Machine-knitted washable sensor array textile for precimonitoring

Science Advances 6, eaay2840 DOI: 10.1126/sciadv.aay2840

Citation Report

#	Article	IF	CITATIONS
1	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
2	A passive wireless triboelectric sensor via a surface acoustic wave resonator (SAWR). Nano Energy, 2020, 78, 105307.	8.2	20
3	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
4	Silver Nanowire–Bacterial Cellulose Composite Fiber-Based Sensor for Highly Sensitive Detection of Pressure and Proximity. ACS Nano, 2020, 14, 15428-15439.	7.3	130
5	The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors, 2020, 20, 6396.	2.1	168
6	Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors, 2020, 20, 4009.	2.1	61
7	Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators. IScience, 2020, 23, 101360.	1.9	65
8	Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. Sensors, 2020, 20, 4484.	2.1	27
9	Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals, 2020, 10, 1512.	1.0	39
10	A Machineâ€Fabricated 3D Honeycombâ€Structured Flameâ€Retardant Triboelectric Fabric for Fire Escape and Rescue. Advanced Materials, 2020, 32, e2003897.	11.1	136
11	Wearable Biosensors for Body Computing. Advanced Functional Materials, 2021, 31, 2008087.	7.8	56
12	Application and technologies for textile sensors production used in pressure distribution measurement - a critical review. E3S Web of Conferences, 2020, 207, 03001.	0.2	2
13	Integration of Conductive Materials with Textile Structures, an Overview. Sensors, 2020, 20, 6910.	2.1	48
14	Electrical Characterization of a Double-Layered Conductive Pattern with Different Crack Configurations for Durable E-Textiles. Micromachines, 2020, 11, 977.	1.4	3
15	Self-Powered Sensors and Systems Based on Nanogenerators. Sensors, 2020, 20, 2925.	2.1	195
16	3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 32023-32030.	4.0	85
17	A multifunctional wearable E-textile <i>via</i> integrated nanowire-coated fabrics. Journal of Materials Chemistry C, 2020, 8, 8399-8409.	2.7	64
18	Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Applied Bio Materials, 2021, 4, 122-139.	2.3	52

#	Article	IF	CITATIONS
19	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	11.1	278
20	Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interactive. Nano Energy, 2021, 80, 105446.	8.2	25
21	Advances in triboelectric nanogenerators for biomedical sensing. Biosensors and Bioelectronics, 2021, 171, 112714.	5.3	159
22	Triboelectric nanogenerators for human-health care. Science Bulletin, 2021, 66, 490-511.	4.3	93
23	Textile Technology for Soft Robotic and Autonomous Garments. Advanced Functional Materials, 2021, 31, 2008278.	7.8	127
24	Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 81, 105627.	8.2	86
25	The Effect of Miss and Tuck Stitches on a Weft Knit Strain Sensor. Sensors, 2021, 21, 358.	2.1	9
26	Wearable triboelectric nanogenerators for heart rate monitoring. Chemical Communications, 2021, 57, 5871-5879.	2.2	64
27	A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials. Journal of Materials Chemistry C, 2021, 9, 13659-13667.	2.7	76
28	Triboelectric Sensors for IoT and Wearable Applications. , 2023, , 235-257.		6
29	Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy and Environmental Science, 2021, 14, 955-964.	15.6	78
30	Wearable triboelectric sensors for biomedical monitoring and human-machine interface. IScience, 2021, 24, 102027.	1.9	125
31	Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules, 2021, 26, 748.	1.7	134
32	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	7.8	169
33	Design framework for a seamless smart glove using a digital knitting system. Fashion and Textiles, 2021, 8, .	1.3	7
34	Review—Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. Journal of the Electrochemical Society, 2021, 168, 027504.	1.3	10
35	Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosensors and Bioelectronics, 2021, 176, 112946.	5.3	100
36	Textile-Based Flexible Pressure Sensors: A Review. Polymer Reviews, 2022, 62, 65-94.	5.3	74

