Gesture recognition using a bioinspired learning archite with somatosensory data from stretchable sensors

Nature Electronics 3, 563-570

DOI: 10.1038/s41928-020-0422-z

Citation Report

#	Article	IF	CITATIONS
1	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 49945-49956.	4.0	43
2	Portable Foodâ€Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Advanced Materials, 2020, 32, e2004805.	11.1	131
3	Mixed receptors of AMPA and NMDA emulated using a â€~Polka Dot'-structured two-dimensional conjugated polymer-based artificial synapse. Nanoscale Horizons, 2020, 5, 1324-1331.	4.1	14
4	Near-sensor and in-sensor computing. Nature Electronics, 2020, 3, 664-671.	13.1	385
5	Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Science Advances, 2020, 6, .	4.7	182
6	Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Science Advances, 2020, 6, .	4.7	129
7	Soft Sign Language Interpreter on Your Skin. Matter, 2020, 3, 337-338.	5 . 0	8
8	Emerging Functional Materials under High Pressure toward Enhanced Properties. , 2020, 2, 1233-1239.		30
9	Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection. Journal of Materials Chemistry C, 2020, 8, 16774-16783.	2.7	32
10	Flexible Hybrid Sensor Systems with Feedback Functions. Advanced Functional Materials, 2021, 31, 2007436.	7.8	80
11	Highly sensitive and large range strain sensor based on synergetic effects with double conductive layer structures. Sensors and Actuators A: Physical, 2021, 318, 112515.	2.0	9
12	Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Reviews in Biomedical Engineering, 2022, 15, 85-102.	13.1	81
13	Bioinspired design and assembly of a multilayer cage-shaped sensor capable of multistage load bearing and collapse prevention. Nanotechnology, 2021, 32, 155506.	1.3	14
14	Bioinspired multisensory neural network with crossmodal integration and recognition. Nature Communications, 2021, 12, 1120.	5 . 8	94
15	Getting a sense of touch. Nature Electronics, 2021, 4, 171-171.	13.1	0
16	Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Materials, 2021, 9, .	2.2	8
17	Bioinspired mechano-photonic artificial synapse based on graphene/MoS ₂ heterostructure. Science Advances, 2021, 7, .	4.7	184
18	Machine Learning for Transition-Metal-Based Hydrogen Generation Electrocatalysts. ACS Catalysis, 2021, 11, 3930-3937.	5 . 5	38

#	Article	IF	Citations
19	Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008807.	7.8	84
20	Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
21	Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research, 2021, 2021, 4689869.	2.8	21
22	Progress in micro/nano sensors and nanoenergy for future AloT-based smart home applications. Nano Express, 2021, 2, 022005.	1.2	50
23	A Physiology-Based Flexible Strap Sensor for Gesture Recognition by Sensing Tendon Deformation. IEEE Sensors Journal, 2021, 21, 9449-9456.	2.4	14
24	Research on Intention Flexible Mapping Algorithm for Elderly Escort Robot. Scientific Programming, 2021, 2021, 1-14.	0.5	1
25	Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing. Advanced Materials Technologies, 2021, 6, 2100018.	3.0	66
26	Ultrastretchable and Washable Conductive Microtextiles by Coassembly of Silver Nanowires and Elastomeric Microfibers for Epidermal Human–Machine Interfaces. , 2021, 3, 912-920.		58
27	Physics-informed generative neural network: an application to troposphere temperature prediction. Environmental Research Letters, 2021, 16, 065003.	2.2	11
28	Elastomeric Haptic Devices for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009364.	7.8	39
29	Artificial Visual Electronics for Closed‣oop Sensation/Action Systems. Advanced Intelligent Systems, 2021, 3, 2100071.	3.3	3
30	Ready-to-wear strain sensing gloves for human motion sensing. IScience, 2021, 24, 102525.	1.9	10
31	Machine Learningâ€Reinforced Noninvasive Biosensors for Healthcare. Advanced Healthcare Materials, 2021, 10, e2100734.	3.9	62
32	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	5.2	10
33	Sensation and Perception of a Bioinspired Flexible Smart Sensor System. ACS Nano, 2021, 15, 9238-9243.	7.3	17
34	Haptic-Feedback Ring Enabled Human-Machine Interface (HMI) Aiming at Immersive Virtual Reality Experience., 2021,,.		3
35	Conductive Porous MXene for Bionic, Wearable, and Precise Gesture Motion Sensors. Research, 2021, 2021, 9861467.	2.8	18
36	Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy, 2021, 85, 106000.	8.2	83

