Materials design for bone-tissue engineering

Nature Reviews Materials 5, 584-603 DOI: 10.1038/s41578-020-0204-2

Citation Report

#	Article	IF	CITATIONS
1	Micro-Architectural Investigation of Teleost Fish Rib Inducing Pliant Mechanical Property. Materials, 2020, 13, 5099.	1.3	5
2	Electrochemically Enabled Embedded Three-Dimensional Printing of Freestanding Gallium Wire-like Structures. ACS Applied Materials & Interfaces, 2020, 12, 53966-53972.	4.0	30
3	Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules, 2020, 25, 4802.	1.7	12
4	Machine Learning-Guided Three-Dimensional Printing of Tissue Engineering Scaffolds. Tissue Engineering - Part A, 2020, 26, 1359-1368.	1.6	52
5	Strategies for Using Polydopamine to Induce Biomineralization of Hydroxyapatite on Implant Materials for Bone Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 6544.	1.8	43
6	Extreme biomineralization: the case of the hypermineralized ear bone of gray whale (Eschrichtius) Tj ETQq1 1 0	.784314 rg	gBT /Overlock
7	Composite Fiber Networks Based on Polycaprolactone and Bioactive Glass-Ceramics for Tissue Engineering Applications. Polymers, 2020, 12, 1806.	2.0	15
8	Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virtual and Physical Prototyping, 2020, 15, 417-444.	5.3	21
9	Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes. Polymers, 2020, 12, 2944.	2.0	23
10	Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Engineering - Part B: Reviews, 2021, 27, 539-547.	2.5	50
11	Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. Journal of Cellular Physiology, 2021, 236, 3275-3303.	2.0	20
12	Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108733.	2.5	11
13	Honeycomb Scaffolds Fabricated Using Extrusion Molding and the Sphere-Packing Theory for Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 721-730.	2.3	22
14	Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573.	2.6	17
15	In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds. Acta Biomaterialia, 2021, 121, 724-740.	4.1	28
16	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	3.9	50
17	Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials, 2021, 14, 235.	1.3	33
18	Combining Sclerostin Neutralization with Tissue Engineering: ÂAn Improved Strategy for Craniofacial Bone Repair. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
19	Chitosan and Its Potential Use for the Delivery of Bioactive Molecules in Bone Tissue Engineering. Advances in Polymer Science, 2021, , 117-162.	0.4	0
20	Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds. Gels Horizons: From Science To Smart Materials, 2021, , 261-296.	0.3	0
21	Anionic diketopiperazine induces osteogenic differentiation and supports osteogenesis in a 3D cryogel microenvironment. Chemical Communications, 2021, 57, 7422-7425.	2.2	3
22	Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. Journal of Materials Chemistry B, 2021, 9, 5025-5038.	2.9	25
23	Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7, .	4.7	48
24	Fabrication of Nanostructured Scaffolds for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2021, , 317-334.	0.7	1
25	Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. Journal of Materials Chemistry B, 2021, 9, 1277-1287.	2.9	33
26	3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-11± and TNF-1± pathway of hUVECs. Biomaterials Science, 2021, 9, 5519-5532.	2.6	43
27	Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. Journal of Materials Chemistry B, 2021, 9, 6881-6894.	2.9	25
28	Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano, 2021, 15, 175-209.	7.3	119
29	Effect of 3D Printing Temperature on Bioactivity of Bone Morphogenetic Protein-2 Released from Polymeric Constructs. Annals of Biomedical Engineering, 2021, 49, 2114-2125.	1.3	5
30	Review of zirconia-based biomimetic scaffolds for bone tissue engineering. Journal of Materials Science, 2021, 56, 8309-8333.	1.7	19
31	Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals, 2021, 11, 149.	1.0	113
32	Emerging strategies in reprogramming and enhancing the fate of mesenchymal stem cells for bone and cartilage tissue engineering. Journal of Controlled Release, 2021, 330, 565-574.	4.8	20
33	Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Science Advances, 2021, 7, .	4.7	69
34	Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials, 2021, 11, 789.	1.9	29
35	Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. Crystals, 2021, 11, 353.	1.0	37
36	Osteoinductive 3D printed scaffold healed 5Âcm segmental bone defects in the ovine metatarsus. Scientific Reports, 2021, 11, 6704.	1.6	16

#	Article	IF	CITATIONS
37	Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Computers in Biology and Medicine, 2021, 130, 104241.	3.9	48
38	Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. European Polymer Journal, 2021, 147, 110335.	2.6	10
39	Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers, 2021, 13, 1095.	2.0	50
40	Hydroxyapatite Nanoparticles Facilitate Osteoblast Differentiation and Bone Formation Within Sagittal Suture During Expansion in Rats. Drug Design, Development and Therapy, 2021, Volume 15, 905-917.	2.0	26
41	Development of methods for detecting the fate of mesenchymal stem cells regulated by bone bioactive materials. Bioactive Materials, 2021, 6, 613-626.	8.6	6
42	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2010609.	7.8	370
43	Bioactive Sr ²⁺ /Fe ³⁺ co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication, 2021, 13, 035007.	3.7	25
44	Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering C, 2021, 123, 111853.	3.8	28
46	Mesoporous silica nanoparticles, methods of preparation and use of bone tissue engineering. International Journal of Life Sciences and Biotechnology, 2021, 4, 507-522.	0.2	2
47	Haversian bone-mimicking bioceramic scaffolds enhancing MSC-macrophage osteo-imunomodulation. Progress in Natural Science: Materials International, 2021, 31, 883-890.	1.8	5
48	Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Frontiers in Oncology, 2021, 11, 672490.	1.3	24
49	Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100158.	3.9	27
50	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	3.9	66
51	MicroRNAâ€181a/bâ€1â€encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2021, 25, 5744-5752.	1.6	13
52	Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction. Chemical Engineering Journal, 2021, 411, 128541.	6.6	37
53	Multifunctional modified polylactic acid nanofibrous scaffold incorporating sodium alginate microspheres decorated with strontium and black phosphorus for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1598-1617.	1.9	12
54	Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules, 2021, 26, 2846.	1.7	29
55	Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual and Physical Prototyping, 2021, 16, 291-305.	5.3	7

#	Article	IF	Citations
56	3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. Small Science, 2021, 1, 2100003.	5.8	59
57	Facet Selectivity Guided Assembly of Nanoarchitectures onto Twoâ€Dimensional Metal–Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 17705-17710.	1.6	5
58	Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- <i>g</i> -NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules, 2021, 22, 3069-3083.	2.6	10
59	Design and research of bone repair scaffold based on two-way fluid-structure interaction. Computer Methods and Programs in Biomedicine, 2021, 204, 106055.	2.6	18
60	Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. Materials Science and Engineering C, 2021, 125, 112108.	3.8	16
61	Fracture Healing Research—Shift towards In Vitro Modeling?. Biomedicines, 2021, 9, 748.	1.4	16
62	Facet Selectivity Guided Assembly of Nanoarchitectures onto Twoâ€Dimensional Metal–Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 17564-17569.	7.2	23
63	3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry, 2021, 20, 100459.	1.7	58
64	Solution combustion synthesis of functional diopside, akermanite, and merwinite bioceramics: Excellent biomineralization, mechanical strength, and antibacterial ability. Materials Today Communications, 2021, 27, 102365.	0.9	15
65	Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds. Materials and Design, 2021, 204, 109686.	3.3	25
66	Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomaterialia, 2021, 127, 56-79.	4.1	131
67	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. IScience, 2021, 24, 102789.	1.9	3
68	Construction of the Gypsum-Coated Scaffolds for In Situ Bone Regeneration. ACS Applied Materials & amp; Interfaces, 2021, 13, 31527-31541.	4.0	9
69	Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Materials Today, 2021, 46, 136-154.	8.3	53
70	A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	71
71	Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules, 2021, 22, 3237-3250.	2.6	23
72	Biofabrication of Cell-Laden Gelatin Methacryloyl Hydrogels with Incorporation of Silanized Hydroxyapatite by Visible Light Projection. Polymers, 2021, 13, 2354.	2.0	10
73	Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. Materials Science and Engineering C, 2021, 126, 112192.	3.8	42

#	Article	IF	CITATIONS
74	Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines, 2021, 9, 916.	1.4	14
75	Advances in 3D-Printed Surface-Modified Ca-Si Bioceramic Structures and Their Potential for Bone Tumor Therapy. Materials, 2021, 14, 3844.	1.3	5
76	Nanoclay mineral-reinforced macroporous nanocomposite scaffolds for in situ bone regeneration: In vitro and in vivo studies. Materials and Design, 2021, 205, 109734.	3.3	31
77	In Vitro and In Vivo Characterization of PLLA-316L Stainless Steel Electromechanical Devices for Bone Tissue Engineering—A Preliminary Study. International Journal of Molecular Sciences, 2021, 22, 7655.	1.8	11
78	Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. Journal of Nanobiotechnology, 2021, 19, 207.	4.2	41
79	Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Scientific Reports, 2021, 11, 13877.	1.6	52
80	3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 2021, 274, 120871.	5.7	40
81	Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core / chitosan shell nanounits. Biomaterials, 2021, 274, 120857.	5.7	18
82	Transformation of acellular dermis matrix with dicalcium phosphate into 3D porous scaffold for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2071-2087.	1.9	8
83	Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. Chemical Papers, 2021, 75, 5971-5981.	1.0	6
84	Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 633-664.	2.5	44
85	Coâ€Axial Gyroâ€Spinning of PCL/PVA/HA Coreâ€Sheath Fibrous Scaffolds for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100177.	2.1	18
86	Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 2021, 134, 774-790.	4.1	20
87	The future of bone regeneration: integrating Al into tissue engineering. Biomedical Physics and Engineering Express, 2021, 7, 052002.	0.6	26
88	Biopolymers/Ceramic-Based Nanocomposite Scaffolds for Drug Delivery in Bone Tissue Engineering. Advances in Material Research and Technology, 2022, , 337-376.	0.3	0
89	Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. Materials, 2021, 14, 4224.	1.3	24
90	Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 2021, 31, 2105190.	7.8	59
91	Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomaterialia, 2021, 135, 304-317.	4.1	12