#	Article	IF	CITATIONS
37	Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Applied Materials & Interfaces, 2021, 13, 16876-16886.	4.0	59
38	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	11.1	279
39	Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Science Advances, 2021, 7, .	4.7	88
40	Progress in micro/nano sensors and nanoenergy for future AloT-based smart home applications. Nano Express, 2021, 2, 022005.	1.2	50
41	Ultra-flexible and highly transparent hydrogel-based triboelectric nanogenerator for physiological signal monitoring. , 2021, , .		1
42	Electronic Textiles Fabricated with Graphene Oxide-Coated Commercial Textiles. Coatings, 2021, 11, 489.	1.2	13
43	Measurement and analysis on failure lifetime of serpentine interconnects for e-textiles under cyclic large deformation. Flexible and Printed Electronics, 2021, 6, 025003.	1.5	11
44	Flexible Wearable Sensors for Cardiovascular Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2100116.	3.9	170
45	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391.	7.8	102
46	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	11.1	68
47	Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional Materials, 2021, 31, 2102963.	7.8	63
48	Soft Human–Machine Interface with Triboelectric Patterns and Archimedes Spiral Electrodes for Enhanced Motion Detection. Advanced Functional Materials, 2021, 31, 2103075.	7.8	26
49	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	1.9	60
50	Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Letters, 2021, 13, 140.	14.4	69
51	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	1.7	6
52	Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators. Micromachines, 2021, 12, 666.	1.4	23
53	Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 2021, 46, 512-521.	1.7	111
54	Highly Sensitive Flexible Tactile Sensor Mimicking the Microstructure Perception Behavior of Human Skin. ACS Applied Materials & Interfaces, 2021, 13, 28538-28545.	4.0	36

#	Article	IF	CITATIONS
55	Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles, 2021, 1, 239-257.	1.8	31
56	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2101262.	11.1	217
57	Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability. Advanced Functional Materials, 2021, 31, 2104737.	7.8	49
58	Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosensors and Bioelectronics, 2021, 186, 113290.	5.3	23
59	Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy, 2021, 86, 106058.	8.2	147
60	Antibacterial, Scalable Manufacturing, Skin-Attachable, and Eco-Friendly Fabric Triboelectric Nanogenerators for Self-Powered Sensing. ACS Sustainable Chemistry and Engineering, 2021, 9, 13356-13366.	3.2	32
61	Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chemical Engineering Journal, 2021, 420, 129650.	6.6	34
62	Fiber-Based Electret Nanogenerator with a Semisupported Structure for Wearable Electronics. ACS Applied Materials & Interfaces, 2021, 13, 46840-46847.	4.0	10
63	Self-powered skin electronics for energy harvesting and healthcare monitoring. Materials Today Energy, 2021, 21, 100786.	2.5	36
64	Analyzing the output performance of the knitted triboelectric nanogenerator based on the fish-scale shape using fast Fourier transform. Textile Reseach Journal, 0, , 004051752110445.	1.1	1
65	From contact electrification to triboelectric nanogenerators. Reports on Progress in Physics, 2021, 84, 096502.	8.1	244
66	Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy, 2021, 90, 106580.	8.2	35
67	Graphene-based electronic textile sheet for highly sensitive detection of NO2 and NH3. Sensors and Actuators B: Chemical, 2021, 345, 130361.	4.0	21
68	Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy, 2021, 88, 106247.	8.2	66
69	Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 2021, 88, 106304.	8.2	185
70	Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends in Biotechnology, 2021, 39, 1078-1092.	4.9	96
71	Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.	8.2	45
72	Triboelectric nanogenerator based self-powered sensor with a turnable sector structure for monitoring driving behavior. Nano Energy, 2021, 89, 106352.	8.2	33