#	Article	IF	CITATIONS
37	Flexible Ultrasonic Patch for Accelerating Chronic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100785.	3.9	31
38	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
39	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	3.3	3
40	Flexible strain sensors: from devices to array integration. Flexible and Printed Electronics, 2021, 6, 043002.	1.5	4
41	Pangolinâ€Inspired Stretchable, Microwaveâ€Invisible Metascale. Advanced Materials, 2021, 33, e2102131.	11.1	40
42	Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosensors and Bioelectronics, 2021, 186, 113290.	5. 3	23
43	Delamination-Resistant Imperceptible Bioelectrode for Robust Electrophysiological Signals Monitoring., 2021, 3, 1385-1393.		21
44	A non-printed integrated-circuit textile for wireless theranostics. Nature Communications, 2021, 12, 4876.	5 . 8	76
45	An Intelligent Error Correction Algorithm for Elderly Care Robots. Applied Sciences (Switzerland), 2021, 11, 7316.	1.3	1
46	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
47	On the use of information fusion techniques to improve information quality: Taxonomy, opportunities and challenges. Information Fusion, 2022, 78, 102-137.	11.7	16
48	Crumpled MXene Electrodes for Ultrastretchable and High-Area-Capacitance Supercapacitors. Nano Letters, 2021, 21, 7561-7568.	4.5	50
49	A Bioinspired Stretchable Sensoryâ€Neuromorphic System. Advanced Materials, 2021, 33, e2104690.	11.1	67
50	Progress in the Triboelectric Human–Machine Interfaces (HMls)-Moving from Smart Gloves to Al/Haptic Enabled HMl in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	3. 6	59
51	Al enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nature Communications, 2021, 12, 5378.	5.8	208
52	Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Applied Physics Reviews, 2021, 8, .	5.5	31
53	Liquid Droplet Stamp Transfer Printing. Advanced Functional Materials, 2021, 31, 2105407.	7.8	14
54	Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. Npj Flexible Electronics, 2021, 5, .	5.1	38

#	Article	IF	Citations
55	A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869.	6.6	51
56	Modulating the percolation network of polymer nanocomposites for flexible sensors. Journal of Applied Physics, 2020, 128, 220901.	1.1	18
57	High Inclusiveness and Accuracy Motion Blur Real-Time Gesture Recognition Based on YOLOv4 Model Combined Attention Mechanism and DeblurGanv2. Applied Sciences (Switzerland), 2021, 11, 9982.	1.3	9
58	Skin-Inspired Hair–Epidermis–Dermis Hierarchical Structures for Electronic Skin Sensors with High Sensitivity over a Wide Linear Range. ACS Nano, 2021, 15, 16218-16227.	7.3	61
59	Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy, 2022, 91, 106650.	8.2	37
60	Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition. ACS Sensors, 2021, 6, 4156-4166.	4.0	26
61	Robotic Manipulation under Harsh Conditions Using Selfâ∈Healing Silkâ∈Based Iontronics. Advanced Science, 2021, 9, 2102596.	5.6	9
62	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. Advanced Materials, 2022, 34, e2106212.	11.1	19
63	A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Science Advances, 2021, 7, eabi4563.	4.7	136
64	An Intention Understanding Algorithm Based on Multimodal Information Fusion. Scientific Programming, 2021, 2021, 1-11.	0.5	1
65	Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. Microsystems and Nanoengineering, 2021, 7, 92.	3.4	30
66	A Personalized Acoustic Interface for Wearable Human–Machine Interaction. Advanced Functional Materials, 2022, 32, 2109430.	7.8	69
67	Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS Nano, 2021, 15, 18822-18847.	7.3	78
68	Bio-inspired robotics enabled schemes in blockchain-fog-cloud assisted IoMT environment. Journal of King Saud University - Computer and Information Sciences, 2023, 35, 1-12.	2.7	11
69	Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling. ACS Nano, 2021, 15, 20590-20599.	7.3	13
70	Flexible and Stretchable Memristive Arrays for in-Memory Computing. Frontiers in Nanotechnology, 2022, 3, .	2.4	3
71	Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. IScience, 2022, 25, 103728.	1.9	11
72	Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chemical Engineering Journal, 2022, 433, 134625.	6.6	84

