisy daily data. 2022, 549, 111210 A New Epidemic Model for the COVID-19 Pandemic: The EbI(R)D Model. 2022, 2, 398-404 Proposal for Teaching Mathematical Modelling Using COVID-19 as an Example of an Infectious Disease Epidemic: The Case of Japan in the Corona Vortex. 2022, 3, ep22017 Spatial heterogeneity affects predictions from early-curve fitting of pandemic outbreaks: a case	
20 19 18 17	A Survey on Data-Driven COVID-19 and Future Pandemic Management. Estimating the basic reproduction number from noisy daily data. 2022, 549, 111210 A New Epidemic Model for the COVID-19 Pandemic: The ESI(R)D Model. 2022, 2, 398-404 Proposal for Teaching Mathematical Modelling Using COVID-19 as an Example of an Infectious Disease Epidemic: The Case of Japan in the Corona Vortex. 2022, 3, ep22017 Spatial heterogeneity affects predictions from early-curve fitting of pandemic outbreaks: a case study using population data from Denmark. 2022, 9, Mathematical modeling to study the impact of immigration on the dynamics of the COVID-19	0
20 19 18 17 16	A Survey on Data-Driven COVID-19 and Future Pandemic Management. Estimating the basic reproduction number from noisy daily data. 2022, 549, 111210 A New Epidemic Model for the COVID-19 Pandemic: The ESI(R)D Model. 2022, 2, 398-404 Proposal for Teaching Mathematical Modelling Using COVID-19 as an Example of an Infectious Disease Epidemic: The Case of Japan in the Corona Vortex. 2022, 3, ep22017 Spatial heterogeneity affects predictions from early-curve fitting of pandemic outbreaks: a case study using population data from Denmark. 2022, 9, Mathematical modeling to study the impact of immigration on the dynamics of the COVID-19 pandemic: A case study for Venezuela. 2022, 43, 100532	0

CITATION REPORT

12	Correlated stochastic epidemic model for the dynamics of SARS-CoV-2 with vaccination. 2022 , 12,	О
11	Dentists[perceptions on present and future dental practice during the COVID-19 pandemic: An embedded study. 11, 453	O
10	Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.	O
9	Modeling Complex Systems: A Case Study of Compartmental Models in Epidemiology. 2022 , 2022, 1-12	O
8	Nonlinear time-series forecasts for decision support: short-term demand for ICU beds in Santiago, Chile, during the 2021 COVID-19 pandemic.	O
7	COVID-19 PANDEMBNN YKSEKRETMDEKIZ DINLERII	O
6	Machine learning based regional epidemic transmission risks precaution in digital society. 2022 , 12,	O
5	Spatiotemporal association between weather and Covid-19 explored by machine learning.	O
4	Mathematics education in the time of COVID-19: a public health emergency exacerbated by misinterpretation of data.	O
3	Policy Driven Epidemiological (PDE) Model for Prediction of COVID-19 in India. 2023 , 220-243	O
2	Hospitalization status and gender recognition over the arboviral medical records using shallow and RNN-based deep models. 2023 , 101109	O
1	Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA. 2023 , 20, 10828-10865	O