#	Article	IF	CITATIONS
73	Reconstructed silk fibroin mediated smart wristband for physiological signal detection. Chemical Engineering Journal, 2022, 428, 132362.	6.6	14
74	Research and application of flexible wearable electronics based on nanogenerator in touch sensor. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 100705.	0.2	2
75	Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics. RSC Advances, 2021, 11, 22327-22333.	1.7	10
76	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
78	Effect of Oxygen Functional Groups in Reduced Graphene Oxide-Coated Silk Electronic Textiles for Enhancement of NO ₂ Gas-Sensing Performance. ACS Omega, 2021, 6, 27080-27088.	1.6	13
79	Textile-Based Mechanical Sensors: A Review. Materials, 2021, 14, 6073.	1.3	14
80	Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy, 2022, 91, 106670.	8.2	35
81	Triboelectric sensor array for internet of things based smart traffic monitoring and management system. Nano Energy, 2022, 92, 106757.	8.2	35
82	Graded Microstructured Flexible Pressure Sensors with High Sensitivity and an Ultrabroad Pressure Range for Epidermal Pulse Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 55747-55755.	4.0	13
83	Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.	5.2	3
84	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	5.8	150
85	Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. Journal of Materials Chemistry A, 2022, 10, 2697-2735.	5.2	14
86	Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundamental Research, 2022, 2, 619-628.	1.6	29
87	Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties. ACS Applied Electronic Materials, 2022, 4, 678-688.	2.0	13
88	Wearable Sensing Systems for Monitoring Mental Health. Sensors, 2022, 22, 994.	2.1	16
89	Respiratory fabric sensor based on the side luminescence and photosensitivity mechanism of polymer optical fibers. Optics Express, 2022, 30, 2721.	1.7	6
90	Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Advanced Materials, 2022, 34, e2108491.	11.1	64
91	Highâ€Sensitivity, Longâ€Durability, and Wearable Pressure Sensor Based on the Polypyrrole/Reduced Graphene Oxide/(Fabric–Sponge–Fabric) for Human Motion Monitoring. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5

#	Article	IF	Citations
92	Wearable Pressure Sensors for Pulse Wave Monitoring. Advanced Materials, 2022, 34, e2109357.	11.1	253
93	Biometrics-protected optical communication enabled by deep learning–enhanced triboelectric/photonic synergistic interface. Science Advances, 2022, 8, eabl9874.	4.7	42
94	Strong Bacterial Cellulose-Based Films with Natural Laminar Alignment for Highly Sensitive Humidity Sensors. ACS Applied Materials & 2021, 14, 3165-3175.	4.0	24
95	Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. ACS Nano, 2022, 16, 2811-2821.	7.3	102
96	Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose, 2022, 29, 2699-2709.	2.4	11
97	Anisotropic conductive shape-memory aerogels as adaptive reprogrammable wearable electronics for accurate long-term pressure sensing. Journal of Materials Chemistry A, 2022, 10, 3933-3943.	5.2	13
98	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34, e2109355.	11.1	118
99	A flexible humidity sensor based on self-supported polymer film. Sensors and Actuators B: Chemical, 2022, 358, 131438.	4.0	36
100	Origin of Hydrogen Incorporated into Ethylene during Electrochemical CO ₂ Reduction in Membrane Electrode Assembly. ACS Energy Letters, 2022, 7, 939-945.	8.8	36
101	Solid-state intrinsically-superstretchable multifunctional nanogenerator fiber for biomechanical and ambient electromagnetic energy harvesting and self-powered sensing. Nano Energy, 2022, 95, 107035.	8.2	12
102	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
104	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
105	Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS Nano, 2022, 16, 4654-4665.	7.3	90
106	Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. Nature Communications, 2022, 13, 938.	5.8	42
107	Advanced Electronics and Artificial Intelligence: Mustâ€Have Technologies Toward Human Body Digital Twins. Advanced Intelligent Systems, 2022, 4, .	3.3	11
108	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	3.3	146
109	Smart textiles for personalized healthcare. Nature Electronics, 2022, 5, 142-156.	13.1	307
110	Electronic textiles for energy, sensing, and communication. IScience, 2022, 25, 104174.	1.9	30