#	Article	IF	CITATIONS
92	Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds. Acta Biomaterialia, 2021, 135, 705-722.	4.1	27
93	Development of poly(ƕpolycaprolactone)/hydroxyapatite composites for bone tissue regeneration. Journal of Materials Research, 2021, 36, 3050-3062.	1.2	6
94	Surface Epitaxial Nano-Topography Facilitates Biomineralization to Promote Osteogenic Differentiation and Osteogenesis. ACS Omega, 2021, 6, 21792-21800.	1.6	4
95	Preparation and performance of poly (vinyl alcohol)/polylactic acid/hydroxyapatite composite scaffolds based on 3D printing. Journal of Applied Polymer Science, 2022, 139, 51534.	1.3	7
96	Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomedical Physics and Engineering Express, 2021, 7, 062001.	0.6	10
97	3D printed PCL/ \hat{l}^2 -TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. Materials Science and Engineering C, 2021, 127, 112197.	3.8	27
98	A Multidisciplinary Journey towards Bone Tissue Engineering. Materials, 2021, 14, 4896.	1.3	19
99	In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. International Journal of Molecular Sciences, 2021, 22, 9335.	1.8	17
100	New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Annals of Biomedical Engineering, 2021, 49, 2006-2029.	1.3	12
101	Biodegradable macromers for implant bulk and surface engineering. Biological Chemistry, 2021, 402, 1357-1374.	1.2	2
102	Editorial: Hybrids Part A: Hybrids for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 746641.	2.0	0
103	Biomimetic immunomodulation strategies for effective tissue repair and restoration. Advanced Drug Delivery Reviews, 2021, 179, 113913.	6.6	37
104	A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. European Polymer Journal, 2021, 160, 110773.	2.6	31
105	Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catalysis, 2021, 1, 941-955.	2.9	73
106	Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomedical Materials (Bristol), 2021, 16, 062002.	1.7	32
107	Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials, 2021, 14, 5338.	1.3	32
108	Nanoscale materials-based platforms for the treatment of bone-related diseases. Matter, 2021, 4, 2727-2764.	5.0	51
109	Bioinspired Redwoodâ€Like Scaffolds Coordinated by In Situâ€Generated Silicaâ€Containing Hybrid Nanocoatings Promote Angiogenesis and Osteogenesis both In Vitro and In Vivo. Advanced Healthcare Materials, 2021, 10, e2101591.	3.9	19

#	Article	IF	CITATIONS
110	Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioactive Materials, 2022, 11, 240-253.	8.6	37
111	Histomorphometric Evaluation of Bone-Guided Regeneration in Maxillary Sinus Floor Augmentation Using Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite Biomaterial: A Case Report. International Medical Case Reports Journal, 2021, Volume 14, 697-706.	0.3	1
112	Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. International Journal of Molecular Sciences, 2021, 22, 10233.	1.8	52
113	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	4.1	61
114	Rapid Fabrication of MgNH4PO4·H2O/SrHPO4 Porous Composite Scaffolds with Improved Radiopacity via 3D Printing Process. Biomedicines, 2021, 9, 1138.	1.4	4
115	Manufacturing of Human Tissues as offâ€theâ€Shelf Grafts Programmed to Induce Regeneration. Advanced Materials, 2021, 33, e2103737.	11.1	27
116	3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustainable Materials and Technologies, 2021, 29, e00318.	1.7	26
117	Tuning the 3D Printability and Thermomechanical Properties of Radiation Shields. Polymers, 2021, 13, 3284.	2.0	8
118	Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. Journal of Controlled Release, 2021, 338, 486-504.	4.8	17
119	Fabrication of strontium and simvastatin loaded hydroxyapatite microspheres by one-step approach. Materials Letters, 2021, 300, 130234.	1.3	8
120	Bisphosphonate-functionalized poly(amido amine) crosslinked 2-hydroxyethyl methacrylate hydrogel as tissue engineering scaffold. European Polymer Journal, 2021, 159, 110732.	2.6	2
121	Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydrate Polymers, 2021, 271, 118427.	5.1	49
122	In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration. Chemical Engineering Journal, 2021, 424, 130432.	6.6	13
123	Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 2021, 6, 3904-3923.	8.6	94
124	Implantable blood clot loaded with BMP-2 for regulation of osteoimmunology and enhancement of bone repair. Bioactive Materials, 2021, 6, 4014-4026.	8.6	29
125	Effect of poly(ε-caprolactone) microfibers in poly(lactide-co-glycolide) based bone fixation plate on preventing dimensional shrinkage and promoting cell interactions. Composites Science and Technology, 2021, 216, 109051.	3.8	5
126	Immobilization of bioactive glass ceramics @ 2D and 3D polyamide polymer substrates for bone tissue regeneration. Materials and Design, 2021, 210, 110094.	3.3	10
127	Well ordered-microstructure bioceramics. Applied Materials Today, 2021, 25, 101194.	2.3	6

#	Article	IF	CITATIONS
128	Nanosized HCA-coated borate bioactive glass with improved wound healing effects on rodent model. Chemical Engineering Journal, 2021, 426, 130299.	6.6	24
129	Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells. Journal of Drug Delivery Science and Technology, 2021, 66, 102796.	1.4	10
130	Research progress on double-network hydrogels. Materials Today Communications, 2021, 29, 102757.	0.9	51
131	Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioactive Materials, 2021, 6, 4830-4855.	8.6	139
132	Regenerative Approaches in Orthodontic and Orthopedic Treatment. , 2021, , 151-170.		0
133	Metal-organic framework (MOF)-based biomaterials in bone tissue engineering. Engineered Regeneration, 2021, 2, 105-108.	3.0	24
134	A Review on Biodegradable Polymeric Materials for Bone Tissue Engineering (BTE) Applications. , 2021, ,		0
136	Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. International Journal of Molecular Sciences, 2021, 22, 192.	1.8	26
137	Cellular fluidic-based vascular networks for tissue engineering. Engineered Regeneration, 2021, 2, 171-174.	3.0	21
138	Biocomposites Containing Silver Nanoparticles for Biomedical Applications. Journal of Cluster Science, 2022, 33, 2383-2392.	1.7	0
139	Machine Learningâ€Ðriven Biomaterials Evolution. Advanced Materials, 2022, 34, e2102703.	11.1	68
140	Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold. Clinical Oral Investigations, 2022, 26, 2607-2618.	1.4	3
141	The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics, 2021, 13, 1602.	2.0	13
142	Dopamine-Mediated Biomineralization of Calcium Phosphate as a Strategy to Facilely Synthesize Functionalized Hybrids. Journal of Physical Chemistry Letters, 2021, 12, 10235-10241.	2.1	15
143	Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 532-549.	1.9	6
144	3D Printing Scaffold Vaccine for Antitumor Immunity. Advanced Materials, 2021, 33, e2106768.	11.1	31
145	Improving the Mechanical Properties of Additively Manufactured Micro-Architected Biodegradable Metals. Jom, 2021, 73, 4188-4198.	0.9	6
146	Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract. Materials, 2021, 14, 6000.	1.3	15

#	Article	IF	CITATIONS
147	Polydopamine modified polycaprolactone powder for fabrication bone scaffold owing intrinsic bioactivity. Journal of Materials Research and Technology, 2021, 15, 3375-3385.	2.6	23
149	An ossifying landscape: materials and growth factor strategies for osteogenic signalling and bone regeneration. Current Opinion in Biotechnology, 2022, 73, 355-363.	3.3	6
150	Cryogenically 3D printed biomimetic scaffolds containing decellularized small intestinal submucosa and Sr2+/Fe3+ co-substituted hydroxyapatite for bone tissue engineering. Chemical Engineering Journal, 2022, 431, 133459.	6.6	20
151	Bone tissue engineering. , 2022, , 587-644.		2
152	Biomaterials by design: Harnessing data for future development. Materials Today Bio, 2021, 12, 100165.	2.6	13
153	Biomimetic three-layered membranes comprising (poly)-Îμ-caprolactone, collagen and mineralized collagen for guided bone regeneration. International Journal of Energy Production and Management, 2021, 8, rbab065.	1.9	11
155	A Hierarchical‧tructured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2102236.	3.9	29
156	Characterization and in vitro assessment of three-dimensional extrusion Mg-Sr codoped SiO2-complexed porous microhydroxyapatite whisker scaffolds for biomedical engineering. BioMedical Engineering OnLine, 2021, 20, 116.	1.3	6
157	Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds. Research, 2021, 2021, 9892689.	2.8	12
158	Osteogenic Property Regulation of Stem Cells by a Hydroxyapatite 3D-Hybrid Scaffold With Cancellous Bone Structure. Frontiers in Chemistry, 2021, 9, 798299.	1.8	6
159	Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering. Pharmaceuticals, 2021, 14, 1163.	1.7	32
160	Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules, 2021, 26, 7043.	1.7	50
161	Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 2021, 12, 6599.	5.8	64
162	3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. International Journal of Molecular Sciences, 2021, 22, 12420.	1.8	18
163	Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(I-lactic acid)/Cyclo Olefin Copolymer. Polymers, 2021, 13, 3865.	2.0	4
164	A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials, 2022, 14, 302-312.	8.6	12
165	Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair. Nano-Micro Letters, 2022, 14, 4.	14.4	56
166	Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Communications, 2022, 13, 160.	5.8	66