#	ARTICLE	lF	Citations
73	Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	20
74	Automatic strain sensor design via active learning and data augmentation for soft machines. Nature Machine Intelligence, 2022, 4, 84-94.	8.3	37
75	A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nature Communications, 2022, 13, 79.	5.8	62
76	Flexible Strain Sensors for Wearable Hand Gesture Recognition: From Devices to Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	38
77	A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics. Advanced Materials, 2022, 34, e2101339.	11.1	35
78	Wearable Pressure Sensors for Pulse Wave Monitoring. Advanced Materials, 2022, 34, e2109357.	11.1	253
79	Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition. ACS Nano, 2022, 16, 2282-2291.	7.3	63
80	Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale, 2022, 14, 289-298.	2.8	43
81	Flexible Pyroresistive Graphene Composites for Artificial Thermosensation Differentiating Materials and Solvent Types. ACS Nano, 2022, 16, 1208-1219.	7.3	11
82	An ultra-low hysteresis, self-healing and stretchable conductor based on dynamic disulfide covalent adaptable networks. Journal of Materials Chemistry A, 2022, 10, 2012-2020.	5.2	28
83	A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film. Journal Physics D: Applied Physics, 2022, 55, 194004.	1.3	15
84	Intelligent and highly sensitive strain sensor based on indium tin oxide micromesh with a high crack density. Nanoscale, 2022, 14, 4234-4243.	2.8	6
85	An Artificial Reflex Arc That Perceives Afferent Visual and Tactile Information and Controls Efferent Muscular Actions. Research, 2022, 2022, 9851843.	2.8	30
86	Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. Small, 2022, 18, e2104810.	5.2	42
87	Noncontact human-machine interaction based on hand-responsive infrared structural color. Nature Communications, 2022, 13, 1446.	5.8	33
88	Recent Progress in Bioâ€Integrated Intelligent Sensing System. Advanced Intelligent Systems, 2022, 4, .	3.3	12
89	Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays. ACS Nano, 2022, 16, 6734-6743.	7.3	49
90	Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Science Advances, 2022, 8, eabm3785.	4.7	89

#	Article	IF	CITATIONS
91	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	3.3	146
92	Selfâ€Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Advanced Materials, 2022, 34, e2200793.	11.1	81
93	A Highly Stretchable and Permeable Liquid Metal Micromesh Conductor by Physical Deposition for Epidermal Electronics. ACS Applied Materials & Epidermal Electronics. ACS Applied Materials & Epidermal Electronics.	4.0	31
94	Highly Permeable and Ultrastretchable Liquid Metal Micromesh for Skin-Attachable Electronics. , 2022, 4, 634-641.		34
95	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	2.6	31
96	A Highly Conducting Polymer for Selfâ€Healable, Printable, and Stretchable Organic Electrochemical Transistor Arrays and Near Hysteresisâ€Free Soft Tactile Sensors. Advanced Materials, 2022, 34, e2200682.	11.1	63
97	Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Science Advances, 2022, 8, eabn2156.	4.7	62
98	An intrinsically stretchable aqueous Zn-MnO2 battery based on microcracked electrodes for self-powering wearable electronics. Energy Storage Materials, 2022, 47, 386-393.	9.5	15
99	Medical Surgical Video Recognition and Retrieval Based on Novel Unified Approximation. Journal of Medical Imaging and Health Informatics, 2021, 11, 2733-2746.	0.2	3
101	A Printable and Conductive Yield-Stress Fluid as an Ultrastretchable Transparent Conductor. Research, 2021, 2021, 9874939.	2.8	9
102	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	7.3	64
103	Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent lonic Skin Based on Hybrid Network lonogels. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2029-2037.	4.0	54
104	A Heterogeneously Integrated Spiking Neuron Array for Multimodeâ€Fused Perception and Object Classification. Advanced Materials, 2022, 34, e2200481.	11.1	48
105	Bioinspired Coâ€Design of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Advanced Intelligent Systems, 2022, 4, .	3.3	14
106	A Memristor-Based High-Resolution A/D Converter. Electronics (Switzerland), 2022, 11, 1470.	1.8	3
107	Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22497-22509.	4.0	11
108	Printable and Highly Stretchable Viscoelastic Conductors with Kinematically Reconstructed Conductive Pathways. Advanced Materials, 2022, 34, e2202418.	11.1	17
109	Graphene: Hexagonal Boron Nitride Composite Films with Low-Resistance for Flexible Electronics. Nanomaterials, 2022, 12, 1703.	1.9	7