#	Article	IF	CITATIONS
111	3D Waterproof MXeneâ€Based Textile Electronics for Physiology and Motion Signals Monitoring. Advanced Materials Interfaces, 2022, 9, .	1.9	8
112	A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS Nano, 2022, 16, 3744-3755.	7.3	68
113	Airâ€Permeable Waterproofing Electrocardiogram Patch to Monitor Fullâ€Day Activities for Multiple Days. Advanced Healthcare Materials, 2022, 11, e2102703.	3.9	12
114	Harvesting circuits for triboelectric nanogenerators for wearable applications. IScience, 2022, 25, 103977.	1.9	15
115	Smart Electronic Textiles for Wearable Sensing and Display. Biosensors, 2022, 12, 222.	2.3	26
116	Lever-inspired triboelectric nanogenerator with ultra-high output for pulse monitoring. Nano Energy, 2022, 97, 107159.	8.2	8
117	Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy, 2022, 97, 107168.	8.2	28
118	Wearable triboelectric devices for haptic perception and VR/AR applications. Nano Energy, 2022, 96, 107112.	8.2	39
119	Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy, 2022, 96, 107137.	8.2	112
120	Ferromagnetic-assisted Maxwell's displacement current based on iron/polymer composite for improving the triboelectric nanogenerator output. Nano Energy, 2022, 96, 107139.	8.2	25
121	MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sensors and Actuators B: Chemical, 2022, 361, 131704.	4.0	35
122	Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles. Nano Energy, 2022, 98, 107240.	8.2	30
123	Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chemical Engineering Journal, 2022, 441, 136046.	6.6	13
124	Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing. ACS Applied Materials & Interfaces, 2022, 14, 2113-2121.	4.0	8
125	Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano, 2021, 15, 18633-18646.	7.3	53
126	Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays. ACS Nano, 2022, 16, 368-377.	7.3	63
127	The E-Textile for Biomedical Applications: A Systematic Review of Literature. Diagnostics, 2021, 11, 2263.	1.3	6
128	Strainâ€Insensitive Selfâ€Powered Tactile Sensor Arrays Based on Intrinsically Stretchable and Patternable Ultrathin Conformal Wrinkled Grapheneâ€Elastomer Composite. Advanced Functional Materials, 2022, 32, .	7.8	47

#	Article	IF	CITATIONS
129	Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chemical Engineering Journal, 2022, 444, 136481.	6.6	14
130	An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals, 2022, 12, 555.	1.0	6
131	Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 2022, 13, 2190.	5.8	87
132	Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 20113-20121.	4.0	10
133	Smart Textiles. , 2022, , .		0
134	Nanogeneratorsâ€Based Selfâ€Powered Sensors. Advanced Materials Technologies, 2022, 7, .	3.0	13
135	In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables. Frontiers of Materials Science, 2022, 16, .	1.1	2
136	Rational design of self-powered sensors with polymer nanocomposites for human–machine interaction. Chinese Journal of Aeronautics, 2022, 35, 155-177.	2.8	6
137	From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors, 2022, 12, 323.	2.3	15
138	Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles. Applied Materials Today, 2022, 27, 101508.	2.3	16
139	3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chemical Engineering Journal, 2022, 445, 136821.	6.6	28
140	Review—Human-Body Powered Biosensing Textiles: Body-Power Generating Wearables Based on Textiles for Human Biomonitoring. Journal of the Electrochemical Society, 2022, 169, 067502.	1.3	2
141	A wearable and high-performance capacitive pressure sensor based on a biocompatible PVP nanofiber membrane <i>via</i> electrospinning and UV treatment. Journal of Materials Chemistry C, 2022, 10, 10491-10499.	2.7	18
142	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	2.3	9
143	Development and Prospects of Triboelectric Nanogenerators in Sports and Physical State Monitoring. Frontiers in Materials, 2022, 9, .	1.2	1
144	A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Research, 2022, 15, 9341-9351.	5.8	26
145	PEDOTS:PSS@KNF Wireâ€Shaped Electrodes for Textile Symmetrical Capacitor. Advanced Materials Interfaces, 2022, 9, .	1.9	2
146	Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. Nanomaterials, 2022, 12, 2039.	1.9	18