#	Article	IF	Citations
167	<i>In situ</i> mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomaterials Science, 2022, 10, 781-793.	2.6	7
168	Biofunctional phosphorylated magnetic scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112284.	2.5	23
169	Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials, 2022, 17, 81-108.	8.6	30
170	Potassium Titanate Assembled Titanium Dioxide Nanotube Arrays Endow Titanium Implants Excellent Osseointegration Performance and Nerve Formation Potential. Frontiers in Chemistry, 2022, 10, 839093.	1.8	0
171	Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction. International Journal of Biological Macromolecules, 2022, 195, 558-564.	3.6	13
172	Thermal response of multi-layer UV crosslinked PEGDA hydrogels. Polymer Degradation and Stability, 2022, 195, 109805.	2.7	7
173	Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers, 2022, 14, 566.	2.0	97
174	Monitoring the distribution of internalized silica nanoparticles inside cells via direct stochastic optical reconstruction microscopy. Journal of Colloid and Interface Science, 2022, 615, 248-255.	5.0	2
175	Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Advanced Science, 2022, 9, e2105194.	5.6	31
176	3D Printing in Bone Tissue Engineering. Advances in Medical Education, Research, and Ethics, 2022, , 245-264.	0.1	0
177	Tomographic Volumetric Bioprinting of Heterocellular Bone-Like Tissues in Seconds. SSRN Electronic Journal, O, , .	0.4	1
178	Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair. ACS Nano, 2022, 16, 2741-2755.	7.3	21
179	Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification. Materials Science and Engineering C, 2022, 135, 112686.	3.8	20
180	Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals, 2022, 15, 171.	1.7	37
182	Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Advanced Engineering Materials, 2022, 24, .	1.6	17
183	Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers, 2022, 14, 445.	2.0	20
184	Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr ²⁺ /Fe ³⁺ co-doped hydroxyapatite accelerate angiogenesis/osteogenesis for bone regeneration. Biomedical Materials (Bristol), 2022, 17, 025008.	1.7	8
185	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	8.6	64

#	Article	IF	CITATIONS
186	Optimizing Barium Titanate Nanocomposite Bone Scaffolds for Biomineralization in Dynamic Compression Bioreactors Using Time-Lapsed Microstructural Imaging and Smart Thresholding. Frontiers in Materials, 2022, 8, .	1.2	5
187	Radially Porous Nanocomposite Scaffolds with Enhanced Capability for Guiding Bone Regeneration In Vivo. Advanced Functional Materials, 2022, 32, .	7.8	36
188	Applications of plant-based nanoparticles in nanomedicine: A review. Sustainable Chemistry and Pharmacy, 2022, 25, 100606.	1.6	55
189	Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydrate Polymers, 2022, 283, 119142.	5.1	55
190	Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomaterialia, 2022, 140, 178-189.	4.1	7
191	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, .	5.4	156
192	No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration. ACS Infectious Diseases, 2022, 8, 159-169.	1.8	13
193	Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 2021, 13, 42.	3.6	54
194	Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Applied Physics Reviews, 2021, 8, 041415.	5.5	28
195	Biomimetic Electrohydrodynamic Jet Printing of 3d Composite Structure with High Integrity. SSRN Electronic Journal, 0, , .	0.4	0
196	Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomaterials Science, 2022, 10, 2789-2816.	2.6	44
197	Morphological Evaluation of PLA/Soybean Oil Epoxidized Acrylate Three-Dimensional Scaffold in Bone Tissue Engineering. Journal of Renewable Materials, 2022, 10, 1-18.	1.1	2
198	3D Printing for Craniofacial Bone Regeneration. , 2022, , 311-335.		0
199	Construction of a drug-containing microenvironment for <i>in situ</i> bone regeneration. Materials Advances, 2022, 3, 4295-4309.	2.6	1
200	Calcium Silicate Nanowires-Containing Multicellular Bioinks for 3d Bioprinting of Neural-Bone Constructs. SSRN Electronic Journal, 0, , .	0.4	0
201	Clinically relevant preclinical animal models for testing novel cranioâ€maxillofacial bone 3Dâ€printed biomaterials. Clinical and Translational Medicine, 2022, 12, e690.	1.7	15
202	Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior. Polymers, 2022, 14, 753.	2.0	4
203	Novel mid-temperature Y3+ → In3+ doped proton conductors based on the layered perovskite BaLaInO4. Ceramics International, 2022, 48, 15677-15685.	2.3	17

#	ARTICLE	IF	CITATIONS
204	3D Printed Poly(?-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. International Journal of Molecular Sciences, 2022, 23, 2318.	1.8	12
205	3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption. Materials, 2022, 15, 1433.	1.3	15
206	Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomedical Materials (Bristol), 2022, 17, 022006.	1.7	3
207	Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials, 2022, 12, 757.	1.9	31
208	The Effect of Cerastoderma lamarcki and Rice Bran Extract on Wharton's Jelly-Derived Mesenchymal Stem Cells Differentiation. , 0, , .		0
209	Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. Journal of Materials Science: Materials in Medicine, 2022, 33, 31.	1.7	20
210	Autologous versus synthetic bone grafts for the surgical management of tibial plateau fractures: a systematic review and meta-analysis of randomized controlled trials. Bone & Joint Open, 2022, 3, 218-228.	1.1	3
211	Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2102807.	3.9	11
212	The hopes and hypes of plant and bacteria-derived cellulose application in stem cell technology. Cellulose, 2022, 29, 3035-3058.	2.4	4
213	Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics, 2022, 14, 770.	2.0	26
214	Bone: An Outstanding Composite Material. Applied Sciences (Switzerland), 2022, 12, 3381.	1.3	14
215	Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2022, 23, 3895.	1.8	9
216	Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Bio-Design and Manufacturing, 2022, 5, 556-579.	3.9	12
217	In vitro evaluation of porous poly(hydroxybutyrate-co-hydroxyvalerate)/akermanite composite scaffolds manufactured using selective laser sintering. , 2022, 135, 212748.		6
218	Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection. Polymer Journal, 2022, 54, 793-801.	1.3	11
219	Nanoparticleâ€Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Advanced Healthcare Materials, 2022, 11, e2102810.	3.9	12
220	Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1469-1493.	1.9	4
221	Multiscale porous scaffolds constructed of carbonate apatite honeycomb granules for bone regeneration. Materials and Design, 2022, 215, 110468.	3.3	18

#	Article	IF	CITATIONS
222	Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. Trends in Chemistry, 2022, 4, 420-436.	4.4	33
223	Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis. Materials Today Bio, 2022, 14, 100247.	2.6	12
225	Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features. 3D Printing and Additive Manufacturing, 2024, 11, 132-142.	1.4	4
226	Exosome-Laden Hydrogels: A Novel Cell-free Strategy for In-situ Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 866208.	2.0	22
227	Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Frontiers in Cell and Developmental Biology, 2022, 10, 745372.	1.8	1
228	Demonstrating the Potential of Using Bio-Based Sustainable Polyester Blends for Bone Tissue Engineering Applications. Bioengineering, 2022, 9, 163.	1.6	5
229	On the design evolution of hip implants: A review. Materials and Design, 2022, 216, 110552.	3.3	60
230	Icariin self-crosslinked network functionalized strontium-doped bioceramic scaffolds synergistically enhanced the healing of osteoporotic bone defects. Composites Part B: Engineering, 2022, 235, 109759.	5.9	12
231	Effects of integrated bioceramic and uniaxial drawing on mechanically-enhanced fibrogenesis for bionic periosteum engineering. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112459.	2.5	8
232	2D structured graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanoparticles for differentiation of mouse cells. Journal of Alloys and Compounds, 2022, 906, 164300.	2.8	6
233	Reinforcing the function of bone graft via the Ca-P ceramics dynamic behavior-enhanced osteogenic microenvironment for optimal bone regeneration and reconstruction. Applied Materials Today, 2022, 27, 101465.	2.3	1
234	Large-sized bone defect repair by combining a decalcified bone matrix framework and bone regeneration units based on photo-crosslinkable osteogenic microgels. Bioactive Materials, 2022, 14, 97-109.	8.6	30
235	3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioactive Materials, 2022, 16, 218-231.	8.6	29
236	Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioactive Materials, 2022, 18, 267-283.	8.6	34
237	Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. Journal of Advanced Research, 2022, 40, 69-94.	4.4	32
238	3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. International Journal of Nanomedicine, 2021, Volume 16, 8417-8432.	3.3	29
239	Pectin-Based Scaffolds for Tissue Engineering Applications. , 0, , .		4
240	Incorporation of Zinc into Binary SiO2-CaO Mesoporous Bioactive Glass Nanoparticles Enhances Anti-Inflammatory and Osteogenic Activities. Pharmaceutics, 2021, 13, 2124.	2.0	16