#	Article	IF	CITATIONS
110	Noncontact Human–Machine Interface Using Complementary Information Fusion Based on MEMS and Triboelectric Sensors. Advanced Science, 2022, 9, e2201056.	5.6	36
111	Bioinspired soft electroreceptors for artificial precontact somatosensation. Science Advances, 2022, 8, .	4.7	56
112	Perceptionâ€toâ€Cognition Tactile Sensing Based on Artificialâ€Intelligenceâ€Motivated Human Fullâ€Skin Bionic Electronic Skin. Advanced Materials, 2022, 34, .	11.1	143
113	The Ultra-Wideband Communication System: A Human Gesture Recognition Approach. , 2021, , .		1
114	Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Materials Horizons, 2022, 9, 2053-2075.	6.4	16
115	Low-cost, Light-weight Scalable Soft Data Glove for VR Applications. , 2022, , .		5
116	Bioinspired tactile perception platform with information encryption function. Chinese Physics B, 2022, 31, 098506.	0.7	4
117	Selfâ€Powered Stretchable Sensor Arrays Exhibiting Magnetoelasticity for Realâ€Time Human–Machine Interaction. Advanced Materials, 2023, 35, .	11.1	17
118	Electromyogram-strain synergetic intelligent artificial throat. Chemical Engineering Journal, 2022, 449, 137741.	6.6	11
119	Tactile Nearâ€Sensor Analogue Computing for Ultrafast Responsive Artificial Skin. Advanced Materials, 2022, 34, .	11.1	42
120	Full-Fiber Auxetic-Interlaced Yarn Sensor for Sign-Language Translation Glove Assisted by Artificial Neural Network. Nano-Micro Letters, 2022, 14, .	14.4	28
121	A minireview on 2D materials-enabled optoelectronic artificial synaptic devices. APL Materials, 2022, 10, .	2.2	12
122	Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates. ACS Applied Materials & Distriction (2022), 14, 35997-36006.	4.0	17
123	Highly sensitive stretchable sensor combined with low-power memristor for demonstration of artificial mechanoreceptor properties. Flexible and Printed Electronics, 2022, 7, 035024.	1.5	1
124	A chemically mediated artificial neuron. Nature Electronics, 2022, 5, 586-595.	13.1	48
125	Robust triboelectric informationâ€mat enhanced by multiâ€modality deep learning for smart home. InformaÄnÃ-Materiály, 2023, 5, .	8.5	33
126	Sign annotation generation to alphabets via integrating visual data with somatosensory data from flexible strain sensor-based data glove. Measurement: Journal of the International Measurement Confederation, 2022, 202, 111700.	2.5	2
127	柔性å•ç©¿æ^̃伿"Ÿä¸Žæ™ºèƒ½è⁻†å^«æŠ€æœ⁻ç"究进展. Scientia Sinica Chimica, 2022, , .	0.2	0

