Hybrid OFDMA Random Access With Resource Unit Ser

IEEE Transactions on Mobile Computing 20, 3338-3350 DOI: 10.1109/tmc.2020.3000503

Citation Report

#	Article	IF	CITATIONS
1	URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence. IEEE Access, 2021, 9, 67064-67095.	4.2	57
2	OFDMA Backoff Control Scheme for Improving Channel Efficiency in the Dynamic Network Environment of IEEE 802.11ax WLANs. Sensors, 2021, 21, 5111.	3.8	13
3	IEEE 802.11ax OFDMA Resource Allocation with Frequency-Selective Fading. Sensors, 2021, 21, 6099.	3.8	9
4	Transmission Delay-Based Uplink Multi-User Scheduling in IEEE 802.11ax Networks. Applied Sciences (Switzerland), 2021, 11, 9196.	2.5	3
5	Fluid-Limit Model for Dynamic MU-OFDMA Resource Allocation of Wi-Fi6 Networks. IEEE Communications Letters, 2022, 26, 207-211.	4.1	7
6	Performance analysis of an adaptive OFDMAâ€based CSMA/CA scheme on a wireless network. IET Communications, 2020, 14, 3480-3489.	2.2	1
7	Joint Access Point Placement and Power-Channel-Resource-Unit Assignment for IEEE 802.11ax-Based Dense WiFi Network With QoS Requirements. IEEE Transactions on Mobile Computing, 2023, 22, 2771-2788.	5.8	0
8	TCP-Aware OFDMA Transmission Based on Traffic Intensity in Downlink and Uplink Directions in IEEE 802.11ax Wireless LANs. , 2021, , .		Ο
9	An Efficient Backoff Procedure for IEEE 802.11ax Uplink OFDMA-Based Random Access. IEEE Access, 2022, 10, 8855-8863.	4.2	12
10	Dynamic Uplink Channel Access Protocol based on Collision Probability in IEEE 802.11ax High Density WLANs. The Journal of Korean Institute of Information Technology, 2022, 20, 71-77.	0.3	1
11	MAC Protocol for Reducing Collision Probability of Uplink Channel in IEEE 802.11ax WLANs. The Journal of Korean Institute of Information Technology, 2022, 20, 77-84.	0.3	0
12	Preparing Wi-Fi 7 for Healthcare Internet-of-Things. Sensors, 2022, 22, 6209.	3.8	4
13	A Survey of Wi-Fi 6: Technologies, Advances, and Challenges. Future Internet, 2022, 14, 293.	3.8	14
14	Performance Analyses of Uplink MU-OFDMA Hybrid Access MAC in IEEE 802.11ax WLANs. IEEE Systems Journal, 2022, 16, 5108-5119.	4.6	3
15	Improving IEEE 802.11ax UORA Performance: Comparison of Reinforcement Learning and Heuristic Approaches. IEEE Access, 2022, 10, 120285-120295.	4.2	2
16	Performance analysis and Energy Efficiency of MU- (OFDMA & MIMO) based Hybrid MAC Protocol of IEEE 802.11ax WLANs. IEEE Transactions on Vehicular Technology, 2022, , 1-16.	6.3	0
17	Adaptive multi-user uplink resource allocation based on access delay analysis in IEEE 802.11ax. Wireless Networks, 0, , .	3.0	1
18	ViTaLS -A Novel Link-Layer Scheduling Framework for Tactile Internet over Wi-Fi. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0

#	Article	IF	CITATIONS
19	Random Access Modelling and Performance Analysis for the 802.11ax UORA Mechansim in Multiple BSSs. , 2022, , .		0
20	Optimal Random Access Strategies for Trigger-Based Multiple-Packet Reception Channels. IEEE Transactions on Mobile Computing, 2024, 23, 2303-2320.	5.8	0
21	OTOP: Optimized Transmission Power Controlled OBSS PD-Based Spatial Reuse for High Throughput in IEEE 802.11be WLANs. IEEE Internet of Things Journal, 2023, 10, 17110-17123.	8.7	1
22	QoS-Oriented Uplink OFDMA Random Access Scheme for IEEE 802.11be. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 306-315.	0.7	1
23	Enhancing Network Throughput via the Equal Interval Frame Aggregation Scheme for IEEE 802.11ax WLANs. Chinese Journal of Electronics, 2023, 32, 747-759.	1.5	1
24	A Cluster-Based OFDMA MAC Protocol using Carrier-Sensing Scheme for IEEE 802.11ax WLANs. , 2023, , .		0
25	Dynamic Parameter Control MAC Protocol for Improving Uplink Channel Performance in IEEE 802.11ax WLANs. The Journal of Korean Institute of Information Technology, 2023, 21, 75-82.	0.3	0
26	Collision-based Up-link OFDMA Random Access Mechanism for Wi-Fi 6. IEEE Access, 2023, , 1-1.	4.2	0
27	Priority-Based Resource Reservation Mechanism for Uplink Multi-User Transmission in IEEE 802.11ax Networks. , 2023, , .		0
28	Enhancing UORA for IEEE802.11be. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 69-82.	0.3	0
29	Enhanced backoff mechanism for uplink OFDMA in Wireless Local Area Network. Journal of King Saud University - Computer and Information Sciences, 2024, 36, 102005.	3.9	0