#	Article	IF	CITATIONS
241	Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. Micromachines, 2022, 13, 71.	1.4	14
242	Enantioselective Interaction between Cells and Chiral Hydroxyapatite Films. Chemistry of Materials, 2022, 34, 53-62.	3.2	12
243	3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Materials Science and Engineering C, 2022, 133, 112618.	3.8	30
244	Silicon Nitride, a Bioceramic for Bone Tissue Engineering: A Reinforced Cryogel System With Antibiofilm and Osteogenic Effects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794586.	2.0	14
245	Reshapable Osteogenic Biomaterials Combining Flexible Melt Electrowritten Organic Fibers with Inorganic Bioceramics. Nano Letters, 2022, 22, 3583-3590.	4.5	5
246	A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect. Journal of Biomaterials Applications, 2022, 37, 344-354.	1.2	2
247	Development and evaluation of bioactive 3D zein and zein/nano-hydroxyapatite scaffolds for bone tissue engineering application. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, , 095441192210907.	1.0	2
248	Personalized 3D printed bone scaffolds: A review. Acta Biomaterialia, 2023, 156, 110-124.	4.1	57
249	Customized reconstruction of alveolar cleft by high mechanically stable bioactive ceramic scaffolds fabricated by digital light processing. Materials and Design, 2022, 218, 110659.	3.3	6
250	Viscoelastic Biomaterials for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 289-300.	1.1	19
251	Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1704-1758.	1.9	10
252	Chemotactic ion-releasing hydrogel for synergistic antibacterial and bone regeneration. Materials Today Chemistry, 2022, 24, 100894.	1.7	12
253	Spatial confinement toward creating artificial living systems. Chemical Society Reviews, 2022, 51, 4075-4093.	18.7	16
254	Preparation and characterization of photocurable composite extracellular matrix-methacrylated hyaluronic acid bioink. Journal of Materials Chemistry B, 2022, 10, 4242-4253.	2.9	16
255	Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate. Nanotechnology Reviews, 2022, 11, 1901-1910.	2.6	24
256	Bone regeneration in rat using polycaprolactone/gelatin/epinephrine scaffold. Drug Development and Industrial Pharmacy, 2021, 47, 1915-1923.	0.9	3
257	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022, 12, 6960.	1.6	9
258	Bambooâ€Based Biomaterials for Cell Transportation and Bone Integration. Advanced Healthcare Materials, 2022, 11, e2200287.	3.9	8

ARTICLE IF CITATIONS # A Laser Technology for Producing Conductive Film and Bulk Composites Based on Calcium Phosphate 259 0.3 0 and Carbon Nanotubes for Bone Tissue Engineering. Bio-Medical Engineering, 0, , . Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. International Journal of 1.8 Molecular Sciences, 2022, 23, 5444. Infant Skin Friendly Adhesive Hydrogel Patch Activated at Body Temperature for Bioelectronics 261 7.3 112 Securing and Diabetic Wound Healing. ACS Nano, 2022, 16, 8662-8676. The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2022, 17, 0<u>45016.</u> Biomimetic porous hydrogel scaffolds enabled vascular ingrowth and osteogenic differentiation for 263 2.3 11 vascularized tissue-engineered bone regeneration. Applied Materials Today, 2022, 27, 101478. Bioactivity evaluation of printable calcium polyphosphate/alginoplast cement for bone tissue engineering; In vitro study. Bioprinting, 2022, 27, e00210. 264 Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting 265 2.5 19 osteoclastogenesis to facilitate bone regeneration. Npj Regenerative Medicine, 2022, 7, 29. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels, 2022, 8, 306. 2.1 267 Meniscus repair: up-to-date advances in stem cell-based therapy. Stem Cell Research and Therapy, 2022, 268 2.4 6 13, 207. The Preparation of Novel P(OEGMA-co-MEO2MA) Microgels-Based Thermosensitive Hydrogel and Its 2.1 Application in Three-Dimensional Cell Scaffold. Gels, 2022, 8, 313. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. International Journal of 270 25 1.8 Molecular Sciences, 2022, 23, 5831. 271 Recent Advancements in Materials and Coatings for Biomedical Implants. Gels, 2022, 8, 323. 2.1 44 Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized 272 5.1 8 cellulose nanocrystals. Carbohydrate Polymers, 2022, 292, 119638. DLP printed Î²-tricalcium phosphate functionalized ceramic scaffolds promoted angiogenesis and 2.3 osteogenesis in long bone defects. Ceramics International, 2022, 48, 26274-26286. Novel implantable devices delivering electrical cues for tissue regeneration and functional 274 0.9 5 restoration. Medicine in Novel Technology and Devices, 2022, 16, 100146. Preparation of High Mechanical Strength Chitosan Nanofiber/NanoSiO2/PVA Composite Scaffolds for 2.0 Bone Tissue Engineering Using Sol†Gel Method. Polymers, 2022, 14, 2083. Advances and Prospects in Antibacterial-Osteogenic Multifunctional Dental Implant Surface. 276 2.05 Frontiers in Bioengineering and Biotechnology, 2022, 10, . Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers, 2022, 14, 2123.

#	ARTICLE	IF	CITATIONS
278	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
279	Biomimetic Graphene Oxide-Xanthan Gum-Hydroxyapatite Composite Scaffold for Bone Tissue Engineering. Chemistry Africa, 2023, 6, 145-152.	1.2	1
280	Strong and Elastic Hydrogels from Dual-Crosslinked Composites Composed of Glycol Chitosan and Amino-Functionalized Bioactive Glass Nanoparticles. Nanomaterials, 2022, 12, 1874.	1.9	10
281	Physically Entangled Antiswelling Hydrogels with High Stiffness. Macromolecular Rapid Communications, 2022, 43, .	2.0	6
282	Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science, 2022, 131, 101573.	11.8	21
283	Hybrid metal-ceramic biomaterials fabricated through powder bed fusion and powder metallurgy for improved impact resistance of craniofacial implants. Materialia, 2022, 24, 101465.	1.3	13
284	Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioactive Materials, 2023, 19, 511-537.	8.6	21
285	Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomaterialia, 2022, 148, 355-373.	4.1	19
286	Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nature Energy, 2022, 7, 537-547.		50
287	Development of Biodegradable Osteopromotive Citrateâ€Based Bone Putty. Small, 2022, 18, .	5.2	9
288	Mechanical and Fluid Characteristics of Triply Periodic Minimal Surface Bone Scaffolds under Various Functionally Graded Strategies. Journal of Computational Design and Engineering, 0, , .	1.5	0
289	Rapid Flow Synthesis of a Biomimetic Carbonate Apatite as an Effective Drug Carrier. ACS Applied Materials & Interfaces, 2022, 14, 29626-29638.	4.0	1
290	Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. Small, 2022, 18, .	5.2	39
291	Membranes for the life sciences and their future roles in medicine. Chinese Journal of Chemical Engineering, 2022, 49, 1-20.	1.7	5
292	Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomaterialia, 2023, 156, 49-60.	4.1	26
293	Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Materials Today Bio, 2022, 15, 100318.	2.6	8
294	Progress in 3D printing for bone tissue engineering: a review. Journal of Materials Science, 2022, 57, 12685-12709.	1.7	13
295	Smart/stimuli-responsive hydrogels: State-of-the-art platforms for bone tissue engineering. Applied Materials Today, 2022, 29, 101560.	2.3	56

#	Article	IF	CITATIONS
296	3D printed hydroxyapatite-nacre-starch based bone grafts: Evaluation of biological and mechanical properties. Journal of Materials Research, 2022, 37, 2033-2044.	1.2	2
297	Effect of monetite reinforced into the chitosan-based lyophilized 3D scaffolds on physicochemical, mechanical, and osteogenic properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1161-1178.	1.8	1
298	Integrity of the ECM Influences the Bone Regenerative Property of ECM/Dicalcium Phosphate Composite Scaffolds. ACS Applied Bio Materials, 0, , .	2.3	1
299	Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104418.	2.7	5
300	Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Materials Today Advances, 2022, 15, 100272.	2.5	25
301	Gallic acid-grafted hybrid strontium fluoride/polycaprolactone nanocomposite fibers for bone regeneration. Progress in Organic Coatings, 2022, 170, 106976.	1.9	3
302	Layered double hydroxide-based nanomaterials for biomedical applications. Chemical Society Reviews, 2022, 51, 6126-6176.	18.7	133
303	Construction of Customized Bio Incubator and Designing of Tailored Scaffolds for Bone Tissue Engineering from Laboratory Scale Up to Clinical Scale. Journal of Renewable Materials, 2022, 10, 2699-2716.	1.1	0
304	Cryogenic Printing of Bioactive Materials for Bone Tissue Engineering: A Review. SSRN Electronic Journal, 0, , .	0.4	0
305	3D printed hydroxyapatite – Zn2+ functionalized starch composite bone grafts for orthopedic and dental applications. Materials and Design, 2022, 221, 110903.	3.3	17
306	Silk Fibroin as a Bioink – A Thematic Review of Functionalization Strategies for Bioprinting Applications. ACS Biomaterials Science and Engineering, 2022, 8, 3242-3270.	2.6	16
307	Improving Biological Functions of Three-Dimensional Printed Ti2448 Scaffolds by Decoration with Polydopamine and Extracellular Matrices. ACS Applied Bio Materials, 2022, 5, 3982-3990.	2.3	3
308	Criteria, Challenges, and Opportunities for Acellularized Allogeneic/Xenogeneic Bone Grafts in Bone Repairing. ACS Biomaterials Science and Engineering, 2022, 8, 3199-3219.	2.6	16
309	Lowâ€Temperature Printed Hierarchically Porous Inducedâ€Biomineralization Polyaryletherketone Scaffold for Bone Tissue Engineering. Advanced Healthcare Materials, 2022, 11, .	3.9	7
310	<scp>3D</scp> printed <scp>PCLA</scp> scaffold with nanoâ€hydroxyapatite coating doped green tea <scp>EGCG</scp> promotes bone growth and inhibits multidrugâ€resistant bacteria colonization. Cell Proliferation, 2022, 55, .	2.4	21
311	Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System. ACS Nano, 2022, 16, 11755-11768.	7.3	18
312	Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS Applied Materials & Interfaces, 2022, 14, 32914-32926.	4.0	9
313	Microstructures and mechanical properties of biphasic calcium phosphate bioceramics fabricated by SLA 3D printing. Journal of Manufacturing Processes, 2022, 81, 433-443.	2.8	17