#	ARTICLE	IF	CITATIONS
128	STMMI: A Self-Tuning Multi-Modal Fusion Algorithm Applied in Assist Robot Interaction. Scientific Programming, 2022, 2022, 1-10.	0.5	1
129	Low-power flexible organic memristor based on PEDOT:PSS/pentacene heterojunction for artificial synapse. Frontiers in Neuroscience, 0, 16, .	1.4	13
130	Freestanding and Scalable Forceâ€Softness Bimodal Sensor Arrays for Haptic Bodyâ€Feature Identification. Advanced Materials, 2022, 34, .	11.1	18
131	Mechano-Regulable and Healable Silk-Based Materials for Adaptive Applications. Biomacromolecules, 2022, 23, 4296-4307.	2.6	3
132	Hydro/Organo/Ionogels: "Controllable―Electromagnetic Wave Absorbers. Advanced Materials, 2022, 34, .	11.1	116
133	Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature Communications, 2022, 13, .	5 . 8	49
134	Bioinspired dual-channel speech recognition using graphene-based electromyographic and mechanical sensors. Cell Reports Physical Science, 2022, 3, 101075.	2.8	10
135	Ultralight Smart Patch with Reduced Sensing Array Based on Reduced Graphene Oxide for Hand Gesture Recognition. Advanced Intelligent Systems, 2022, 4, .	3.3	6
136	Multimodal Sensors and MLâ€Based Data Fusion for Advanced Robots. Advanced Intelligent Systems, 2022, 4, .	3.3	16
137	Advances in Bioinspired Triboelectric Nanogenerators. Advanced Electronic Materials, 2022, 8, .	2.6	18
138	Hand Gestures Classification Using Electrical Impedance Tomography Images. IEEE Sensors Journal, 2022, 22, 18922-18932.	2.4	10
139	Hand Gesture Recognition With Flexible Capacitive Wristband Using Triplet Network in Inter-Day Applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2876-2885.	2.7	4
140	Bioinspired interactive neuromorphic devices. Materials Today, 2022, 60, 158-182.	8.3	55
141	Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nature Communications, 2022, 13, .	5.8	63
142	An optoelectronic synapse based on î±-ln2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nature Electronics, 2022, 5, 761-773.	13.1	127
143	Intrinsically Stretchable Microbattery with Ultrahigh Deformability for Self-Powering Wearable Electronics., 2022, 4, 2401-2408.		5
144	A facile and scalable patterning approach for ultrastretchable liquid metal features. Lab on A Chip, 2022, 22, 4933-4940.	3.1	5
145	Distributed Body Sensor Network System Based on Stretchable Conductive Wires and Wearable Sensors for Motion Detection. , 2022, , .		0

#	Article	IF	CITATIONS
146	A review: Machine learning for strain sensor-integrated soft robots. Frontiers in Electronic Materials, $0, 2, \ldots$	1.6	3
147	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	10.2	79
148	Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale, 2023, 15, 405-433.	2.8	16
149	Bioinspired Machineâ€Learningâ€Assisted Earlyâ€Fire Perception System Based on VO ₂ Optical Switch. Advanced Functional Materials, 2023, 33, .	7.8	3
150	Recent advances in wearable electromechanical sensorsâ€"Moving towards machine learning-assisted wearable sensing systems. Nano Energy, 2023, 105, 108041.	8.2	27
152	Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS Applied Materials & Samp; Interfaces, 2022, 14, 54157-54169.	4.0	8
153	Machine-Learning Assisted Handwriting Recognition Using Graphene Oxide-Based Hydrogel. ACS Applied Materials & Samp; Interfaces, 2022, 14, 54276-54286.	4.0	3
154	A Flexible Iontronic Capacitive Sensing Array for Hand Gesture Recognition Using Deep Convolutional Neural Networks. Soft Robotics, 2023, 10, 443-453.	4.6	4
155	Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nature Communications, 2022, 13, .	5.8	31
156	Air Permeable Vibrotactile Actuators for Wearable Wireless Haptics. Advanced Functional Materials, 2023, 33, .	7.8	8
157	Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Research, 2023, 16, 5480-5489.	5.8	6
158	Highly Conductive and Compliant Silver Nanowire Nanocomposites by Direct Spray Deposition. ACS Applied Materials & Direct Spray Deposition. ACS Applied Materials & Direct Spray Deposition. ACS	4.0	7
159	Highly Stretchable, Responsive Flexible Dualâ€Mode Magnetic Strain Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	21
160	A Hybrid Multimodal Fusion Framework for sEMG-ACC-Based Hand Gesture Recognition. IEEE Sensors Journal, 2023, 23, 2773-2782.	2.4	2
161	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25
162	A low-power and flexible bioinspired artificial sensory neuron capable of tactile perceptual and associative learning. Journal of Materials Chemistry B, 2023, 11, 1469-1477.	2.9	3
163	Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. ACS Nano, 2023, 17, 1355-1371.	7.3	35
164	Unsupervised multimodal domain adversarial network for time series classification. Information Sciences, 2023, 624, 147-164.	4.0	6