#	Article	IF	CITATIONS
147	Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy, 2022, 100, 107500.	8.2	14
148	Fibrous triboelectric nanogenerators: fabrication, integration, and application. Journal of Materials Chemistry A, 2022, 10, 15881-15905.	5.2	13
149	Human body IoT systems based on the triboelectrification effect: energy harvesting, sensing, interfacing and communication. Energy and Environmental Science, 2022, 15, 3688-3721.	15.6	93
150	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	11.1	63
151	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
152	Elastic Kernmantle Eâ€Braids for Highâ€Impact Sports Monitoring. Advanced Science, 2022, 9, .	5.6	12
153	Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. Npj Flexible Electronics, 2022, 6, .	5.1	20
154	Charge Transport at the Interface between Graphene Oxide and Silk in Highly Flexible Commercial Silk-Based e-Textile Treated at High Temperatures. ACS Applied Electronic Materials, 2022, 4, 3543-3548.	2.0	1
155	Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 2022, 14, .	14.4	75
156	Multifunctional Fiberâ€Enabled Intelligent Health Agents. Advanced Materials, 2022, 34, .	11.1	36
157	A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano Energy, 2022, 101, 107588.	8.2	11
158	Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy, 2022, 101, 107600.	8.2	16
160	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
161	Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles. Npj Flexible Electronics, 2022, 6, .	5.1	15
162	Eggshell-inspired high-deformation MXene biocomposite for flexible device. Microelectronic Engineering, 2022, 264, 111869.	1.1	2
163	Knotâ€Architectured Fabric Actuators Based on Shape Memory Fibers. Advanced Functional Materials, 2022, 32, .	7.8	14
164	Roadmap on bio-derived materials for wearable triboelectric devices. Materials Today Sustainability, 2022, 20, 100219.	1.9	5
165	Recent Progresses in Wearable Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	7.8	54