#	Article	IF	CITATIONS
314	Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway. Bioactive Materials, 2023, 20, 598-609.	8.6	18
315	Tailoring micro/nano-fibers for biomedical applications. Bioactive Materials, 2023, 19, 328-347.	8.6	44
316	Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers, 2022, 14, 2964.	2.0	3
317	Chitosan Effect on Hardening Dynamics of Calcium Phosphate Cement: Low-Field NMR Relaxometry Investigations. Polymers, 2022, 14, 3042.	2.0	2
318	Casein-Coated Molybdenum Disulfide Nanosheets Augment the Bioactivity of Alginate Microspheres for Orthopedic Applications. ACS Omega, 2022, 7, 26092-26106.	1.6	3
319	Digital Light 3D Printed Bioresorbable and NIRâ€Responsive Devices with Photothermal and Shapeâ€Memory Functions. Advanced Science, 2022, 9, .	5.6	18
320	Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Materials in Medicine, 2023, 4, 1-14.	3.7	28
321	Enhanced bone regeneration <i>via</i> PHA scaffolds coated with polydopamine-captured BMP2. Journal of Materials Chemistry B, 2022, 10, 6214-6227.	2.9	9
322	Metal-Catechol Network (MCN) Based Bioactive Surface Engineering of Iron Reinforced Hydroxyapatite Nanorods for Bone Tissue Engineering. , 0, , .		0
323	Small Intestinal Submucosa Biomimetic Periosteum Promotes Bone Regeneration. Membranes, 2022, 12, 719.	1.4	4
324	Polyhedral Oligomeric Silsesquioxane as a Polarity Mediator and Reinforced Nanofiller for Fabricating Robust and Hierarchical Porous Film for Cell Bioengineering. ACS Applied Polymer Materials, 2022, 4, 5882-5890.	2.0	7
325	Hope for bone regeneration: The versatility of iron oxide nanoparticles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
326	A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	9
327	Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers, 2022, 14, 3335.	2.0	31
328	Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Materials and Design, 2022, 222, 111070.	3.3	12
329	Rapid Synthesis of Multifunctional Apatite via the Laser-Induced Hydrothermal Process. ACS Nano, 2022, 16, 12840-12851.	7.3	3
330	Effect of Dopants on the Physical, Mechanical, and Biological Properties of Porous Scaffolds for Bone Tissue Engineering. , 2023, 1, 234-255.		3
331	Spatial Delivery of Triple Functional Nanoparticles via an Extracellular Matrix-Mimicking Coaxial Scaffold Synergistically Enhancing Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 37380-37395.	4.0	9

ARTICLE IF CITATIONS Polycaprolactone scaffolds as a biomaterial for cementoblast delivery: An in vitro study. Journal of 332 1.4 0 Periodontal Research, 0, , . Chitosan Scaffold Containing Periostin Can Accelerate Bone Defect Regeneration in 1.6 Non-Weight-Bearing Conditions. Regenerative Engineering and Translational Medicine, 2023, 9, 125-134. Translating Material Science into Bone Regenerative Medicine Applications: State-of-The Art Methods 334 2 1.8 and Protocols. International Journal of Molecular Sciences, 2022, 23, 9493. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 2023, 123, 834-873. 190 Periosteum-Inspired Membranes Integrated with Bioactive Magnesium Oxychloride Ceramic Nanoneedles for Guided Bone Regeneration. ACS Applied Materials & amp; Interfaces, 2022, 14, 336 4.0 10 39830-39842. Materials Requirements in Fused Filament Fabrication: A Framework for the Design of Nextâ€Generation 3D Printable Thermoplastics and Composites. Macromolecular Materials and Engineering, 2022, 307, . 1.7 New use for old drug: Local delivery of puerarin facilitates critical-size defect repair in rats by 338 1.9 6 promoting angiogenesis and osteogenesis. Journal of Orthopaedic Translation, 2022, 36, 52-63. 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase 1.8 9 separation. Polymer, 2022, 256, 125190. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering 340 5.9 55 application. Composites Part B: Engineering, 2022, 244, 110163. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone 341 6.2 constructs. Nano Today, 2022, 46, 101584. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue 342 141 3.6 engineering applications. International Journal of Biological Macromolecules, 2022, 218, 930-968. Programmable, biodegradable composite scaffolds with variable pore morphology for minimal 3.8 invasive bone repair. Čomposites Part A: Applied Science and Manufacturing, 2022, 162, 107130. Micro/nanometer-sized porous structure of zinc phosphate incorporated Ti(HPO4)2 hydrate 344 bioceramic induces osteogenic gene expression and enhances osteoporotic bone regeneration. 6.6 10 Chemical Engineering Journal, 2022, 450, 138360. Recent advances in one-dimensional nanowire-incorporated bone tissue engineering scaffolds. 345 Materials Today Communications, 2022, 33, 104229. Biomaterial-based strategy for bone tumor therapy and bone defect regeneration: An innovative 346 1.2 2 application option. Frontiers in Materials, 0, 9, . Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds 347 with drug delivery capability for bone tissue engineering applications. European Polymer Journal, 2022, 179, 111580. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery 348 4.8 40 system. Journal of Controlled Release, 2022, 350, 421-434. Bioactive scaffold (sodium alginate)-g-(nHAp@SiO2@GO) for bone tissue engineering. International 349 Journal of Biological Macromolecules, 2022, 222, 462-472.

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
350	Nanozymes for biomedical applications in orthopaedics. Particuology, 2023, 76, 32-45		2.0	5
351	Functional constituents of plant-based foods boost immunity against acute and chron Open Life Sciences, 2022, 17, 1075-1093.	c disorders.	0.6	13
352	Electrospun nanofibers for bone regeneration: from biomimetic composition, structure Journal of Materials Chemistry B, 2022, 10, 6078-6106.	to function.	2.9	12
353	Protein–inorganic hybrid porous scaffolds for bone tissue engineering. Journal of Ma Chemistry B, 2022, 10, 6546-6556.	terials	2.9	5
354	Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites. , 2022,	, 1-41.		0
355	Deciphering the role of faujasite-type zeolites as a cation delivery platform to sustain t of MC3T3-E1 pre-osteoblastic cells. Materials Advances, 2022, 3, 8616-8628.	he functions	2.6	7
356	Ternary MXene-loaded PLCL/collagen nanofibrous scaffolds that promote spontaneous differentiation. Nano Convergence, 2022, 9, .	; osteogenic	6.3	11
357	Fabrication and Characterization of Willemite Scaffolds Using Corn Stalk as a Novel Bio Bone Tissue Engineering Applications. Journal of Bionic Engineering, 2023, 20, 16-29.	o Template for	2.7	1
358	Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceut 1023.	icals, 2022, 15,	1.7	8
359	Double – network hydrogel based on exopolysaccharides as a biomimetic extracellul augment articular cartilage regeneration. Acta Biomaterialia, 2022, 152, 124-143.	ar matrix to	4.1	21
360	Bioactive PCL-Peptide and PLA-Peptide Brush Copolymers for Bone Tissue Engineering. Materials, 2022, 5, 4770-4778.	ACS Applied Bio	2.3	5
361	Topographyâ€Supported Nanoarchitectonics of Hybrid Scaffold for Systematically Mo Regeneration and Remodeling. Advanced Functional Materials, 2022, 32, .	Julated Bone	7.8	22
362	Chloroplastâ€inspired Scaffold for Infected Bone Defect Therapy: Towards Stable Phot Properties and Selfâ€Defensive Functionality. Advanced Science, 2022, 9, .	othermal	5.6	24
363	A review on design of scaffold for osteoinduction: Toward the unification of independe variables. Biomechanics and Modeling in Mechanobiology, 2023, 22, 1-21.	nt design	1.4	7
364	An Extracellular Matrix-like Surface for Zn Alloy to Enhance Bone Regeneration. ACS Ap Materials & Interfaces, 2022, 14, 43955-43964.	plied	4.0	6
365	Gelatin methacryloyl/nanosilicate nanocomposite hydrogels encapsulating dexametha tunable crosslinking density for bone repair. Journal of Drug Delivery Science and Tech 77, 103844.		1.4	4
366	Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Perioc Regeneration. Polymers, 2022, 14, 3791.	ontal Tissue	2.0	11
367	Matrix-Directed Mineralization for Bulk Structural Materials. Journal of the American Cl Society, 2022, 144, 18175-18194.	nemical	6.6	25

#	Article	IF	Citations
368	3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn lons to Evaluate the Expression of Genes and Proteins of Osteogenic Markers. Nanomaterials, 2022, 12, 3420.	1.9	7
370	A Systematic Review of Bone Marrow Stromal Cells and Periosteum-Derived Cells for Bone Regeneration. Tissue Engineering - Part B: Reviews, 2023, 29, 103-122.	2.5	8
371	Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold. Journal of Advanced Research, 2023, 48, 175-190.	4.4	22
372	Multi-Crosslinked Strong and Elastic Bioglass/Chitosan-Cysteine Hydrogels with Controlled Quercetin Delivery for Bone Tissue Engineering. Pharmaceutics, 2022, 14, 2048.	2.0	4
373	Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings, 2022, 12, 1380.	1.2	23
374	A unique biomimetic modification endows polyetherketoneketone scaffold with osteoinductivity by activating cAMP/PKA signaling pathway. Science Advances, 2022, 8, .	4.7	10
375	3D bioprinted extracellular vesicles for tissue engineering—a perspective. Biofabrication, 2023, 15, 013001.	3.7	10
376	Intermittent compressive force regulates human periodontal ligament cell behavior via yes-associated protein. Heliyon, 2022, 8, e10845.	1.4	4
377	Hydrogel bio-nanocomposite beads based on alginate and silica: physicochemical and in vitro bioactivity evaluations. Polymer Bulletin, 2023, 80, 9097-9111.	1.7	2
378	Macrophage-derived hybrid exosome-mimic nanovesicles loaded with black phosphorus for multimodal rheumatoid arthritis therapy. Biomaterials Science, 2022, 10, 6731-6739.	2.6	11
379	Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics, 2022, 7, 151.	1.5	10
380	Ecoâ€Sustainable Approaches in Bone Tissue Engineering: Evaluating the Angiogenic Potential of Different Poly(3â€Hydroxybutyrateâ€Coâ€3â€Hydroxyhexanoate)–Nanocellulose Composites with the Chorioallantoic Membrane Assay. Advanced Engineering Materials, 2023, 25, .	1.6	3
381	Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. Materials, 2022, 15, 7477.	1.3	8
382	How does the structure of pullulan alginate composites change in the biological environment?. Journal of Materials Science, 2022, 57, 19050-19067.	1.7	2
383	NiFe2O4/ZnO-coated Poly(L-Lactide) nanofibrous scaffold enhances osteogenic differentiation of human mesenchymal stem cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
384	Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications. Materials, 2022, 15, 6942.	1.3	2
385	Local structure and ionic transport in acceptor-doped layered perovskite BaLa ₂ In ₂ O ₇ . Chimica Techno Acta, 2022, 9, .	0.3	4
386	Gelatin-hydroxyapatite Fibrous Nanocomposite for Regenerative Dentistry and bone Tissue Engineering. Open Dentistry Journal, 2022, 16, .	0.2	1