#	Article	IF	CITATIONS
165	A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nature Electronics, $0, \dots$	13.1	26
166	Switching-Jumps-Dependent Quasi-Synchronization Criteria for Fractional-Order Memrisive Neural Networks. Fractal and Fractional, 2023, 7, 12.	1.6	0
167	Visual–Olfactory Synergistic Perception Based on Dual-Focus Imaging and a Bionic Learning Architecture. ACS Sensors, 2023, 8, 71-79.	4.0	3
168	Anatomically Designed Triboelectric Wristbands with Adaptive Accelerated Learning for Human–Machine Interfaces. Advanced Science, 2023, 10, .	5.6	19
169	Multimodal Fusion Framework Based on Statistical Attention and Contrastive Attention for Sign Language Recognition. IEEE Transactions on Mobile Computing, 2023, , 1-13.	3.9	2
170	Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism, Configuration Design, and Perspective. ACS Applied Electronic Materials, 2023, 5, 593-611.	2.0	19
171	3D Printed Ionogels In Sensors. Polymer-Plastics Technology and Materials, 2023, 62, 632-654.	0.6	1
172	Bionic Mechanical Hand Integrated with Artificial Olfactory Sensor Array for Enhanced Object Recognition., 2023,,.		0
173	A Wearable Gesture Recognition System With Ultrahigh Accuracy and Robustness Enabled by the Synergy of Multiple Fabric Sensing Devices. IEEE Sensors Journal, 2023, 23, 10950-10958.	2.4	4
174	Triboelectric Nanogenerators for Interactive Neuromorphic Devices and Systems. , 2023, , 1-34.		0
175	Bioinspired MXeneâ€Based Piezoresistive Sensor with Twoâ€stage Enhancement for Motion Capture. Advanced Functional Materials, 2023, 33, .	7.8	34
176	A Single Electronic Tattoo for Multisensory Integration. Small Methods, 2023, 7, .	4.6	3
177	Opticalâ€Nanofiberâ€Enabled Gestureâ€Recognition Wristband for Human–Machine Interaction with the Assistance of Machine Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	3
178	An Artificial Motion and Tactile Receptor Constructed by Hyperelastic Double Physically Crossâ€Linked Silk Fibroin Ionoelastomer. Advanced Functional Materials, 2023, 33, .	7.8	6
179	Electron transport engineering of carbon hybrid network towards physiological signal monitoring and efficient heat management. Chemical Engineering Journal, 2023, 465, 142734.	6.6	3
180	Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites. Nano Research, 2023, 16, 10412-10419.	5.8	2
181	Face touch monitoring using an instrumented wristband using dynamic time warping and k-nearest neighbours. PLoS ONE, 2023, 18, e0281778.	1.1	3
182	Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Letters, 2023, 15, .	14.4	21