#	Article	IF	CITATIONS
166	Flexible pressure sensor for high-precision measurement of epidermal arterial pulse. Nano Energy, 2022, 102, 107710.	8.2	20
167	High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy, 2022, 103, 107778.	8.2	17
168	PEO-PDMS-based triboelectric nanogenerators as self-powered sensors for driver status monitoring. Chemical Engineering Journal, 2023, 451, 138961.	6.6	18
169	A general strategy to immobilize metal nanoparticles on MXene composite fabrics for enhanced sensing performance and endowed multifunctionality. Journal of Materials Chemistry C, 2022, 10, 13143-13156.	2.7	4
170	Semantic-driven Efficient Service Network towards Smart Healthcare System in Intelligent Fabric. IEEE Transactions on Network Science and Engineering, 2022, , 1-10.	4.1	0
171	Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sensors, 2022, 7, 2495-2520.	4.0	34
172	Selfâ€Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods, 2022, 6, .	4.6	20
175	PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Materials Today, 2022, 59, 56-67.	8.3	28
176	Energy autonomous paper modules and functional circuits. Energy and Environmental Science, 2022, 15, 5069-5081.	15.6	38
177	An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy, 2022, 104, 107935.	8.2	3
178	High-Speed Sirospun Conductive Yarn for Stretchable Embedded Knitted Circuit and Self-Powered Wearable Device. Advanced Fiber Materials, 2023, 5, 154-167.	7.9	18
179	Investigating Properties of Electrically Conductive Textiles: A Review. Tekstilec, 2022, 65, 194-217.	0.3	2
180	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
181	Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors, 2022, 22, 7566.	2.1	10
182	Feasibility Analysis and Implementation of Head-Mounted Electrical Impedance Respiratory Monitoring. Biosensors, 2022, 12, 934.	2.3	4
183	Efficiently utilizing shallow and deep trapped charges on polyester fiber cloth surface by double working mode design for high output and durability TENG. Nano Energy, 2022, 104, 107968.	8.2	12
184	Fabric computing: Concepts, opportunities, and challenges. Innovation(China), 2022, 3, 100340.	5.2	12
185	Recent Advances in Materials, Designs and Applications of Skin Electronics. IEEE Open Journal of Nanotechnology, 2023, 4, 55-70.	0.9	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
186	Review and Assessment of Carbon Nanotube Based Actuating Textiles. , 2022, , .			0
187	A Dualâ€Functional Triboelectric Nanogenerator Based on the Comprehensive Integrat Synergetic Utilization of Triboelectrification, Electrostatic Induction, and Electrostatic Achieve Alternating Current/Direct Current Convertible Outputs. Advanced Materials, 2	Discharge to	11.1	20
188	3D Printed Multifunctional Selfâ€Adhesive and Conductive Polyacrylamide/Chitosan/So Carboxymethyl Cellulose/CNT Hydrogels as Flexible Sensors. Macromolecular Chemistr 2023, 224, .	odium y and Physics,	1.1	8
189	OTFT Biosensor on Flexible Substrates for Human Health Monitoring: a Review. IEEE Se 2023, 23, 997-1011.	nsors Journal,	2.4	4
190	A self-powered wearable seizure-monitoring/brain-stimulating system for potential epil Nano Energy, 2023, 107, 108121.	epsy treatment.	8.2	4
191	Respiratory Monitoring Smart Vest Based on Flexible Pressure Sensor. AATCC Journal o 247234442211366.	f Research, 0, ,	0.3	1
192	Customizing Triboelectric Nanogenerator on Everyday Clothes by Screenâ€Printing Teo Biomechanical Energy Harvesting and Humanâ€Interactive Applications. Advanced Ma Technologies, 2023, 8, .	chnology for terials	3.0	9
193	Triboelectric Nanogenerator for Healthcare. , 2023, , 1-50.			0
194	Triboelectricity: New paradigms for energy harvesting and point-of-care applications. M Proceedings, 2023, 73, 361-365.	laterials Today:	0.9	0
195	Textileâ€Based Triboelectric Nanogenerators for Smart Wearable Systems: Comfort, In Application. Advanced Materials Technologies, 2023, 8, .	tegration, and	3.0	7
196	Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure Application. Sensors, 2022, 22, 9716.	e, and	2.1	9
197	Smart Fibers for Self-Powered Electronic Skins. Advanced Fiber Materials, 2023, 5, 401	-428.	7.9	49
198	Application of flexible pressure sensor based on AgNWs in human motion detection. In Journal of Clothing Science and Technology, 2023, ahead-of-print, .	iternational	0.5	0
199	Emerging Selfâ€Powered Autonomous Sensing Triboelectric Fibers toward Future Wea Humanâ€Computer Interaction Devices. , 2023, 2, .	rable		6
200	Recent developments in modeling, imaging, and monitoring of cardiovascular diseases learning. Biophysical Reviews, 2023, 15, 19-33.	using machine	1.5	9
201	Scalable spinning, winding, and knittingÂgraphene textile TENG for energy harvesting a motion recognition. Nano Energy, 2023, 107, 108137.	and human	8.2	37
202	Subgroup State Prediction under Different Noise Levels Using MODWT and XGBoost. J Healthcare Engineering, 2023, 2023, 1-8.	ournal of	1.1	0
203	Field Modeling of the Influence of Defects Caused by Bending of Conductive Textronic Electrical Conductivity. Sensors, 2023, 23, 1487.	Layers on Their	2.1	0