#	Article	IF	CITATIONS
387	Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy, 2022, , .	0.3	5
388	Bioessential Inorganic Molecular Wireâ€Reinforced 3Dâ€Printed Hydrogel Scaffold for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2023, 12, .	3.9	6
389	Engineering elastic bioactive composite hydrogels for promoting osteogenic differentiation of embryonic mesenchymal stem cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
390	Recent Advances in the Application of Natural and Synthetic Polymer-Based Scaffolds in Musculoskeletal Regeneration. Polymers, 2022, 14, 4566.	2.0	20
391	Multifunctional Bioactive Scaffolds from ARX- <i>g</i> -(Zn@rGO)-HAp for Bone Tissue Engineering: In Vitro Antibacterial, Antitumor, and Biocompatibility Evaluations. ACS Applied Bio Materials, 2022, 5, 5445-5456.	2.3	18
392	Additive manufacturing of bioactive glass biomaterials. Methods, 2022, 208, 75-91.	1.9	19
393	Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing. Polymers, 2022, 14, 4661.	2.0	5
394	Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. Nanomaterials, 2022, 12, 3873.	1.9	22
395	Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Materials Today Bio, 2022, 17, 100458.	2.6	11
396	Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materials, 2023, 23, 16-44.	8.6	17
397	Invitro and invivo examination for bioceramic degradation. Journal of Composites and Compounds, 2022, 4, 169-175.	0.4	1
398	Incorporation of curcumin into collagen-multiwalled carbon nanotubes nanocomposite scaffold: an inÂvitro and inÂvivo study. Journal of Materials Research and Technology, 2022, 21, 4558-4576.	2.6	8
399	Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. Journal of Applied Polymer Science, 2023, 140, .	1.3	10
400	Regenerative Efficacy of Supercritical Carbon Dioxide-Derived Bone Graft Putty in Rabbit Bone Defect Model. Biomedicines, 2022, 10, 2802.	1.4	6
401	Penetration and translocation of functional inorganic nanomaterials into biological barriers. Advanced Drug Delivery Reviews, 2022, 191, 114615.	6.6	20
402	Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Printing and Additive Manufacturing, 2024, 11, 347-362.	1.4	1
403	Preparation and Characterization of Porous Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) (PLA/PBAT) Scaffold with Polydopamine-Assisted Biomineralization for Bone Regeneration. Materials, 2022, 15, 7756.	1.3	4
404	Mechanical Properties and Deformation Mechanism of Bimodal-Rubber-Particle-Toughened Polyphenylene Ether/Polystyrene Blends. ACS Applied Polymer Materials, 2022, 4, 9085-9094.	2.0	4

#	Article	IF	CITATIONS
405	Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Research, 2023, 16, 5292-5299.	5.8	25
406	DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration. Materials Today Bio, 2022, 17, 100487.	2.6	7
407	Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications. International Journal of Biological Macromolecules, 2022, 223, 524-542.	3.6	12
408	Design and characterization of bio-elastomers containing biomaterials for tissue engineering application. Life Sciences, 2023, 312, 121203.	2.0	4
409	Hyaluronic acid-based hydrogel coatings on Ti6Al4V implantable biomaterial with multifunctional antibacterial activity. Carbohydrate Polymers, 2023, 301, 120366.	5.1	9
410	Automated Folding of Origami Lattices: From Nanopatterned Sheets to Stiff Metaâ€Biomaterials. Small, 2023, 19, .	5.2	3
411	Bone tissue engineering for treating osteonecrosis of the femoral head. Exploration, 2023, 3, .	5.4	15
412	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	2.4	54
413	Microcarriers containing "Hypoxia-engine―for simultaneous enhanced osteogenesis and angiogenesis. Chemical Engineering Journal, 2023, 456, 141014.	6.6	2
414	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0 Chemistry B, 2023, 11, 452-470.	.784314 rg 2.9	gBT /Overlock 3
414 415	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0		-
	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of	2.9	3
415	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of Controlled Release, 2023, 353, 738-751. An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and	2.9 4.8	3
415 416	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of Controlled Release, 2023, 353, 738-751. An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115840. Synthesising injectable molecular self-curing polymer from monomer derived from lignocellulosic oil palm empty fruit bunch biomass: A review on treating Osteoarthritis. Arabian Journal of Chemistry,	2.9 4.8 3.4	3 10 5
415 416 417	Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq1 1 0 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of Controlled Release, 2023, 353, 738-751. An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115840. Synthesising injectable molecular self-curing polymer from monomer derived from lignocellulosic oil palm empty fruit bunch biomass: A review on treating Osteoarthritis. Arabian Journal of Chemistry, 2023, 16, 104500.	2.9 4.8 3.4	3 10 5 3
415416417418	 Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq110 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of Controlled Release, 2023, 353, 738-751. An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115840. Synthesising injectable molecular self-curing polymer from monomer derived from lignocellulosic oil palm empty fruit bunch biomass: A review on treating Osteoarthritis. Arabian Journal of Chemistry, 2023, 16, 104500. Nanomechanical probing of bacterial adhesion to biodegradable Zn alloys. , 2023, 145, 213243. 3D printing of multifunctional gradient bone scaffolds with programmable component distribution and hierarchical pore structure. Composites Part A: Applied Science and Manufacturing, 2023, 166, 	2.9 4.8 3.4 2.3	3 10 5 3 2
 415 416 417 418 419 	 Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly(glycerol) Tj ETQq110 Chemistry B, 2023, 11, 452-470. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. Journal of Controlled Release, 2023, 353, 738-751. An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115840. Synthesising injectable molecular self-curing polymer from monomer derived from lignocellulosic oil palm empty fruit bunch biomass: A review on treating Osteoarthritis. Arabian Journal of Chemistry, 2023, 16, 104500. Nanomechanical probing of bacterial adhesion to biodegradable Zn alloys. , 2023, 145, 213243. 3D printing of multifunctional gradient bone scaffolds with programmable component distribution and hierarchical pore structure. Composites Part A: Applied Science and Manufacturing, 2023, 166, 107361. Parameter optimization and quality analysis of pulsed laser joining of 316L stainless steel and 	2.9 4.8 3.4 2.3 3.8	3 10 5 3 2 7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
423	Chitosan/POSS Hybrid Hydrogels for Bone Tissue Engineering. Materials, 2022, 15, 820	08.	1.3	17
424	Inorganic/Biopolymers Hybrid Hydrogels Dual Cross-Linked for Bone Tissue Regeneration 762.	on. Gels, 2022, 8,	2.1	2
425	Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis. Gels, 2022, 8, 804	ŀ.	2.1	3
426	Biomaterials of human source for 3D printing strategies. JPhys Materials, 2023, 6, 012	002.	1.8	5
427	Deep-learning-based inverse design of three-dimensional architected cellular materials target porosity and stiffness using voxelized Voronoi lattices. Science and Technology Materials, 2023, 24, .	with the of Advanced	2.8	8
428	3D Bioelectronics with a Remodellable Matrix for Longâ€Term Tissue Integration and R Advanced Materials, 2023, 35, .	lecording.	11.1	8
429	Two dimensional (2D) materials and biomaterials for water desalination; structure, pro recent advances. Environmental Research, 2023, 219, 114998.	perties, and	3.7	26
430	Highâ€ŧhroughput formation of miniaturized cocultures of 2D cell monolayers and 3D using droplet microarray. , 2023, 2, .	cell spheroids		4
431	Effective BMP-2 Release and Mineralization on a Graphene Oxide/Polyvinylpyrrolidone Forming Poly (Îμ-Caprolactone) Nanofibrous Scaffolds. Materials, 2022, 15, 8642.	Hydrogel	1.3	2
432	Mesoporous Silica Promotes Osteogenesis of Human Adipose-Derived Stem Cells Iden High-Throughput Microfluidic Chip Assay. Pharmaceutics, 2022, 14, 2730.	tified by a	2.0	2
433	Swelling-based gelation of wet cellulose nanopaper evaluated by single particle trackin Technology of Advanced Materials, 2023, 24, .	ig. Science and	2.8	2
434	Development of the third generation of bioceramics: Doping hydroxyapatite with s-, p- cations and their potential applications in bone regeneration and void filling. Ceramics 2023, 49, 7142-7179.		2.3	3
435	From mesenchymal niches to engineered in vitro model systems: Exploring and exploit biomechanical regulation of vertebrate hedgehog signalling. Materials Today Bio, 2022	ing 2, 17, 100502.	2.6	4
436	Microporous Ceramics Based on β-Tricalcium Phosphate. Ceramics, 2022, 5, 1269-128	85.	1.0	0
437	A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. BioMed International, 2022, 2022, 1-15.	Research	0.9	9
438	Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effe osteoblast proliferation. Journal of Industrial and Engineering Chemistry, 2023, 120, 12		2.9	3
439	Bioactive Nanocomposite Microsponges for Effective Reconstruction of Critical-Sized Defects in Rat Model. International Journal of Nanomedicine, 0, Volume 17, 6593-6606		3.3	3
440	The development of novel multifunctional drug system 7,8-DHF@ZIF-8 and its potentia bone defect healing. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113102.	al application in	2.5	2