#	Article	IF	Citations
183	Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms. Advanced Science, 2023, 10, .	5.6	13
184	Ultrastretchable MXene Microsupercapacitors. Small, 2023, 19, .	5.2	14
185	A Strain-Sensitive Flexible MoTe ₂ -Based Memristor for Gesture Recognition. IEEE Electron Device Letters, 2023, 44, 622-625.	2.2	3
186	A Pathway into Metaverse: Gesture Recognition Enabled by Wearable Resistive Sensors. , 2023, 2, .		7
187	Ultrastretchable and Compact Zn-MnO ₂ Rechargeable Battery., 2023, 5, 955-961.		7
188	A Multimodal Sensing CMOS Imager Based on Dualâ€Focus Imaging. Advanced Science, 2023, 10, .	5.6	4
189	Soft Robotic Perception System with Ultrasonic Auto-Positioning and Multimodal Sensory Intelligence. ACS Nano, 2023, 17, 4985-4998.	7.3	25
190	Lanternâ€Inspired Onâ€Skin Helical Interconnects for Epidermal Electronic Sensors. Advanced Functional Materials, 2023, 33, .	7.8	5
191	Highly stretchable ionotronic pressure sensors with broad response range enabled by microstructured ionogel electrodes. Journal of Materials Chemistry A, 2023, 11, 7201-7212.	5.2	10
192	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
193	Novel Sulfurâ€Containing Carbon Nanotubes with Graphene Nanoflaps for Stretchable Sensing, Joule Heating, and Electroâ€Thermal Actuating. Advanced Functional Materials, 2023, 33, .	7.8	11
194	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
195	A Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps. Engineering, 2023, , .	3.2	2
196	Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human–Machine Interaction. Biosensors, 2023, 13, 393.	2.3	8
197	Programming 3D curved mesosurfaces using microlattice designs. Science, 2023, 379, 1225-1232.	6.0	42
198	Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InformaÄnÄ-MateriÄįly, 2023, 5, .	8.5	20
199	Thermal image-based hand gesture recognition for worker-robot collaboration in the construction industry: A feasible study. Advanced Engineering Informatics, 2023, 56, 101939.	4.0	10
200	Conductive chromotropic fiber filament sensors with ultrahigh stretchability for wearable sensing textiles toward 3D optical motion capture. Journal of Materials Chemistry A, 2023, 11, 9597-9607.	5.2	6

#	Article	IF	CITATIONS
201	Recent Advances in Artificial Intelligence Sensors. , 2023, 2, .		14
202	Selfâ€Powered Integrated Sensing System with Inâ€Plane Microâ€Supercapacitors for Wearable Electronics. Small, 2023, 19, .	5.2	8
203	Trimodality Fusion for Soft Gripper's Grasping Prediction. , 2022, , .		0
204	Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS Applied Materials & English & Engl	4.0	5
208	Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano, 2023, 17, 9661-9672.	7.3	9
212	Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nature Reviews Materials, 2023, 8, 552-561.	23.3	10
219	Online Surveying System for Experimentally Testing the Human Perception of Visual Gestures. , 2023, , .		0
223	Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Research, 2024, 17, 445-461.	5 . 8	3
228	Triboelectric Nanogenerators for Interactive Neuromorphic Devices and Systems., 2023, , 1843-1876.		0
231	CMOS-PCM Based Artificial Thermosensory Neuron for Bio-Inspired Sensing. , 2023, , .		0
232	Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. Nanoscale Horizons, 2023, 8, 1301-1312.	4.1	1
238	Integrated devices that can recognize hand gestures. Nature Electronics, 2023, 6, 555-556.	13.1	O
242	Agile gesture recognition for capacitive sensing devices: adapting on-the-job., 2023,,.		0
248	Sensing–Storage–Computing Integrated Devices Based on Carbon Nanomaterials. , 2023, , 555-568.		0
253	Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Letters, 2024, 16 , .	14.4	5
264	Practices of machine learning in classification of nanomaterial. AIP Conference Proceedings, 2023, , .	0.3	O
269	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4
282	Human Activity Recognition of Millimeter-wave Radar Based on DRCNet. , 2023, , .		0

o

ARTICLE IF CITATIONS

Fusion of Sensory and Motor Performance Toward a Sophisticated Prosthetic Hand., 2023, , .