		CITATION REPOI	RT	
#	Article	IF		CITATIONS
204	A Dualâ \in Responsive Artificial Skin for Tactile and Touchless Interfaces. Small, 2023, 19, .	5.	2	10
205	The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Advanced Science, 2023,	10, . 5.	6	26
206	Development of Embroidery-Type Sensor Capable of Detecting Respiration Using the Capac Polymers, 2023, 15, 503.	itive Method. 2.	0	6
207	Conductive Thread-Based Immunosensor for Pandemic Influenza A (H1N1) Virus Detection. Materials & Interfaces, 0, , .	ACS Applied 4.	0	4
208	Integrated Sensing Devices for Brain-Computer Interfaces. , 2023, , 241-258.			0
209	Highly Conductive Carbon-Based E-Textile for Gesture Recognition. IEEE Electron Device Let 44, 825-828.	ters, 2023, 2.	2	3
210	3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors textiles. Nano Energy, 2023, 109, 108312.	of smart 8.	2	9
211	Anti-fatigue ionic gels for long-term multimodal respiratory abnormality monitoring. Journal Materials Science and Technology, 2023, 151, 99-108.	of 5.	6	3
212	Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. Sensors, 20)23, 23, 1329. 2.	1	20
213	Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Ma Today Bio, 2023, 19, 100565.	aterials 2.	6	22
214	Smart optical fiber fabric based on side-emitting and side-coupling for pulse and blood oxyg measurement. Textile Reseach Journal, 0, , 004051752311532.	ien 1.	1	0
215	Soft robotics in wearable and implantable medical applications: Translational challenges and outlooks. Frontiers in Robotics and AI, 0, 10, .	d future 2.	0	7
216	Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for th Engineering of Fully Degradable Force Sensors. Advanced Science, 2023, 10, .	ie 5.	6	14
217	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 1-39.			0
218	Advances in triboelectric nanogenerator technology—applications in self-powered sensors of things, biomedicine, and blue energy. Advanced Composites and Hybrid Materials, 2023,		9	43
219	Flexible Antiswelling Photothermalâ€Therapy MXene Hydrogelâ€Based Epidermal Sensor fo Human–Machine Interfacing. Advanced Functional Materials, 2023, 33, .	r Intelligent 7.1	8	23
220	Triboelectric Nanogenerator for Sports. , 2023, , 1-20.			0
221	Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humid underwater wearable motion monitoring. Npj Flexible Electronics, 2023, 7, .	ity and 5.	1	15

#	Article	IF	CITATIONS
222	Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring. IScience, 2023, 26, 106403.	1.9	12
223	Flexible Wearable Capacitive Sensors Based on Ionic Gel with Full-Pressure Ranges. ACS Applied Materials & Interfaces, 2023, 15, 15884-15892.	4.0	14
224	Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors, 2023, 13, 395.	2.3	3
225	Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InformaÄnÃ-Materiály, 2023, 5, .	8.5	20
226	Modularized synthetic biology enabled intelligent biosensors. Trends in Biotechnology, 2023, 41, 1055-1065.	4.9	8
227	All Knitted and Integrated Soft Wearable of High Stretchability and Sensitivity for Continuous Monitoring of Human Joint Motion. Advanced Healthcare Materials, 2023, 12, .	3.9	3
228	A Machineâ€Braided Flameâ€Retardant Triboelectric Yarn/Textile for Fireproof Application. Advanced Materials Technologies, 2023, 8, .	3.0	5
229	Recent Advances in Artificial Intelligence Sensors. , 2023, 2, .		14
230	Triboelectric nanogenerators and piezoelectric nanogenerators for preventing and treating heart diseases. , 2023, 1, .		17
231	Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS Applied Materials & Interfaces, 2023, 15, 21721-21745.	4.0	5
232	Recent progress in flexible micro-pressure sensors for wearable health monitoring. Nanoscale Advances, 2023, 5, 3131-3145.	2.2	12
250	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
252	Sustainable electronic textiles towards scalable commercialization. Nature Materials, 2023, 22, 1294-1303.	13.3	15
253	Review: Textile-based soft robotics for physically challenged individuals. Journal of Materials Science, 2023, 58, 12491-12536.	1.7	1
260	Triboelectric Nanogenerator for Sports. , 2023, , 951-970.		0
261	Triboelectric Nanogenerator for Healthcare. , 2023, , 627-676.		0
268	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 851-889.		0
277	Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. Materials Horizons, 0, , .	6.4	0

ARTICLE

IF CITATIONS