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
441	Bioprinted Membranes for Corneal Tissue Engineering: A Review. Pharmaceutics, 2022, 14, 2	2797. 2.	0	8
442	Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Frontiers in Molecular Biosciences, 0, 9, .	1.4	6	3
443	Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluati osseointegration. Bio-Design and Manufacturing, 2023, 6, 217-242.	on of 3.	9	3
444	Smart Biomaterials for Articular Cartilage Repair and Regeneration. Advanced Functional Ma 2023, 33, .	iterials, 7.1	8	21
445	Fabrication, characterization and biological properties evaluation of bioactive scaffold based mineralized carbon nanofibers. Journal of Biomolecular Structure and Dynamics, 0, , 1-8.	l on 2.	0	0
446	Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Properties. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 763.	Scaffold o.	.6	2
447	Metal-Phenolic Networks Assembled on TiO ₂ Nanospikes for Antimicrobial Pep Deposition and Osteoconductivity Enhancement in Orthopedic Applications. Langmuir, 202 1238-1249.		6	5
448	Remineralization of Demineralized Bone Matrixes with Preserved Fibrillary Structure as a Promising Approach to Obtain Highly Effective Osteoplastic Materials. BIO Web of Conferences, 2023, 57, 04001.		.1	1
449	Injectable Bone Cement Reinforced with Gold Nanodots Decorated rGOâ€Hydroxyapatite Nanocomposites, Augment Bone Regeneration. Small, 2023, 19, .		2	11
450	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.		5.0	32
451	Alginate Hydrogels Reinforced by Dehydration under Stress—Application to a Soft Magnetic Actuator. Gels, 2023, 9, 39.		1	2
452	Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for direct regeneration of critical-sized bone defects. Materials and Design, 2023, 225, 111543.	ed 3.	3	9
453	Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Research and 2023, 14, .	l Therapy, 2.	4	10
454	Extrusion <scp>3D</scp> printing of a multiphase collagenâ€based material: An optimized sobtain biomimetic scaffolds with high shape fidelity. Journal of Applied Polymer Science, 202		3	5
455	Self-assembly of bioinspired peptides for biomimetic synthesis of advanced peptide-based nanomaterials: a mini-review. Nano Futures, 2023, 7, 012001.	1.0	0	3
456	Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN induces osteogenesis via collective signaling and immunopolarization. Biomaterials, 2023, 2	network 294, 121999. 5.	7	18
457	Bone-targeted bortezomib increases bone formation within Calvarial trans-sutural distractio osteogenesis. Bone, 2023, 169, 116677.	n 1.4	4	0
458	Dual-functionalized Pickering HIPE templated poly(É›-caprolactone) scaffold for maxillofacia International Journal of Pharmaceutics, 2023, 633, 122611.	l implants. 2.	6	3

	Сітатіс	on Report	
#	Article	IF	CITATIONS
459	Progress in self-healing hydrogels and their applications in bone tissue engineering. , 2023, 146, 213274.		10
460	Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioactive Materials, 2023, 24, 535-550.	8.6	14
461	Perceiving the connection between the bone healing process and biodegradation of biodegradable metal implants through precise bioadaptability principle. Journal of Materials Science and Technology, 2023, 147, 132-144.	5.6	5
462	<i>Moringa oleifera</i> -Loaded Nanocomposite Scaffolds Augment Bone Injury Healing in a Rat Model of Critical Sized Bone Defect: A Potential Treatment Strategy for Nursing Care in Fracture Patients. Journal of Biomedical Nanotechnology, 2022, 18, 2194-2203.	0.5	0
463	A Comparative Study on the Morphology and In Vitro Behaviour of Biopolymers/Ceramic-based Scaffolds Obtained by Drying and Lyophilization Techniques. , 2022, , .		0
464	Influence of the Glassy Fraction Surface of a ZrCoAlAg Ribbon Alloy on the Bioactive Response to Simulated Body Fluid and Its Effect on Cell Viability. Metals, 2023, 13, 55.	1.0	0
465	The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature. , 2022, .		1
466	Crystallinity Dependence of PLLA Hydrophilic Modification during Alkali Hydrolysis. Polymers, 2023, 15, 75.	2.0	7
467	Synthetic biomaterials. , 2023, , 173-212.		0
468	Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	8
469	Novel Pr-Doped BaLaInO4 Ceramic Material with Layered Structure for Proton-Conducting Electrochemical Devices. Applied Sciences (Switzerland), 2023, 13, 1328.	1.3	2
470	Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomaterials Science and Engineering, 0, , .	2.6	3
471	Patient-specific 3D bioprinting for in situ tissue engineering and regenerative medicine. , 2023, , 149-178.		1
472	Fused deposition modeling of polymer-matrix composites with discrete ceramic fillers. , 2023, , 129-175.		0
473	The need for fused deposition modeling of composite materials. , 2023, , 39-89.		0
474	Magnetic Hydroxyapatite Composite Nanoparticles for Augmented Differentiation of MC3T3-E1 Cells for Bone Tissue Engineering. Marine Drugs, 2023, 21, 85.	2.2	2
475	Fused deposition modeling of composite materials at a glance – supplementary tables. , 2023, , 329-445.		1
476	Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering. Pharmaceutics, 2023, 15, 345.	2.0	16

#	Article	IF	CITATIONS
477	Fabrication of a biocompatible electroconductive scaffold based on ascorbic acid-doped polyaniline for bone tissue engineering. , 2022, , .		0
478	Surface modification of calcium phosphate scaffolds with antimicrobial agents for bone tissue engineering. , 2023, , 289-322.		0
479	Chitosan Nanocomposites as Scaffolds for Bone Tissue Regeneration. Biological and Medical Physics Series, 2023, , 377-394.	0.3	3
480	Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 544-555.	1.8	4
481	Nanostructured 3Dâ€Printed Hybrid Scaffold Accelerates Bone Regeneration by Photointegrating Nanohydroxyapatite. Advanced Science, 2023, 10, .	5.6	10
482	An injectable porous bioactive magnesium phosphate bone cement foamed with calcium carbonate and citric acid for periodontal bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105805.	1.5	5
483	Gelatin hydrogel reinforced with mussel-inspired polydopamine-functionalized nanohydroxyapatite for bone regeneration. International Journal of Biological Macromolecules, 2023, 240, 124287.	3.6	8
484	Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials, 2023, 296, 122066.	5.7	19
485	Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113255.	2.5	2
486	Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials, 2023, 296, 122078.	5.7	12
487	Scaffold degradation in bone tissue engineering: An overview. International Biodeterioration and Biodegradation, 2023, 180, 105599.	1.9	32
488	Injectable magnesium oxychloride cement foam-derived scaffold for augmenting osteoporotic defect repair. Journal of Colloid and Interface Science, 2023, 640, 199-210.	5.0	2
489	Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation. , 2023, 149, 213392.		1
490	Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering. International Journal of Mechanical Sciences, 2023, 251, 108353.	3.6	16
491	Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioactive Materials, 2023, 27, 15-57.	8.6	12
492	Enhanced mechanical properties and biological responses of SLA 3D printed biphasic calcium phosphate bioceramics by doping bioactive metal elements. Journal of the European Ceramic Society, 2023, 43, 4167-4178.	2.8	5
493	3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioactive Materials, 2023, 27, 216-230.	8.6	6
494	Functionalized 3D-printed porous titanium scaffold induces in situ vascularized bone regeneration by orchestrating bone microenvironment. Journal of Materials Science and Technology, 2023, 153, 92-105.	5.6	7

#	Article	IF	CITATIONS
495	Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioactive Materials, 2023, 26, 1-13.	8.6	5
496	Preparation of nanofibrous poly (L-lactic acid) scaffolds using the thermally induced phase separation technique in dioxane/polyethylene glycol solution. Designed Monomers and Polymers, 2023, 26, 77-89.	0.7	1
497	<scp>3D</scp> printing of chitooligosaccharideâ€polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2023, 111, 1468-1481.	2.1	7
498	Electrospun biodegradable scaffolds based on poly (ε-caprolactone)/gelatin containing titanium dioxide for bone tissue engineering application; inÂvitro study. Journal of Macromolecular Science - Pure and Applied Chemistry, 2023, 60, 270-281.	1.2	0
499	Effects of polylactic acid coating on properties of porous Zn scaffolds as degradable materials. Materials Characterization, 2023, 199, 112852.	1.9	3
500	Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. International Journal of Biological Macromolecules, 2023, 231, 123328.	3.6	14
501	Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels, 2023, 9, 100.	2.1	35
502	Thermodynamic 2D Silicene for Sequential and Multistage Bone Regeneration. Advanced Healthcare Materials, 2023, 12, .	3.9	8
503	Polymeric Scaffolds for Regeneration of Central/Peripheral Nerves and Soft Connective Tissues. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
504	3D printed bioactive glasses porous scaffolds with high strength for the repair of long-bone segmental defects. Composites Part B: Engineering, 2023, 254, 110582.	5.9	7
505	Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry, 2023, 15, 403.	1.1	10
506	Engineering mussel-inspired multifunctional nanocomposite hydrogels to orchestrate osteoimmune microenvironment and promote bone healing. Materials and Design, 2023, 227, 111705.	3.3	1
507	Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. Journal of Tissue Engineering and Regenerative Medicine, 2023, 2023, 1-13.	1.3	1
508	Material–Structure–Function Integrated Additive Manufacturing of Degradable Metallic Bone Implants for Loadâ€Bearing Applications. Advanced Functional Materials, 2023, 33, .	7.8	12
510	Exosome-Functionalized, Drug-Laden Bone Substitute along with an Antioxidant Herbal Membrane for Bone and Periosteum Regeneration in Bone Sarcoma. ACS Applied Materials & Interfaces, 2023, 15, 8824-8839.	4.0	4
511	Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production. Coatings, 2023, 13, 374.	1.2	6
512	Baicalin Nanocomplexes with an <i>In Situ</i> -Forming Biomimetic Gel Implant for Repair of Calvarial Bone Defects <i>via</i> Localized Sclerostin Inhibition. ACS Applied Materials & Interfaces, 2023, 15, 9044-9057.	4.0	4
513	Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. Materials 2023, 16, 1429	1.3	3

#	Article	IF	CITATIONS
514	Conductive Polyaniline Particles Regulating In Vitro Hydrolytic Degradation and Erosion of Hydroxyapatite/Poly(lactide- <i>co</i> -glycolide) Porous Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2023, 9, 1541-1557.	2.6	4
515	Nanowhiskers Orchestrate Bone Formation and Bone Defect Repair by Modulating Immune Cell Behavior. ACS Applied Materials & Interfaces, 2023, 15, 9120-9134.	4.0	3
516	Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels, 2023, 9, 153.	2.1	3
517	Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomaterials Science and Engineering, 2023, 9, 1164-1189.	2.6	13
518	A 3D biomimetic optoelectronic scaffold repairs cranial defects. Science Advances, 2023, 9, .	4.7	10
519	The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomaterials Science, 2023, 11, 2639-2660.	2.6	7
520	Effect of Pore Characteristics and Alkali Treatment on the Physicochemical and Biological Properties of a 3D-Printed Polycaprolactone Bone Scaffold. ACS Omega, 2023, 8, 7378-7394.	1.6	6
521	Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds. ACS Nano, 2023, 17, 4433-4444.	7.3	16
522	Wettingâ€Enabled Threeâ€Dimensional Interfacial Polymerization (WETâ€DIP) for Bioinspired Antiâ€Dehydration Hydrogels. Small, 2023, 19, .	5.2	2
523	A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. International Journal of Molecular Sciences, 2023, 24, 4312.	1.8	12
524	Injectable, Hierarchically Degraded Bioactive Scaffold for Bone Regeneration. ACS Applied Materials & Interfaces, 2023, 15, 11458-11473.	4.0	5
525	Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds. Biomimetics, 2023, 8, 94.	1.5	11
526	Designed peptide amphiphiles as scaffolds for tissue engineering. Advances in Colloid and Interface Science, 2023, 314, 102866.	7.0	9
527	PCL/Graphene Scaffolds for the Osteogenesis Process. Bioengineering, 2023, 10, 305.	1.6	2
528	Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites. , 2023, , 351-390.		0
529	Promoting Electrocatalytic Hydrogenation of Oxalic Acid to Glycolic Acid via an Al ³⁺ Ion Adsorption Strategy Coupled with Ethylene Glycol Oxidation. ACS Applied Materials & Interfaces, 2023, 15, 13176-13185.	4.0	6
530	Position Paper Progress in the development of biomimetic engineered human tissues. Journal of Tissue Engineering, 2023, 14, 204173142211456.	2.3	1
531	The current regenerative medicine approaches of craniofacial diseases: A narrative review. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	11

	CITATION		
#	Article	IF	CITATIONS
532	Biodegradable Cements for Bone Regeneration. Journal of Functional Biomaterials, 2023, 14, 134.	1.8	11
533	The effects of BaTiO3 on the handleability and mechanical strength of the prepared piezoelectric calcium phosphate silicate for bone tissue engineering. Ceramics International, 2023, 49, 19746-19752.	2.3	3
534	Application of 3D Printing in Bone Grafts. Cells, 2023, 12, 859.	1.8	8
535	Early bone ingrowth of Cu-bearing CoCr scaffolds produced by selective laser melting: An in vitro and in vivo study. Materials and Design, 2023, 228, 111822.	3.3	2
536	Emerging Strategies in Stimuliâ€Responsive Silk Architectures. Macromolecular Bioscience, 2023, 23, .	2.1	9
537	Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS Applied Bio Materials, 2023, 6, 3516-3531.	2.3	13
538	Enhanced Osteogenic Properties of Bone Repair Scaffolds through Synergistic Effects of Mechanical and Biochemical Stimulation. Advanced Engineering Materials, 2023, 25, .	1.6	0
539	Drug-Eluting Nanofibrous Polymeric Tubes for Urethra Reconstruction and Prevention of Its Infection: An <i>In Vitro</i> Study. Journal of Biomedical Nanotechnology, 2022, 18, 2651-2660.	0.5	0
540	Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomaterialia, 2023, 162, 164-181.	4.1	2
541	Hypoxia Drives Materialâ€Induced Heterotopic Bone Formation by Enhancing Osteoclastogenesis via M2/Lipidâ€Loaded Macrophage Axis. Advanced Science, 2023, 10, .	5.6	7
542	Development and In Vivo Assessment of an Injectable Cross‣inked Cartilage Acellular Matrixâ€PEG Hydrogel Scaffold Derived from Porcine Cartilage for Tissue Engineering. Macromolecular Bioscience, 0, , .	2.1	3
543	Accelerating bone regeneration in cranial defects using an injectable organic–inorganic composite hydrogel. Journal of Materials Chemistry B, 2023, 11, 3713-3726.	2.9	1
544	Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. Materials, 2023, 16, 2799.	1.3	3
545	Electrospun Propolis-coated PLGA Scaffold Enhances the Osteoinduction of Mesenchymal Stem Cells Current Stem Cell Research and Therapy, 2023, 18, .	0.6	0
546	Recent advances in two-dimensional nanomaterials for bone tissue engineering. Journal of Materiomics, 2023, 9, 930-958.	2.8	3
547	Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Computational and Structural Biotechnology Journal, 2023, 21, 2514-2523.	1.9	4
548	High Strength Titanium with Fibrous Grain for Advanced Bone Regeneration. Advanced Science, 2023, 10, .	5.6	2
549	FLIM imaging revealed spontaneous osteogenic differentiation of stem cells on gradient pore size tissue-engineered constructs. Stem Cell Research and Therapy, 2023, 14, .	2.4	0

#	Article	IF	CITATIONS
550	DNA hydrogels for bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
551	3D-printed dual-ion chronological release functional platform reconstructs neuro-vascularization network for critical-sized bone defect regeneration. Chemical Engineering Journal, 2023, 465, 143015.	6.6	8
552	Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. ACS Applied Materials & Interfaces, 2023, 15, 20661-20676.	4.0	9
579	Comprehensive Review on Fabricating Bioactive Ceramic Bone Scaffold Using Vat Photopolymerization. ACS Biomaterials Science and Engineering, 2023, 9, 3032-3057.	2.6	5
595	Multicomponent Hydrogels for Tissue Engineering Applications. , 2023, , 346-380.		0
607	Synthesis, Properties, and Applications of Carboxymethyl Chitosan-Based Hydrogels. Advances in Polymer Science, 2023, , .	0.4	0
627	Pectin in tissue engineering. , 2023, , 609-626.		0
630	Tailoring biomaterials for biomimetic organs-on-chips. Materials Horizons, 2023, 10, 4724-4745.	6.4	5
635	Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomaterials Science, 2023, 11, 7003-7017.	2.6	0
644	Biomimetic Approach for the Controlled Drug Delivery through 3D Bioactive Scaffolds: A Novel Strategy for Tissue Engineering Applications. , 2023, , 335-356.		0
657	Drug delivery for bone tissue engineering. , 2023, , 783-815.		0
667	Development of 3D-printed biocompatible materials for bone substitution. , 2024, , 507-524.		0
679	Patent and regulatory issues of hydrogel for tissue engineering and regenerative medicine. , 2024, , 161-178.		0
710	Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. Journal of Materials Chemistry B, 2023, 11, 11405-11425.	2.9	4
721	Materials from Natural Resources for the Application of Bone Tissue Engineering. , 2023, , 55-82.		0
744	Neuro–bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Research, 2023, 11, .	5.4	1
747	Analysis of Mechanical Behavior of Biomaterials of HA/Ti for Bone Tissue Regeneration Using Finite Element Method. IFMBE Proceedings, 2024, , 33-47.	0.2	0
753	Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomaterials Science, 0, , .	2.6	0

#	Article	IF	CITATIONS
761	An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells. , 2023, , 1-38.		0
769	Protein-based bioactive coatings: from nanoarchitectonics to applications. Chemical Society Reviews, 2024, 53, 1514-1551.	18.7	1
777	Closer to nature. , 2024, , 47-92.		0
789	Implantable soft electronics and sensors. , 2024, , 393-435.		Ο
804	Chiral nanomaterials in tissue engineering. Nanoscale, 2024, 16, 5014-5041.	2.8	0
814	An Overview of PRP-Delivering Scaffolds for Bone and Cartilage Tissue Engineering. Journal of Bionic Engineering, 2024, 21, 674-693.	2.7	Ο
821	Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. Journal of Materials Chemistry B, 2024, 12, 2720-2736.	2.9	0
837	Modelling and Simulation of Conformal Biomimetic Scaffolds for Bone Tissue Engineering. Lecture Notes in Mechanical Engineering, 2024, , 471-478.	0.3	Ο
841	Atomistic Simulations for Mechanical Behaviour of Natural Biopolymers for Material Design. , 2024, , 467-476.		0